Production of ¹¹⁸Te by the alpha-particle irradiation on enriched ^{116}Sn

Y. Kanayama,^{*1} Y. Shigekawa,^{*1} A. Nambu,^{*1} X. Yin,^{*1} and H. Haba^{*1}

We are developing production methods for useful radioisotopes in various applications using the heavy-ion accelerators at RIBF. Tellurium-118 ($T_{1/2} = 6.0$ d) decays through electron capture to ¹¹⁸*g*Sb ($T_{1/2} =$ 3.6 min) soon decays by β^+ -particle emission with a high intensity of 73.5%. Thus, ¹¹⁸Te is expected to be used for PET imaging as a ¹¹⁸Te-¹¹⁸Sb generator.^{1,2)} In this study, we investigated the production of ¹¹⁸Te via the ¹¹⁶Sn($\alpha, 2n$)¹¹⁸Te reaction using the RIKEN AVF cyclotron.

A metallic ¹¹⁶Sn foil (Trace Sciences International Inc.; 97.8%-enriched) with a 240.3-mg/cm² thickness was irradiated with a 28.92-MeV α -particle beam from AVF. The irradiation time was 59 min and the average beam current was 0.82 particle μ A. After the irradiation, the produced radioisotopes were investigated via γ -ray spectrometry using a Ge detector. An example of γ -ray spectra is shown in Fig. 1, where the γ -ray peaks of 118m,gSb and 119m,gTe are assigned. Owing to the absence of γ -ray emission from ¹¹⁸Te, the production of ¹¹⁸Te was confirmed with the γ rays of its daughter nuclide 118g Sb in radioactive equilibrium. Figure 2 shows the decay curves for the 1229.3-, 644.0-, and 1136.7-keV γ lines of ¹¹⁸Te, ^{119g}Te, and ^{119m}Te, respectively. Here, 118 Te and 119m Te, the exponential decay curves with the literature half-lives of $6.00\pm0.02~{\rm d}$ and $4.70 \pm 0.04 \text{ d},^{3,4)}$ respectively, fit the radioactivities well. However, 119g Te with the literature half-life

Fig. 1. γ -ray spectrum of the ¹¹⁶Sn target irradiated with a 28.92-MeV α -particle beam.

*1 RIKEN Nishina Center

Fig. 2. Radioactive decay curves of $^{118}\mathrm{Te},~^{119g}\mathrm{Te},$ and $^{119m}\mathrm{Te}.$

of 16.05 ± 0.05 h⁴⁾ cannot reproduce the radioactivities as shown by the purple dotted curve. Thus, we reevaluated the half-life of ^{119g}Te to be 17.09 ± 0.03 h (blue dashed curve), which is 6% longer than the literature value.⁴⁾ This longer half-life was confirmed for other 699.9- and 1749.7-keV γ lines of ^{119g}Te. The radioactivities of ¹¹⁸Te and the by-products ^{119g}Te and ^{119m}Te at the end of bombardment (EOB) were determined to be 0.372 \pm 0.017, 1.390 \pm 0.047, and 0.375 \pm 0.007 MBq. These radioactivities determined from the γ lines at 528.7, 827.3, 1229.3, 1267.2, and 1699.7 keV for ¹¹⁸Te, 644.0, 699.9, and 1749.7 keV for ^{119m}Te.

The radionuclidic purity of ¹¹⁸Te at EOB was approximately 17% among the Te isotopes. The purity can be increased with the cooling time by decay of the short-lived ^{119g}Te as shown in Fig. 2. It is reported that the excitation functions for the ¹¹⁶Sn(α , 2n)¹¹⁸Te and ¹¹⁶Sn(α , n)^{119m,g}Te reactions show maxima at around 30 MeV and 21 MeV, respectively.^{5,6} In this study, the thick ¹¹⁶Sn target was irradiated to degrade the α -particle beam energy from 28.27 MeV to 0 MeV, fully covering the excitation function of the ¹¹⁶Sn(α , n)^{119m,g}Te reactions. As the next step, we plan to increase the radionuclidic purity of ¹¹⁸Te by optimizing the α -particle energy and the target thickness for the ¹¹⁶Sn(α , 2n)¹¹⁸Te reaction. References

- P. McQuade et al., in Positron Emission Tomography: Basic Science and Clinical Practice, edited by P. E. Valk et al., (Springer-Verlag, London, 2003), p. 251.
- A. Dash and R. Chakravarty, Am. J. Nucl. Med. Mol. Imaging 9, 30 (2019).
- 3) K. Kitao, Nucl. Data Sheets **75**, 99 (1995).
- D. M. Symochko *et al.*, Nucl. Data Sheets **110**, 2945 (2009).
- 5) Experimental Nuclear Reaction Data (EXFOR): https://www-nds.iaea.org/exfor/.
- F. T. Tarkanyi *et al.*, J. Radioanal. Nucl. Chem. **319**, 533 (2019).