Comparison of ²¹¹At recovery rates in glass vials and plastic tubes

T. Tatsumi,^{*1} T. Tanaka,^{*1} A. Sugiyama,^{*1} J. Jang,^{*1} M. Kobayashi,^{*1} Y. Kumakura,^{*2} X. Yin,^{*3} H. Haba,^{*3} and Y. Wada^{*1}

Targeted alpha therapy (TAT) using alpha-emitting radionuclides as cytotoxic reagents has emerged as a promising cancer therapy modality in recent decades. With the increased demand for preclinical studies and the interest in TAT, the supply of alpha-ray emitters has become increasingly important. Several groups at the Isotope Science Center at University of Tokyo are working on TAT research using the alpha emitter ²¹¹At supplied by the RIBF, RIKEN. Each month, we are conducting therapeutic or imaging experiments using xenograft animal models and ²¹¹At-labeled monoclonal antibodies (mAbs).

In our ²¹¹At drug delivery system, we label mAbs conjugated with N-Succinimidyl 3-Trimethylstannylbenzoate (m-MeATE) using a modified method based on that described in Refs. 1) and 2). The radiolabeling protocol is explained here briefly. First, a freezedried m-MeATE/mAb conjugate stock is redissolved in 115 μ L of 0.2 M acetate buffer (pH 5.5) and adjusted to 200 μ L to obtain mAb concentration of 1 mg/mL. The m-MeATE/mAb solution is then added with ²¹¹At dissolved in a 15- μ L solution mixture of N-iodosuccinimide (NIS)/methanol/1% acetic acid (20 μ g/mL), and incubated for 1 min. The incubated solution is further mixed with 3 μ L of NIS (1 mg/mL) in methanol/1% acetic acid and 5 μ L of 0.25 M ascorbic acid, and then applied to a pre-equilibrated PD SpinTrap G25 column with PBS for buffer exchange.

After the buffer exchange, we measure the activities of the [²¹¹At]At-m-MeATE-mAb solution using a spin column, vials or tubes, and a dose calibrator, and calculate the radiochemical yield (RCY). The RCY typically ranges from 10% to 40%. In the ²¹¹At radiolabeling experiments conducted so far, we have frequently observed that a significant portion of ²¹¹At not incorporated into m-MeATE/mAb conjugates is retained in the reaction vials. To reduce the amount of ²¹¹At adsorbed to reaction vials and in turn to increase the ²¹¹At RCY, we investigated the ²¹¹At recovery rates of several glass vials and a plastic tube.

As shown in Fig. 1, 240 μ L of ²¹¹At obtained from RIKEN was diluted in chloroform. Then, 20 μ L was dispensed into four low-adsorption glass vials and one plastic tube. All these vials and tube were air-dried from chloroform with nitrogen gas. After approximately 3 hours, 150 μ L of ethanol was added to each vial to dissolve the ²¹¹At, and it was transferred to another plastic tube for activity measurement. The ²¹¹At activities of the tubes before and after transfer, the low-adsorption glass vials, and the pipette tips used were measured.

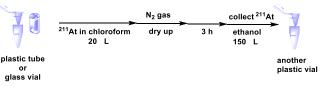


Fig. 1. Scheme of the experiment.

The recovery rates were then calculated as follows:

We also calculated the unrecovered rates as follows:

 $\frac{(^{211}\text{At activity in an original vial})}{^{211}\text{At activity immediately}}$ before ethanol dilution $\times 100(\%)$

The tested plastic tube UFC510096 (Merck Millipore) showed only 37.8% of a 211 At recovery rate, which was significantly lower than the average of the glass vials (85.6%) (Table 1); this corresponds to a difference of approximately a factor of 2.3. The glass vial 1.1-STVGN (Thermo Fisher Scientific) and the plastic tube UFC510096 exhibited the highest (95.5%) and lowest (37.8%) recovery rates, respectively.

Table 1. Results of $^{211}\mathrm{At}$ adsorption test.

Entry	Vial information Model number Maker	Material	Recovery rate (%)	Uncollected rate (%)
1	1.1-STVGN Thermo Fisher Scientific	glass	95.5	5.9
2	6PSV9-TR1 Thermo Fisher Scientific	glass	81.2	19.5
3	11092275 GL Science	glass	80.4	21.8
4	9512S-OCV-TRS Tomsic	glass	85.3	15.0
5	UFC510096 Merck Millipore Ltd.	plastic	37.8	59.8

All the glass vials examined resulted in higher ²¹¹At recovery rates than that of the plastic tube. The highest recovery rate was observed in the 1.1-STVGN glass vial (Thermo Fisher Scientific). Using glass vials can reduce ²¹¹At activity loss during radiolabeling and potentially increase the ²¹¹At RCY.

References

1) S. Lindegren $et \ al.,$ J. Nucl. Med. ${\bf 49},$ 1537 (2008).

^{*1} Isotope Science Center, University of Tokyo

^{*&}lt;sup>2</sup> Department of Radiology, Saitama Medical University

^{*&}lt;sup>3</sup> RIKEN Nishina Center

E. Aneheim *et al.*, J. Radioanal. Nucl. Chem. **303**, 979 (2015).