Production of no-carrier-added 169 Yb by the 169 Tm $(d, 2n)^{169}$ Yb reaction

A. Nambu,^{*1} Y. Shigekawa,^{*1} X. Yin,^{*1} S. Usuda,^{*1} and H. Haba^{*1}

¹⁶⁹Yb ($T_{1/2} = 32$ d, EC = 100%), which emits Auger electrons, X rays, and γ rays of approximately 100 keV, can substitute for 125 I or 192 Ir for brachytherapy.¹⁾ As it emits cascade γ rays, ¹⁶⁹Yb is also expected to be applied to double photon emission coincidence imaging (DPECI).^{2) 169}Yb has often been produced via 168 Yb (n, γ) ¹⁶⁹Yb reaction at nuclear reactors; the natural isotopic abundance of 168 Yb is only 0.12%, which results in a low specific radioactivity of ¹⁶⁹Yb. Thus, a separate production method of ¹⁶⁹Yb with higher specific radioactivities is desirable for radiotherapeutic and radiodiagnosis research. Recently, we measured the production cross sections of ¹⁶⁹Yb in several types of reactions with different projectiles and targets, and found that the ${}^{169}\text{Tm}(d,2n){}^{169}\text{Yb}$ reaction provided the highest production yield.³⁾ In this study, we developed a chemical separation method of ¹⁶⁹Yb from the ¹⁶⁹Tm target, referring to the mutual separation methods of rare earth elements.^{4,5}

Four metal plates of 169 Tm (chemical purity: 99%; thickness: 104 μ m × 4; weight: 48.14 mg × 4) were irradiated for 1 hour with a 24-MeV d beam (5 μ A) extracted from the AVF cyclotron. The target was subjected to γ -ray spectrometry with a Ge detector to evaluate the production yield of ¹⁶⁹Yb. Four target foils were dissolved with concentrated hydrochloric acid (conc. HCl). Further, ¹⁶⁹Yb was purified through a three-step column chromatography according to the procedure presented in Fig. 1. In the first cation-exchange chromatography using a strongly acidic cation-exchange resin (Muromac 50WX8; 200-400 mesh) in the α -hydroxyisobutyric acids (α -HIB) system, 74% of ¹⁶⁹Yb was recovered together with 9%of ¹⁶⁹Tm (18 mg); the remaining ¹⁶⁹Tm was left adsorbed on the column. The recovered ¹⁶⁹Yb in the α -HIB solution was co-precipitated with ¹⁶⁹Tm using aqueous NH₃ and separated from the solution by centrifugation. In the extraction chromatography using the LN2 resin (Eichrom LN2 resin; 50–100 μ m) in the nitric acids system, ¹⁶⁹Tm was first eluted until its γ ray was not detected and then pure ¹⁶⁹Yb was recovered separately. In the last cation-exchange chromatography using the strongly acidic cation-exchange resin (Muromac 50WX8; 200-400 mesh) in hydrochloric acids system, organic impurities from the LN2 resin were removed. Purified ¹⁶⁹Yb was subjected to γ -ray spectrometry and chemical element analysis with ICP-MS to evaluate radioactivity, radionuclidic purity, and chemical impurity of the purified 169 Yb.

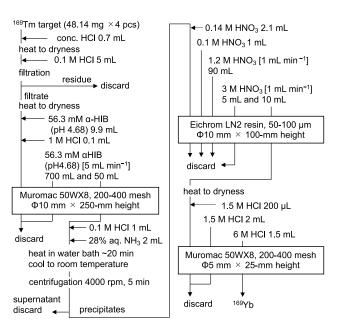


Fig. 1. Chemical separation procedure of 169 Yb from 169 Tm target.

The radioactivity of ¹⁶⁹Yb at the end of irradiation was 7.9 ± 0.3 MBq, providing a production yield of 1.5 MBq μ A⁻¹ h⁻¹. This yield can be increased to 3.9 MBq μ A⁻¹ h⁻¹ by decreasing the incident energy from 24 to 19 MeV to cover the peak region of the excitation function.³) The γ -ray spectrum of the purified ¹⁶⁹Yb is shown in Fig. 2. The chemical yield of ¹⁶⁹Yb was 60 ± 3%. γ rays from radionuclides other than ¹⁶⁹Yb were below the detection limit: the ra-

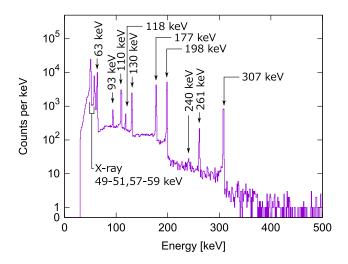


Fig. 2. γ -ray spectrum of the purified ¹⁶⁹Yb.

^{*1} RIKEN Nishina Center

DOI:10.34448/RIKEN.APR.57-138

dionuclidic purity of $^{169}{\rm Yb}$ was >99%. The chemical impurities were less than tens of nanograms (ng) for all detectable metal elements other than Sn (550 ng) and Tm (2.3 $\mu {\rm g})$. The decontamination factor of $^{169}{\rm Tm}$ from $^{169}{\rm Yb}$ was 4.9×10^4 . The specific radioactivity of $^{169}{\rm Yb}$ was $329\pm12~{\rm MBq}~\mu {\rm g}^{-1}.$

References

- 1) K. L. Leonard *et al.*, Brachytherapy **10**, 163 (2011).
- 2) K. Shimazoe, Radioisotopes 72, 101 (2023).
- 3) M. Saito et al., Appl. Radiat. Isot. **125**, 23 (2017).
- 4) I. D. Silva *et al.*, Molecules **26**, 7513 (2021).
- 5) H. Li et al., ACS Earth Space Chem. 5, 55 (2021).