Cross sections of ¹⁵⁵Tb and ¹⁵⁶Tb via α -particle induced reactions on ^{nart}Eu

Y. Shigekawa^{*1} and H. Haba^{*1}

¹⁵⁵Tb ($T_{1/2} = 5.32$ d, EC = 100%), which emits low-energy γ rays (87 and 105 keV), is expected to be useful for single photon emission computed tomography (SPECT), which will be combined with cancer therapies by the radioisotopes of rare-earth elements $(e.g., {}^{177}Lu, {}^{149}Tb, and {}^{161}Tb).^{1)}$ Moreover, ${}^{155}Tb$ is expected to be applicable to imaging using cascade γ rays that can prove the local chemical environment.²) In previous studies, ¹⁵⁵Tb has been produced through proton-induced spallation followed by on-line mass separation at $CERN^{3}$ and proton-induced reactions on ¹⁵⁵Gd and ¹⁵⁶Gd targets.¹⁾ The latter method can be adopted at small cyclotrons; however, there are certain problems such as chemical separation of 155 Tb from a bulk amount of the Gd target being challenging and the enrichment levels of the normally available 155 Gd and 156 Gd not being very high (~93%), which limited the radionuclidic purity of 155 Tb to $\sim 93\%$.¹⁾ To overcome these problems, we aim to produce ¹⁵⁵Tb through ${}^{153}\text{Eu}(\alpha, 2n){}^{155}\text{Tb}$ reaction. The advantage of this method is that the chemical separation of 155 Tb from Eu is considerably easier than that from Gd because Eu can be reduced from 3+ to 2+ in aqueous conditions.⁴⁾ Moreover, ¹⁵³Eu with an enrichment level of >99% is commercially available, potentially improving the radionuclidic purity. The primary radionuclidic impurity in this method would be ¹⁵⁶Tb ($T_{1/2}$ = 5.35 d) produced in the ¹⁵³Eu(α, n)¹⁵⁶Tb reaction. In this study, we measured the production cross sections of ¹⁵⁵Tb and ¹⁵⁶Tb via the α -particle induced reactions on ^{nart}Eu, which have never been reported thus far.

We prepared 16 pieces of ^{nat}Eu targets (^{153}Eu 52%, 151 Eu 48%; 0.60–0.85 mg/cm²) on thin ²⁷Al foils (Al_a, 2.95 mg/cm^2 , 99.999% purity) using the electrodeposition method. Before the deposition, we added an $^{88}\mathrm{Y}$ tracer to the $^{nat}\mathrm{Eu}$ solution to monitor the deposition yields and determine the thickness of each nat Eu target. We used ^{nat}Ti foils (2.35-mg/cm², 99.6% purity) for the ${}^{nat}\text{Ti}(\alpha, x){}^{51}\text{Cr}$ monitor reaction and thick 27 Al foils (Al_b, 13.13 mg/cm², >99% purity) as energy degraders. We stacked 5 sets of Al_aEu-Al_aTi-Ti-Al_b and 11 sets of Al_aEu-Al_aTi-Ti onto a target holder. We irradiated the target with an α -particle beam of 50.9(1) MeV at the RIKEN AVF cyclotron. The average beam current was 100 particle nA, and the irradiation time was 1 hour. Following irradiation, γ -ray spectroscopy of each foil was performed using highpurity Ge detectors. The cross sections of ⁵¹Cr, ¹⁵⁵Tb,

and ¹⁵⁶Tb were determined from the γ rays of 320, 105, and 534 keV, respectively. The energy degradation of the beam was calculated using the stopping powers from the SRIM code.⁵⁾ Here, we assumed the chemical composition of ^{nat}Eu to be Eu(OH)₃ among the probable compositions (Eu₂O₃, Eu(OH)₃ or Eu(NO)₃) This is because the SEM-EDX measurements of an Eudeposited sample exhibited an atom ratio of Eu:O = 1:3.1(4), whereas the X-ray peak of N was not clearly observed.

The cross sections of the $^{nat}\text{Ti}(\alpha, x)^{51}\text{Cr}$ reaction are shown in Fig. 1 with the IAEA recommended values.⁶⁾ For the best agreement between the measured and recommended values, we corrected the thickness of the Ala foils and the beam current within their uncertainties (3% and 7%, respectively). The cross sections for the $^{153}\text{Eu}(\alpha, 2n)^{155}\text{Tb}$ and $^{153}\text{Eu}(\alpha, n)^{156}\text{Tb}$ reactions are shown in Figs. 2(a) and 2(b), respectively, with the TENDL-2019 values.⁷⁾ The peak height of the measured cross sections for ^{155}Tb is similar to

Fig. 1. Cross sections of the ${}^{nat}\text{Ti}(\alpha, x){}^{51}\text{Cr}$ monitor reaction along with the IAEA recommended values.⁶

Fig. 2. Measured cross sections of the (a) $^{153}\text{Eu}(\alpha, 2n)^{155}\text{Tb}$ and (b) $^{153}\text{Eu}(\alpha, n)^{156}\text{Tb}$ reactions in comparison with the TENDL-2019 values.⁷⁾

^{*1} RIKEN Nishina Center

the TENDL-2019 values, whereas the peak position is slightly larger. The cross sections measured for ¹⁵⁶Tb were clearly higher than the TENDL-2019 values. The maximum cross section of ¹⁵⁵Tb is 900(120) mb at 28.5(5) MeV, which is sufficiently high for the large-scale production. If we irradiate an ¹⁵³Eu₂O₃ target (35-mg/cm²) with a 30-MeV α beam (energy in the target: 26.3–30.0 MeV), which is less than the threshold of the production of ¹⁵³Tb ($T_{1/2} =$ 2.34 d), the production yield of ¹⁵⁵Tb is estimated to be 3.2(4) MBq/particle μ Ah and the radioactivity ratio of ¹⁵⁶Tb to ¹⁵⁵Tb is ~2%, which is better than the case for the Gd targets (~7%).¹ If we use 90 mg/cm² of the ¹⁵³Eu₂O₃ target, the yield of ¹⁵⁵Tb can be increased to 6.2(8) MBq/particle μ Ah, although the ratio of ¹⁵⁶Tb to ¹⁵⁵Tb is increased to ~7%.

References

- C. Favaretto *et al.*, EJNMMI Radiopharm. Chem. 6, 37 (2021).
- 2) K. Shimazoe et al., Commun. Phys. 5, 24 (2022).
- 3) B. Webster *et al.*, Sci. Rep. **9**, 10884 (2019).
- 4) A. G. Kazakov et al., Radiochim. Acta 106, 135 (2018).
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 6) A. Hermanne et al., Nucl. Data Sheets 148, 338 (2018).
- 7) A. J. Koning *et al.*, Nucl. Data Sheets **155**, 1 (2019).