Solvent extraction following oxidation of astatine for the use of a $^{211}Rn-^{211}At$ generator[†]

Y. Shin,^{*1,*2} S. Maruyama,^{*1,*2} K. Kawasaki,^{*1,*2} K. Aoi,^{*1,*2} K. Washiyama,^{*3} I. Nishinaka,^{*4} S. Yano,^{*1} H. Haba,^{*1} and A. Yokoyama^{*1,*5}

Radionuclide therapy, utilizing radioactive substances for targeted treatment of tumors, is increasingly prevalent.¹⁾ A promising α -emitter for this therapy is a statine-211 (^{211}At) due to its suitable half-life and high α emission probability. A ²¹¹Rn-²¹¹At generator is being developed to enhance ²¹¹At availability, allowing distribution to locations distant from accelerators.²⁾ The chemical behavior of At, similar to iodine, makes it valuable for labeled compound synthesis in radionuclide therapy.³⁾ The study investigates the back-extraction of 211 At into ethanol for potential ²¹¹At labeling of compounds. Oxidants, including N-chlorosuccinimide, N-bromosuccinimide, and Niodidosuccinimide, are employed to optimize solvent extraction of ²¹¹At. The study aims to clarify the extraction mechanism of ²¹¹At species and propose an efficient and safe system suitable for targeted α -therapy.

The production of ²¹¹At involved two methods: the 209 Bi $(\alpha, 2n)$ reaction and milking of 211 Rn produced in the 209 Bi $(^{7}$ Li, 5n) reaction. The 211 At obtained from these processes was back-extracted from dodecane into an aqueous ethanol solution. For comparison with the ²¹¹At data, ¹³¹I tracer solution was added to 6 M HNO₃ and extracted to dodecane. Solventextraction experiments were conducted with ²¹¹At and 131 I, varying conditions like time (experiment (a)), oxidizing agents (NBS, NCS, NIS, bromine water, HBr), concentrations (experiment (b), and ethanol content (experiment (c)). Thin-layer chromatography was used to analyze extraction of the At species identified according to Refs. 4) and 5) (experiment (d)), and radioactivity measurements were performed using a liquid scintillation counter and a Ge semiconductor detector.

The results of the solvent extraction experiments of (a) to (d) are as follows: Experiment (a) revealed a substantial increase in the back-extraction rate of ²¹¹At when NBS or bromine water was added. Both NBS and bromine showed an initial high backextraction rate, but their effectiveness decreased over time. Experiment (b) demonstrated that NBS had

the highest impact on increasing the back-extraction rate of ²¹¹At among the oxidizing agents NCS, NBS, and NIS. HBr also increased the back-extraction rate, but to a lesser extent than NBS. Experiment (c) showed that the presence of bromine water significantly increased the back-extraction rate of ²¹¹At, while the back-extraction rate of ¹³¹I remained largely unchanged. This suggested that ²¹¹At changed to a chemical form easily back-extracted with the addition of bromine water. Experiment (d) involved thin-layer chromatography (TLC) to analyze At species. The addition of NBS or bromine water increased the proportion of At species with higher oxidation numbers, indicating oxidation of At. However, the TLC results may not capture all chemical forms present in the solution, and the oxidation might occur on the TLC plate surface. Overall, NBS was identified as the preferred choice due to its solid form, storability, and sustained oxidizing power.

In conclusion, from the similarity of the effects of NBS and bromine, we conclude that bromine produced from NBS increased the ²¹¹At back-extraction rate. Among NCS, NBS, and NIS, NBS had the strongest effect on ²¹¹At back-extraction. Comparing the results for ²¹¹At and ¹³¹I, the addition of bromine water increased the back-extraction rate of only ²¹¹At. This indicates that some ²¹¹At species, which are more easily oxidized than other halogen species, contribute to the increase of the back-extraction rate. TLC revealed that ²¹¹At was oxidized by the addition of NBS and bromine water.

References

- F. Guérard *et al.*, Cancer Biother. Radiopharm. 28, 1 (2013).
- E. Maeda *et al.*, J. Radioanal. Nucl. Chem. **303**, 1465 (2015).
- 3) L. Liu et al., Inorg. Chem. 61,13462 (2022).
- I. Nishinaka *et al.*, J. Radioanal. Nucl. Chem. **318**, 897 (2018).
- I. Nishinaka *et al.*, J. Radioanal. Nucl. Chem. **322**, 2003 (2019).

 $^{^\}dagger$ Condensed from the article in J. Radioanal. Nucl. Chem. **333**, 403 (2024)

^{*1} RIKEN Nishina Center

^{*&}lt;sup>2</sup> Graduate School of Natural Science and Technology, Kanazawa University

^{*&}lt;sup>3</sup> Fukushima Global Medical Science Center, Fukushima Medical University

^{*4} Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology

^{*5} Institute of Science and Engineering, Kanazawa University