In-gas-cell laser ionization spectroscopy of ^{191,192}Re at KISS

Y. Hirayama,^{*1} M. Mukai,^{*2} T. Niwase,^{*1} Y. X. Watanabe,^{*1} P. Schury,^{*1} S. Kimura,^{*1}

S. Iimura,^{*3} H. Miyatake,^{*1} M. Wada,^{*1} A. Taniguchi,^{*4} A. Takamine,^{*2}

M. Rosenbusch,^{*2} A. Andreyev,^{*5} J. G. Cubiss,^{*5} and B. Andel^{*6}

Nuclear shape transitions from prolate to oblate deformation at neutron numbers N = 116-118 have been observed or predicted in the refractory elements with atomic numbers Z = 72-78.¹⁾ For the Re (Z = 75) isotopic chain, the shape change in the ground state is predicted for ¹⁹¹⁻¹⁹³Re isotopes (N = 116, 117, and 118)²⁾ with a subtle prolate-oblate competition in the ground state. Moreover, a recent β -decay study of ¹⁹²Re³⁾ suggested a change in the ground-state proton orbit from [402]5/2⁺ to [411]1/2⁺, and the expected nuclear spin-parity values of ¹⁹¹Re₁₁₆ and ¹⁹²Re₁₁₇ are 1/2⁺ and 0⁻, respectively.

To clarify the change in the proton orbit, which is strongly correlated to the nuclear shape transition, we performed in-gas-cell laser ionization spectroscopy of 191g Re ($T_{1/2} = 9.8$ min) and 192g Re ($T_{1/2} = 15.1$ s) at the KEK Isotope Separation System (KISS).⁴⁾ This study forms part of systematic laser spectroscopy studies⁵⁾ of refractory nuclei with neutron numbers approaching N = 126. Laser spectroscopy is a powerful tool for effectively investigating nuclear structure based on the nuclear spin, magnetic dipole moment $\mu_{\rm I}$, and isotope shifts $\Delta \nu$ deduced from the measured hyperfine structure (HFS) spectrum.

The ¹⁹¹g, ¹⁹²gRe isotopes were produced through multi-nucleon transfer reactions by impinging a stable ¹³⁶Xe beam (30 particle nA) with an energy of approximately 10 MeV/nucleon on a ^{nat}Ir target (21 mg/cm²). Singly charged ions were produced using the two-color two-step in-gas-cell laser ionization technique, $\lambda_1 =$ 250.9741 nm and $\lambda_2 = 308$ nm. These ions were then extracted with an energy of 20 keV from the KISS gas cell for HFS measurements. The extracted ions were identified by detecting β -particles emitted from these nuclei, and their identities were confirmed based on the measured half-lives. Subsequently, the HFS spectra were measured.

Figure 1 shows the measured HFS spectra of ${}^{187g, 191g, 192g}$ Re. The HFS spectrum of 187g Re ($I^{\pi} = 5/2^+$), emitted from a filament placed in the gas cell under identical experimental conditions to those of the HFS measurements for ${}^{191g, 192g}$ Re, served as the laser response function for the in-gas-cell laser ionization spectroscopy of Re isotopes. The blue lines in Fig. 1

Fig. 1. Measured HFS spectra of (a) 187g Re, (b) 191g Re, and (c) 192g Re.

indicate the optimal fit to the HFS spectra achieved by applying the same Voigt function (FWHM ≈ 11 GHz) as the laser response function for each atomic transition. The black lines in the figure indicate the expected HF transitions deduced from the fitting analysis. In the analysis we assumed $I^{\pi} = 1/2^+$ for 191g Re and $I^{\pi} =$ 0^- for 192g Re. We can reliably fit the HFS spectrum of 192g Re by using a single component (I = 0) fitting function, that matches identical to the laser response function. Moreover, the broader spectrum of 191g Re was well fitted under the assumption of $I^{\pi} = 1/2^+$. Further analysis, including theoretical interpretations, is currently underway.

References

- 1) K. Nomura *et al.*, Phys. Rev. C **97**, 064314 (2018).
- 2) J.-P. Delaroche et al., Phys. Rev. C 81, 014303 (2010).
- 3) H. Watanabe et al., Phys. Lett. B 814, 136088 (2021).
- Y. Hirayama *et al.*, Nucl. Instrum. Methods Phys. Res. B **412**, 11 (2017).
- 5) Y. Hirayama et al., Phys. Rev. C 106, 034326 (2022).

^{*1} Wako Nuclear Science Center (WNSC), IPNS, KEK

^{*&}lt;sup>2</sup> Nuclear Spectroscopy Laboratory, RIKEN

^{*&}lt;sup>3</sup> Department of Physics, Rikkyo University

 ^{*4} Institute for Integrated Radiation and Nuclear Science, Kyoto University (KURNS)
*5 Department of During University of Verb

^{*5} Department of Physics, University of York

^{*6} Department of Nuclear Physics and Biophysics, Comenius University in Bratislava