Evaluation of ²¹¹At-labeled fibroblast activation protein inhibitor (FAPI): comparison of different linkers with polyethylene glycol and piperazine[†]

A. Aso,^{*1} H. Nabetani,^{*1} Y. Matsuura,^{*1} Y. Kadonaga,^{*2} Y. Shirakami,^{*3} T. Watabe,^{*2} T. Yoshiya,^{*4,*5} M. Mochizuki,^{*4} K. Ooe,^{*6} A. Kawakami,^{*7} N. Jinno,^{*8} A. Toyoshima,^{*3} H. Haba,^{*9} Y. Wang,^{*9} J. Cardinale,^{*10} F. L. Giesel,^{*3,*10} A. Shimoyama,^{*1} K. Kaneda-Nakashima,^{*3,*11} and K. Fukase^{*1,*3,*11}

Cancer tissues are heterogeneous, where cancer cells coexist with various other cell types. Therefore, it is difficult to deliver drugs to. By targeting fibroblastactivated protein (FAP), which is a marker for stromal cells, we may be able to efficiently target cancer tissues. The usefulness of ²¹¹At should also be demonstrated using FAPI. In 2022, Ma et al. first reported the antitumor activity of ²¹¹At-FAPI in U87MG xenograft mice.¹⁾ They also claimed that no toxicity was observed in the kidneys, liver, stomach, or thyroid tissue. We also synthesized ²¹¹At-FAPI(s) using dihydroxyboryl astatine substitution reaction.²⁾ We have previously established an astatination method that does not require toxic reagents.^{2,3}) In this study, we investigated the usefulness of ²¹¹At-FAPI(s) synthesized using an established safe method and a linker in the FAPI structure.

During the preparation of ²¹¹At-FAPI with polyethylene glycol (PEG) linker, the radiochemical yields (RCYs) of ²¹¹At-FAPI1 and 2 were high (100% and 99%, respectively). When producing ²¹¹At-FAPI5, a byproduct derived from the amino group of piperazine (PIP) was observed ($\sim 10\%$). However, PEG-linked FAPI suppressed the byproduct production. Therefore, non-PIP linkers are suitable for drug manufacturing applications. The RCYs of 211 At-FAPI3 and 4 were not high (45% and 15%, respectively), because astatination was at 50°C to prevent production of a byproduct caused by fluorides (Fig. 1(a)). Additionally, the presence of glucosamine units decreased the astatination reactivity. Based on these results, we presume that ²¹¹At-FAPI1 is suitable for a stable drug supply. The results of our investigation indicated that $FAP\alpha$ selectivity and cellular uptake were the same for ²¹¹At-FAPI1 and ²¹¹At-FAPI5.

- Graduate School of Medicine, Osaka University
- *3 Institute for Radiation Sciences, Osaka University
- *4Peptide Institute, Inc. *5
- Institute for Protein Research, Osaka University
- *6 Radioisotope Research Center, Osaka University
- *7Research Center for Ultra-High Voltage Electron Microscopy, Osaka University *8
- R&D Division, Alpha Fusion Inc. *9
- **RIKEN** Nishina Center
- $^{\ast\,10}$ Department of Nuclear Medicine, University Hospital Düsseldorf
- *11 MS-CORE, FRC, Osaka University

Fig. 1. Structure of ²¹¹At-FAPI and ¹³¹I-FAPI compounds. (a) ²¹¹At-labeled PEG linker FAPI(s) were numbered from 1 to 4 according to their structural complexity. (b) $^{131}\mbox{I-labeled}$ PEG linker compound. (c) PIP linker compound synthesized based on the reported compound for comparison with the PEG linker compound.

Considering the molecular size and efficiency of astatination, we employed ²¹¹At-FAPI1 for comparison with ²¹¹At-FAPI5 in *in vitro* experiments. We compared the biodistribution of ²¹¹At-FAPI1 and ²¹¹At-FAPI5. At 1 hour after injection, tumor accumulation of $^{211}\mbox{At-FAPI1}$ and $^{211}\mbox{At-FAPI5}$ was $2.15\pm0.24\%$ ID and $1.40 \pm 1.14\%$ ID, which surpassed the accumulation of ²²⁵Ac-FAPI-04.⁴) After 3 hours, the accumulation in tumor cells increased for ²¹¹At-FAPI1.

Based on the results of cellular uptake, nuclide labeling efficiency, and in vivo pharmacokinetics, sim-

Condensed from the article in Int. J. Mol. Sci. 24, 8701 (2023)*1

Graduate School of Science, Osaka University *2

ple PEG-linker compounds (FAPI1) exhibited the best properties (Fig. 2).

Fig. 2. Anticancer effect in PANC-1 xenograft mice after administration of 211 At-labeled FAPI (approximately 1 MBq). (a) Body weight of mice. (b) Tumor sizes of the experimental mice. Means \pm S.E. Filled squares are the control group, filled triangles are the 211 At-FAPI1 group, and white circles are the 211 At-FAPI5 group. $^*p < 0.05, \,^{**}p < 0.01, \,^{***}p < 0.001$, and #p < 0.05.

References

- 1) H. Ma et al., Bioorg. Med. Chem. 55, 116600 (2022).
- 2) A. Aso *et al.*, Chem. Lett. **51**, 1091 (2022).
- 3) Y. Shirakami $et \ al.,$ Sci. Rep.
 ${\bf 11},$ 12982 (2022).
- 4) T. Watabe et al., J. Nucl. Med. 61, 563 (2020).