
RIKEN Accel. Prog. Rep. 55 (2022)

Pairing forces govern population of doubly magic 54Ca from direct
reactions†
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In exotic nuclei, the proton-neutron attraction be-
tween orbits of the same angular momentum, but
different intrinsic spin directions (j> = � + s and
j< = � − s) can affect the evolution of single-particle
energies.1) Tensor-driven shell evolution is responsible
for the emergence of two non-canonical nuclear magic
numbers, N = 34 in 54Ca2) and N = 16 in 24O.3) In
these nuclei a lack of π0f7/2 and π0d5/2 occupation,
respectively, allows their neutron j< orbits to increase
through the absence of the tensor attraction.
Single-proton knockouts from the valence orbital of

25F (24O plus one proton in π0d5/2) have shown a re-
duction of spectroscopic strength to the ground state
compared to expectation.4) The explanation of this
was due to the mixing of the neutron configurations re-
sulting from the tensor attraction between the π0d5/2
and ν0d3/2 orbitals. In 55Sc (54Ca plus one proton in
π0f7/2), a similar erosion of the N = 34 shell gap is
observed (e.g. Ref. 5)), therefore, a similar reduction
of spectroscopic strength as in 25F might be expected.
A primary beam of 70Zn of intensity 240 particle nA

was accelerated to 345 MeV/nucleon and underwent
fragmentation on a 10-mm-thick 9Be target. From the
secondary beam, 55Sc isotopes were selected and trans-
ported to the MINOS LH2 target system where they
underwent knockout reactions at ∼200 MeV/nucleon.
Populated states of 54Ca were measured through γ-ray
detection with the DALI2+ array, and invariant-mass
spectroscopy through detection of residual nuclei and
their emitted neutrons in the SAMURAI set-up. Par-
allel momentum distributions were measured to deter-
mine the �-value of the knocked out proton.
Level energies were calculated from the nuclear shell

model employing the GXPF1Br interaction.2) Theoret-
ical cross sections to states were calculated from DWIA
estimates multiplied by shell model spectroscopic fac-
tors, which quantify the overlap of the 55Sc and 54Ca
wavefunctions. A comparison between the observed
and predicted cross sections is shown in Fig. 1.
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Despite the shell model calculations showing a sig-
nificant amplitude of excited neutron configurations in
the ground-state of 55Sc, removing the π0f7/2 valence
proton populated predominantly the ground-state of
54Ca. This counter-intuitive result is attributed to the
off-diagonal matrix elements of the pairing interaction
leading to a dominance of the ground-state spectro-
scopic factor.6) Owing to the ubiquity of the pairing
interaction, this argument should be generally appli-
cable to direct knockout reactions from odd-even to
even-even nuclei.

Fig. 1. (Top panel) Observed cross sections to states fol-

lowing the 55Sc(p, 2p) reaction. Above Sn the cross sec-

tions are shown at the energy centroids of fitted values

and likely represent contributions from several states.

States with conclusive �-value assignments are colored

accordingly, otherwise are black. (Bottom panel) Theo-

retical predictions of state energies and their population

cross sections. Contributions to cross sections from pro-

ton removals from the different orbitals are indicated.
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