M. Sakaguchi,^{*1,*2} M. Aikawa,^{*3,*2} N. Ukon,^{*4,*2} Y. Komori,^{*2} H. Haba,^{*2} N. Otuka,^{*5,*2} and S. Takács^{*6}

Some samarium radionuclides can be used for nuclear medicine. ¹⁵³Sm ($T_{1/2} = 46.3$ h) is a beta and gamma emitter available to treat bone metastases.¹⁾ ¹⁴⁵Sm ($T_{1/2} = 340$ d) decays with the emission of lowenergy X rays, which is applicable in brachytherapy.²⁾ These samarium radionuclides can be generated simultaneously in alpha-particle-induced reactions on natural neodymium. Highly accurate cross sections of the reactions are indispensable for practical use. However, there is only one previous experimental study on the ^{nat}Nd(α, x)¹⁵³Sm reaction up to 26.2 MeV.³⁾ Further, the literature survey did not reveal any experimental research on the ^{nat}Nd(α, x)¹⁴⁵Sm reaction. Therefore, we measure the cross sections of the alpha-particle-induced reactions on natural neodymium up to 51 MeV.

The experiment was performed at the RIKEN AVF cyclotron. The stacked-foil activation technique and high-resolution gamma-ray spectrometry were adopted for the experiment. The target consisted of pure metal foils of ^{nat}Nd (99.0% purity, Goodfellow Co., Ltd., UK) and ^{nat}Ti (99.6% purity, Nilaco Corp., Japan). The thicknesses of the ^{nat}Nd and ^{nat}Ti foils were 16.7 and 2.35 mg/cm^2 , respectively, which were deduced from the measurement of their weights and surface areas. Twenty-one Nd and fourteen Ti foils were arranged in seven sets of Nd-Nd-Nd and Ti-Ti pairs. The second and third Nd foils and the second Ti foil of each pair were assumed to compensate the recoiled products. The ^{nat}Ti foils were inserted for the ^{nat}Ti(α, x)⁵¹Cr monitor reaction to assess the measured beam parameters and target thicknesses.

The stacked target was irradiated with an alphaparticle beam for 60 min. The measured beam energy and intensity were 51.1 ± 0.2 MeV and 172 nA, respectively. Energy degradation through the stacked target was calculated using the SRIM code.⁴⁾ The gammaray spectra were acquired for the recoil-compensated foils by an HPGe detector without chemical separation. Measurements were performed several times after cooling from 0.7 h to 4.0 d to follow the decay of the produced radionuclides with different half-lives. The distances between the foils and the detector were adjusted

- [†] Condensed from the article in Appl. Radiat. Isot. **176**, 109826 (2021)
- *1 Graduate School of Biomedical Science and Engineering, Hokkaido University
- *2 RIKEN Nishina Center
- *³ Faculty of Science, Hokkaido University
- *4 Advanced Clinical Research Center, Fukushima Medical University
- *⁵ Nuclear Data Section, IAEA
- *6 Institute for Nuclear Research (ATOMKI)

400 ^{nat}Nd(a,x)¹⁴⁵Sm 350 TENDL-2019 300 Cross section (mb) This work 250 200 150 100 50 0 5 10 15 20 25 30 35 40 45 50 alpha-particle energy (MeV)

Fig. 1. Excitation function of the ^{nat}Nd(α, x)¹⁴⁵Sm reaction compared with the TENDL-2019 data.⁶⁾ No experimental data published earlier was found in a survey.

to keep the dead time less than 5%.

The derived cross sections of the ^{nat}Ti(α, x)⁵¹Cr monitor reaction were compared with the IAEA recommended values.⁵⁾ The observed shift on the energy scale was corrected by changing the thickness of the Nd foils by -1.5% within its 2% uncertainty to 16.4 mg/cm². No additional adjustments were adopted for the data analysis to determine the cross sections of the alphaparticle-induced reactions on natural neodymium.

 $^{145}{\rm Sm}~(T_{1/2}=340~{\rm d})$ can be produced in (α,xn) reactions on the stable isotopes of $^{142,\,143,\,144,\,145,\,146}{\rm Nd}$ below 51 MeV. The gamma line at 61.2265 keV $(I_{\gamma}=12.15\%)$ emitted with the decay of $^{145}{\rm Sm}$ was measured after cooling for 1.4–4.0 days. The net counts of the gamma line were corrected by +8.4% because of the self-absorption effect in the $^{\rm nat}{\rm Nd}$ foils. The cross sections of the $^{\rm nat}{\rm Nd}(\alpha,x)^{145}{\rm Sm}$ reaction were derived from the corrected net counts. The result is shown in Fig. 1 in comparison with theoretical values from the TENDL-2019 library.⁶) The TENDL-2019 values are almost consistent with our experimental data. Activation cross sections for other radionuclides $^{153}{\rm Sm}$, $^{151,\,150,\,149,\,148m,\,148g,\,144,\,143}{\rm Pm}$, and $^{149,\,147}{\rm Nd}$ were also determined.

References

- 1) I. G. Finlay et al., Lancet Oncol. 6, 392 (2005).
- 2) R. G. Fairchild et al., Phys. Med. Biol. 32, 847 (1987).
- 3) S. Qaim et al., Radiochim. Acta 95, 313 (2007).
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 5) A. Hermanne et~al., Nucl. Data Sheets ${\bf 148},$ 338 (2018).
- 6) A. J. Koning et al., Nucl. Data Sheets 155, 1 (2019).

