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Offline commissioning of an iso-A/q mass reference ion source with
an MRTOF-MS
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Precision mass measurements of radioactive nuclei
using a multi-reflection time-of-flight mass spectro-
graph (MRTOF-MS) have become increasingly stan-
dard in recent years for exploring nuclear physics.
MRTOF-MS enables fast and wide-band mass mea-
surement with high resolving powers, as demonstrated
in recent studies.1–3) Precise and accurate mass deter-
mination with MRTOF-MS requires at least one well-
known mass reference in the same number of laps for
calibration. An iso-A/q mass reference ion is an ideal
solution to minimize systematic uncertainty dependent
on both mass and lap differences.3,4)

For this purpose, an Iso-A/q mass Reference Ion
Source (IRIS) has been developed using the pulsed
laser ablation technique. In this technique, an ablation
target made of any metal is irradiated by an intense
pulsed laser to vaporize the target material, resulting
in the production of singly and multiply charged ions.
This facilitates the obtainment of a wide A/q range of
ions, covering all isotopes in the nuclear chart.
Figure 1 shows the setup of IRIS connected to the

MRTOF-MS ion trap system.2) IRIS comprises a
pulsed laser (Nd:YAG, 532 nm, ≈2.5 mJ, 10 Hz),
rotating target, quadrupole ion deflector (QID), and
two radiofrequency quadrupole (RFQ) ion guides: the
backgammon RFQ (BG-RFQ), capable of trapping
and cooling ions as an option, and the beam-transport-
line RFQ (BTL-RFQ), dedicated to ion transport. Fol-
lowing BTL-RFQ, a diagonal steerer and an einzel lens
are installed across the gate valve to efficiently inject
ion beams into the pre-cooler RFQ.
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Fig. 1. Schematic of IRIS and the ion trap system on

MRTOF-MS.

During the commissioning, a Mo target was used to
produce a variety of isotopes and to validate the ca-
pability of using a high-melting-point metal with suffi-
cient intensity at MRTOF-MS. The target was rotated
at 5 rpm to prevent repeated ablation at the same spot
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and to stabilize the ion rate. Additionally, a bias volt-
age of 200 V was applied to the target to accelerate the
produced ions. Subsequently, the ions were deflected
by 90◦ at QID and transported through the RFQs.
Subsequently, they were then steered and focused into
the pre-cooler RFQ using the steerer and einzel lens.
Between the einzel lens and the pre-cooler RFQ, a con-
ventional thermal ion source (TIS) can be inserted to
provide alkali ions. Certain ion beams from IRIS were
transported to the gas-cell (GC) side pre-cooler RFQ
through the flat trap to obtain ion signals on both mea-
surement cycles of the concomitant method.3) From
the GC, radioactive ion (RI) beams from 252Cf fission
source were obtained.
Figure 2 shows the time-of-flight (TOF) spectra ob-

tained with MRTOF-MS. At 2 laps, Mo+ ions, molec-
ular ions (oxide, fluoride, and dioxide), and Rb+ ions
were observed in order. At 511 laps for 98Mo+, cor-
responding to the highest resolving power (Rm ≈
500,000), peaks were well-separated and unambigu-
ously identified, although those peaks were not in the
order of m/q anymore. From the GC side, 98Mo+ ions
transported to the GC side pre-cooler RFQ were also
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Fig. 2. TOF spectra obtained with MRTOF-MS. Top: At

2 laps from the IRIS side. Middle and Bottom: At

511 laps for 98Mo+ from the IRIS side and the GC side

with only A/q = 98 ions selected by an in-MRTOF de-

flector, with peak assignments for major peaks. The lap

differences for those peaks from 511 laps are described

in brackets. The gray regions are disturbed by high-

voltage switching.
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transported in the measurement cycle of the GC side;
therefore, they were observed in the spectrum together
with RIs, 98Nb+, 98Zr+, 97Zr1H+, and 98Y+.
Ions such as MoO+ and MoO+

2 are likely formed
from the oxide metal surface on the target, whereas the
formation of MoF+ ions is unlikely. MoF+ ions may be
produced through a mechanism involving high-energy
ions hitting the electrodes of the pre-cooler RFQ. Dur-
ing the long-term operation of the TIS thus far, stray
ions could interact with fluorine atoms evaporatively
deposited from a polytetrafluoroethylene (PTFE) in-
sulator around the TIS onto the electrodes during the
long-term operation of the TIS thus far, leading to
the formation of molecular ions. This inference is sup-
ported by the observation of 12C2

19F+
4 ions, which are

monomers of PTFE (Fig. 2, Middle). Similarly, it is
presumed that Rb+ ions could also be produced by
charge exchange with Rb atoms deposited on the elec-
trodes. Regardless of the mechanism, these molecular
ions serve as mass references.
The commissioning has shown that IRIS can provide

a wide range of iso-A/q ions simultaneously. Further
investigation will explore other target materials and
the production of cluster ions.
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