Activation cross sections of α -particle-induced reactions on scandium

M. Aikawa,^{*1,*2} S. Ebata,^{*3,*2} H. Haba,^{*2} S. Takács,^{*4} F. Ditrói,^{*4} and Z. Szücs^{*4}

Titanium-45 ($T_{1/2} = 184.8 \text{ min}$) is a positron emitter that can be used for positron emission tomography.¹) This medical radioisotope can be produced by chargedparticle-induced reactions on its neighboring elements, *e.g.*, calcium and scandium. An example production reaction is the α -particle-induced reaction on the monoisotopic element scandium (⁴⁵Sc: 100%). No experimental study on the production cross sections of such reactions was found in a literature survey performed using the EX-FOR library.²) Therefore, we conducted an experiment to obtain the cross sections to produce ⁴⁵Ti and other co-produced impurities.

The experiment was performed at the RIKEN AVF cyclotron. The stacked-foil activation technique and offline γ -ray spectrometry were used. The stacked target for the experiment was composed of thin metallic foils of ⁴⁵Sc (99.9% purity), ^{nat}Ti (99.5% purity), and ²⁷Al (>99% purity) (Nilaco Corp., Japan). The average thickness of each foil was estimated from the measured weight and size. The derived thicknesses of the ⁴⁵Sc, ^{nat}Ti, and ²⁷Al foils were 7.71, 9.13, and 4.99 mg/cm², respectively. The original foils were cut into a size adjusted for the target holder (8 × 8 mm). Nine sets of Sc-Al-Ti-Al foils and an additional two sets of Ti-Al foils were stacked in the target holder that served as a Faraday cup.

The stacked target was irradiated with a 50.9-MeV α -particle beam for 30 min. The beam energy was determined by the time-of-flight method.³⁾ The energy degradation in the stacked-foil target was estimated using stopping powers derived from the SRIM code.⁴⁾ The average beam current derived using the total charge collected by the Faraday cup was 201 nA.

 γ -ray spectra of the irradiated foils were measured using a high-purity germanium detector (OR-TEC GEM30P4-70) and dedicated analyzing software (SEIKO EG&G Gamma Studio). The γ -ray measurement of each foil was performed five times to follow the decay of radionuclides with largely different half-lives. To force the annihilation of the emitted positrons, copper plates (886 mg/cm²) were used to sandwich the Sc foils. The attenuation of γ rays in the copper plates was estimated for correction of measured counts.

Cross sections of the ${}^{nat}\text{Ti}(\alpha, x)^{51}\text{Cr}$ monitor reaction were derived to assess the beam parameters and target thicknesses. The 320.08-keV γ rays ($I_{\gamma} = 9.91\%$) emitted with ${}^{51}\text{Cr}$ decay ($T_{1/2} = 27.7$ d) were used. The derived cross sections were compared with the International Atomic Energy Agency recommended values.⁵⁾ Based on the comparison, the measured beam energy and current were corrected by +0.2 MeV and -2% within the uncertainties, respectively. The measured thicknesses of the Sc, Ti, and Al foils were also corrected by -2%, -1%, and -1% within the uncertainty, respectively. The corrected beam parameters, energy (51.1 MeV), beam current (197 nA), and foil thicknesses (Sc: 7.56, Ti: 9.04, and Al: 4.94 mg/cm²) were adopted to deduce the production cross sections of the radionuclides in the ⁴⁵Sc targets.

 cross sections $^{48}V.$ Activation 45 Ti. of 47,46g,44m,44g,43g Sc, and 43,42 K were determined from the experiment. The production cross sections of ${}^{45}\text{Ti}$ were derived using 511-keV annihilation γ rays. γ rays were also emitted from the decay of several co-produced positron emitters. The contributions of ${}^{47}V$ ($T_{1/2}$ = 32.6 min) and shorter-lived radionuclides were neglected in cooling times longer than 4.8 hours. The other contributions of 48 V ($T_{1/2} = 15.9735$ d), 44g Sc ($T_{1/2} = 3.97$ h), and ${}^{43}Sc$ $(T_{1/2} = 3.891 \text{ h})$ were estimated and subtracted.

The cumulative cross sections using the corrected counts of the 511-keV γ rays are shown in Fig. 1 in comparison with the TENDL-2021 values.⁶⁾ The TENDL-2021 values are consistent with our results. No literature data were found in the EXFOR library. The new data obtained in this study are expected to contribute to design a production target of ⁴⁵Ti for use in nuclear medicine.

Fig. 1. Cross sections of the ${}^{45}Sc(\alpha, x){}^{45}Ti$ reaction compared with theoretical calculation in the TENDL-2021 library.⁶⁾

References

- 1) I. F. Chaple et al., J. Nucl. Med. 59, 1655 (2018).
- 2) N. Otuka et al., Nucl. Data Sheets 120, 272 (2014).
- T. Watanabe *et al.*, Proc. 5th Int. Part. Accel. Conf. (IPAC), (2014), p. 3566.
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 5) A. Hermanne et al., Nucl. Data Sheets 148, 338 (2018).
- 6) A. J. Koning et al., Nucl. Data Sheets 155, 1 (2019).

^{*1} Faculty of Science, Hokkaido University

^{*&}lt;sup>2</sup> RIKEN Nishina Center

^{*3} Graduate School of Science and Engineering, Saitama University

^{*4} Institute for Nuclear Research, ATOMKI