Investigation of radiopharmaceutical labeling of ¹⁴¹Ce with DOTA

K. Ooe,*1 T. Watabe,*2,*3 Y. Shirakami,*3 A. Nambu,*4 H. Haba,*4 and J. Hatazawa*5

For stable supply of the rapeutic radionuclides in Japan, it is important to develop radionuclides that can be produced domestically using accelerators. A candidate radionuclide for the ranostics (the rapeutics + diagnosis) that can be produced using accelerators is cerium-141 (141 Ce, $T_{1/2}=32.5$ d). The cyclotron production route for 141 Ce is the 138 Ba(α,n) 141 Ce reaction. This nuclide emits β -particles (maximum β energy: 580.7 keV) and γ -rays with energy 145.4 keV. Therefore, 141 Ce can be used for tumor the rapy and imaging by single photon emission computed tomography (SPECT).

We have previously reported the accelerator production and chemical separation of $^{141}\mathrm{Ce.^{1,2)}}$ In this study, the radiopharmaceutical labeling of $^{141}\mathrm{Ce.^{1,2)}}$ using DOTA (1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic Acid), which is widely used for chelate labeling of therapeutic radionuclides, was investigated. Cerium is a rare earth element, and the stable oxidation state of Ce in aqueous solution is +3. The ionic radius of trivalent Ce (101 pm)²⁾ is relatively close to that of trivalent actinium (Ac, 112 pm),²⁾ whose isotope $^{225}\mathrm{Ac}$ has been widely studied as an α -emitting therapeutic radionuclide. Therefore, the radiopharmaceutical labeling of $^{141}\mathrm{Ce}$ with DOTA was performed based on the labeling condition for $^{225}\mathrm{Ac.^{4}}$

A ^{nat}BaO pellet target was irradiated with a 29-MeV alpha beam delivered from the RIKEN K70 AVF Cyclotron to produce a ¹⁴¹Ce tracer in the $^{nat}\mathrm{Ba}(\alpha,xn)^{141}\mathrm{Ce}$ reaction. The produced $^{141}\mathrm{Ce}$ was separated from the ^{nat}Ba target material by column chromatography using a Ln resin and HCl solutions. After separation of ¹⁴¹Ce, the ¹⁴¹Ce fraction was evaporated to dryness and redissolved in 0.2-M ammonium acetate solution. $10-\mu L$ of this ¹⁴¹Ce solution, 80- μ L of 0.2-M ammonium acetate solution, 30- μ L of 7% sodium ascorbate solution, and 90- μ L of 1 mM DOTA aqueous solution were mixed in a 1.5-mL sample tube. The mixture was heated to 80°C. To check the labeling yield, approximately 1 μ L of the mixture solution was extracted every 20 minutes during 80°C heating and spotted on a silica gel TLC (thin-layer chromatography) plate. The TLC plate was developed using 20% v/v methanol/50 mM EDTA-2Na aqueous solution based on the literature.^{5,6)} The TLC result was Figure 1 shows the result of TLC for 141 Ce solution (0.2-M ammonium acetate) and 141 Ce-DOTA sample after 120-min heating at 80°C. 141 Ce³⁺ ions were observed at a R_f value of 0.6, whereas a signal of R_f value of 0.35 was observed for the 141 Ce-DOTA sample. In the present TLC analysis, unlabeled Ce³⁺ reacts with EDTA and migrates toward the solvent front. Therefore, the signal with R_f value of 0.35 would be derived from the DOTA-labeled 141 Ce.

Fig. 1. TLC images for 141 Ce solution (0.2 M ammonium acetate, left) and 141 Ce-DOTA sample after 120 min heating at 80°C (right).

Figure 2 shows the dependence of labeling yield (radiochemical purity) on reaction time at $80^{\circ}\mathrm{C}$ for $^{141}\mathrm{Ce}$ -DOTA sample checked by TLC analysis. A labeling yield of approximately 93% was observed at a reaction time of 40--60 min. The labeling time of $^{225}\mathrm{Ac}$ to DOTA chelator was reported as 2 hours. $^{4)}$ There-

Fig. 2. Dependence of labeling yield (radiochemical purity) on reaction time at 80° C for 141 Ce-DOTA sample.

visualized using an imaging plate and scanner.

^{*1} Radioisotope Research Center, Institute for Radiation Sciences, Osaka University

^{*2} Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine

^{*3} Institute for Radiation Sciences, Osaka University

^{*4} RIKEN Nishina Center

^{*5} Research Center for Nuclear Physics (RCNP), Osaka University

fore, 141 Ce can be labeled to DOTA chelator with the labeling condition for 225 Ac (the reaction of Ce with DOTA may be faster than that of Ac). This result indicates that 141 Ce could be used to study the labeling conditions for 225 Ac, which is in low supply.

References

- 1) K. Ooe et al., RIKEN Accel. Prog. Rep. 55, 130 (2022).
- 2) K. Ooe et al., RIKEN Accel. Prog. Rep. 56, 153 (2023).
- 3) R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
- 4) T. Watabe et al., J. Nucl. Med. 61, 563 (2020).
- J. M. Kelly *et al.*, EJNMMI Radiopharm. Chem. **6**, 38 (2021).
- 6) R. M. Pallares et al., New J. Chem. 46, 15795 (2022).