Cross sections of proton-induced reactions on ^{nat}W for ^{186g}Re production

M. Aikawa, *1,*2 S. Ebata, *3,*2 N. Ukon, *4,*2 and H. Haba *2

Rhenium radionuclides can be used for the ranostics, which is a combination of therapy and diagnosis.¹⁾ ^{186g}Re ($T_{1/2} = 3.7186$ d) decays with the emission of β^- particles and γ rays and can be used for nuclear medicine. Among possible reactions for ^{186g}Re production, we focused on proton-induced reactions on ^{nat}W. Eight experimental studies on the ^{nat}W(p, x)^{186g}Re reaction were found in the literature.^{2–9)} However, the data of these studies were largely scattered. Therefore, we performed an experiment to measure reliable cross sections of proton-induced reactions on ^{nat}W (¹⁸⁰W 0.12%, ¹⁸²W 26.50%, ¹⁸³W 14.31%, ¹⁸⁴W 30.64%, and ¹⁸⁶W 28.43%). Among these isotopes, ¹⁸⁶W can contribute to the production of ^{186g}Re.

The experiment was conducted at the RIKEN AVF cyclotron. The stacked-foil technique, activation method, and γ -ray spectrometry were employed. The stacked target comprised pure metallic foils of ^{nat}W (25- μ m thick, 99.95% purity) and ^{nat}Ti (5- μ m thick, 99.6% purity), which were purchased from Nilaco Corp., Japan. The ^{nat}Ti foils were used for the $^{nat}\mathrm{Ti}(p,x)^{48}\mathrm{V}$ monitor reaction. The target thicknesses were derived on the bases of the measured size and weight of the foils. The derived thicknesses of ^{nat}W and ^{nat}Ti foils were 26.7 and 5.25 mg/cm², respectively. The original sheets were cut into a size of 10×10 mm to fit into a target holder, which served as a Faraday cup as well. Twenty sets of W-W-Ti-Ti foils were stacked as a target. For cross-section deduction, only the second foils downstream of each pair in the stack were used, accounting for recoiled products.

The stacked target was irradiated using a proton beam for 30 min. Proton energy determined using the time-of-flight method¹⁰ was 29.8 MeV. Energy degradation was calculated on the basis of the thicknesses and stopping powers derived from the SRIM code.¹¹ The average beam current measured by the Faraday cup was 101 nA.

 γ -ray spectra were measured using a high-resolution HPGe detector. The γ -ray spectra for each second ^{*nat*}W foil were measured five times 13 days after the end-of-bombardment. The associated dead time was less than 2.7%.

Cross sections of the $^{nat}\text{Ti}(p, x)^{48}\text{V}$ monitor reaction were derived using the γ line at 983.53 keV ($I_{\gamma} =$

99.98%) based on the decay of ⁴⁸V ($T_{1/2} = 15.9735$ d). The derived cross sections well agreed with the recommended values.^{12,13} No correction was necessary for the analysis.

The cross sections of the $^{nat}\mathrm{W}(p,x)^{186g}\mathrm{Re}$ reaction were determined. The long-lived excited state of $^{186}\mathrm{Re}$ $(T_{1/2}=2.0\times10^5\mathrm{y})$ could not contribute to the ground state. The γ line at 137.15 keV $(I_{\gamma}=9.47\%)$ emitted from the decay of $^{186g}\mathrm{Re}$ was used to determine the cross sections. The possible interferences were γ lines at 136.28 keV $(I_{\gamma}=0.0311\%)$ from $^{181}\mathrm{W}$ $(T_{1/2}=121.2$ d) and 137.2 keV $(I_{\gamma}=0.07\%)$ from $^{181}\mathrm{Re}$ $(T_{1/2}=19.9$ h). Both contributions were negligible because of a longer half-life of $^{181}\mathrm{W}$ and tiny branching ratios.

The independent cross sections shown in Fig. 1 are compared with the literature data^{2–9)} and theoretical calculations in the TENDL-2021 library.¹⁴⁾ Above 15 MeV, the data of Bonardi *et al.* (2011) and Tárkányi *et al.* (2007) agree with our data, although the peak amplitudes are slightly higher. Some data deviate from our result. The TENDL-2021 values agree with our results. Further analyses will be done to finalize the cross sections.

Fig. 1. Cross sections of the ${}^{nat}W(p, x)^{186g}Re$ reaction in comparison with the previous data²⁻⁹⁾ and the TENDL-2021 values.¹⁴⁾

References

- 1) I. G. Finlay et al., Lancet Oncol. 6, 392 (2005).
- N. Shigeta *et al.*, J. Radioanal. Nucl. Chem. **205**, 85 (1996).
- 3) X. Zhang et al., Radiochim. Acta 86, 11 (1999).
- F. Tárkányi *et al.*, Nucl. Instrum. Methods Phys. Res. B **252**, 160 (2006).
- 5) F. Tárkányi *et al.*, Nucl. Instrum. Methods Phys. Res. B 264, 389 (2007).

^{*1} Faculty of Science, Hokkaido University

^{*&}lt;sup>2</sup> RIKEN Nishina Center

 $^{^{\}ast 3}~$ Graduate School of Science and Engineering, Saitama University

^{*4} Advanced Clinical Research Center, Fukushima Medical University

- 6) S. Lapi et al., Appl. Radiat. Isot. 65, 345 (2007).
- M. U. Khandaker *et al.*, Nucl. Instrum. Methods Phys. Res. B **266**, 1021 (2008).
- 8) M. Bonardi et al., Radiochim. Acta 99, 1 (2011).
- T. H. Nguyen *et al.*, Radiat. Phys. Chem. **196**, 110145 (2022).
- T. Watanabe *et al.*, Proc. 5th Int. Part. Accel. Conf. (IPAC), (2014), p. 3566.
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).
- 12) F. Tárkányi et al., IAEA-TECDOC-1211 (2007).
- 13) A. Hermanne et al., Nucl. Data Sheets 148, 338 (2018).
- 14) A. J. Koning et al., Nucl. Data Sheets 155, 1 (2019).