Development of accelerator production method of ¹³⁹Ce for domestic supply

S. Egawa,^{*2} Y. Shigekawa,^{*1} A. Nambu,^{*1} S. Usuda,^{*1} Y. Kanayama,^{*1} K. Ushida,^{*2} and H. Haba^{*1}

Cerium-139 (¹³⁹Ce), a radioactive isotope with a halflife of 137.6 days, is an essential nuclide used in calibration of γ -ray detectors and Single Photon Emission Computed Tomography (SPECT) cameras due to its single γ -ray emission of 165.9 keV. Thus far, ¹³⁹Ce has been imported to Japan from abroad. However, in recent years, its availability has been unstable due to changes in global situations, requiring the domestic production of ¹³⁹Ce. In this study, we aim to develop a method to produce ¹³⁹Ce in the ^{nat}La(d, xn)¹³⁹Ce reaction and chemically separate it from the ^{nat}La target.

Three ^{*nat*}La₂O₃ pellet targets (purity: 99.999%; thickness: ~800 mg/cm²; weight: ~0.30 g), T1, T2, and T3, were bombarded with 24-MeV deuteron beams from the RIKEN AVF cyclotron. The average beam currents for T1, T2, and T3 were 1.0, 3.0, and 3.0 μ A and the irradiation times were 1.0, 0.5, and 6.3 hours, respectively. T1 and T2 were used for the development of chemical separation, while T3 was for the production of a practical quantity of ¹³⁹Ce.

Referring to previous studies, $^{1,2)}$ two procedures were investigated for the chemical separation of ¹³⁹Ce from the target: (a) an ion-exchange chromatography with a strongly basic anion-exchange resin and (b) extraction chromatography with a Ln2 resin (Eichrom). In (a), the irradiated ^{nat}La₂O₃ target was dissolved with concentrated nitric acid (conc. HNO₃). The solution was evaporated to dryness, dissolved with $0.7 \text{ M NaBrO}_3/6 \text{ M}$ HNO_3 (2 mL), and loaded onto the anion-exchange column (Muromac 1X8; 100-200 mesh; inner diameter 5 mm \times height 23 mm). Then, 0.7 M NaBrO₃/6 M HNO₃ (14 mL), 10 M HNO₃ (0.5 mL), and 0.2 M HNO₃ (20 mL) were added to the column, and the eluates were taken in 2-mL fractions to confirm the elution behavior of 139 Ce and co-produced 140 La. The radioactivities of ¹³⁹Ce and ¹⁴⁰La were measured with a Ge detector. In (b), the target was dissolved with conc. HNO₃. The solution was evaporated to dryness, dissolved with 0.1 M NaBrO₃/3 M HNO₃ (2 mL), and loaded onto the extraction column (Eichrom Ln2 resin; 50–100 μ m; 5-mm inner diameter \times 23-mm height). 0.1 M NaBrO₃/3 M HNO₃ (20 mL), 3 M HNO₃ (2 mL), and 0.5 M HCl/0.1 M H_2O_2 (4 mL) were added to the column to confirm the elution behavior of 139 Ce and 140 La. This extraction chromatography was also applied for T3.

The elution curves for the anion-exchange and extraction chromatography are shown in Figs. 1(a) and 1(b), respectively. The elution time of 140 La with the Ln2-resin column was faster than that with the anionexchange column. The decontamination factors for

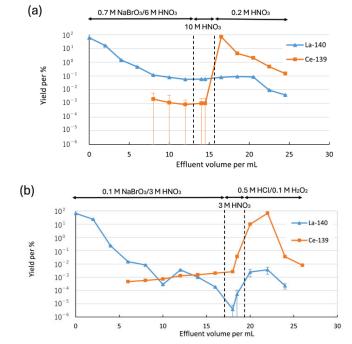


Fig. 1. Elution curves of ¹⁴⁰La and ¹³⁹Ce by (a) anion exchange chromatography and (b) extraction chromatography.

 ^{140}La in the purified ^{139}Ce were $(4.9\pm0.3)\times10^2$ for the anion-exchange chromatography and $(5.4\pm2.0)\times10^4$ for the extraction chromatography. The chemical yields of ^{139}Ce were $92\pm4\%$ and $99\pm4\%$. For T3, 18.1 ± 0.5 MBq of ^{139}Ce was produced at the end of bombardment with a production yield of 0.96 ± 0.03 MBq/ $\mu\text{A}\cdot\text{h}$. The γ -ray spectrum of the purified ^{139}Ce from T3 is shown in Fig. 2. The chemical yield was $104\pm4\%$.



Fig. 2. Gamma-ray spectrum of purified ¹³⁹Ce by the extraction chromatography with Ln2 resin.

^{*1} RIKEN Nishina Center

^{*&}lt;sup>2</sup> Kitasato University

The radioactivity of radionuclides other than $^{139}\mathrm{Ce}$ was below the detection limits.

References

- N. Ishioka *et al.*, JAERI-Tech, 2001-095 (2002).
 Eichrom Technologies, LLC, Application Note, AN-1811-10.