Role of large quadrupole deformation in the Borromean nucleus ¹⁹B

M. Yamagami^{*1}

The Borromean nucleus ¹⁹B shows different and mysterious aspects depending on the experimental probe. Recent measurement of the low-energy E1strength¹) suggests that two valence neutrons have large *s*-wave component. The large distance between the ¹⁷B core and the halo-neutron pair of $R_{c-2n} =$ $5.75 \pm 0.11 \pm 0.21$ fm was observed. However, the observed matter radius of $R_m = 3.11(13) ~(\approx 1.17 \times 19^{1/3})$ fm in ¹⁹B²) shows no increase, which suggests the absence of neutron halo, compared to $R_m = 2.99(9) ~(\approx$ $1.16 \times 17^{1/3})$ fm in ¹⁷B.²) The *d*-wave dominance in ¹⁹B was suggested by a correlation analysis between the matter radius and the two-neutron separation energy.³)

I demonstrate that these experimental results can be consistently understood by considering large quadrupole deformation. For this purpose, I perform an analysis using a seven-body model consisting of a deformed core of 13 B and six valence neutrons.

The Woods-Saxon (WS) potential with axial quadrupole deformation is employed for the coreneutron potential. The pairing correlation is considered in the Hartree-Fock-Bogoliubov method using the contact force $v_{nn}(\mathbf{r}, \mathbf{r}') = V_0 F(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}')$. The density dependence is represented by the form factor $F(\mathbf{r}) = 1 - f(r) + \beta R_{pair} [\frac{d}{dr} f(r)] Y_{20}(\hat{\mathbf{r}})$ with $f(r) = [1 + \exp((r - R_{pair})/a)]^{-1}$. β is a quadrupoledeformation parameter, and R_{pair} determines the region where the pairing correlation occurs. With large R_{pair} , neutron pairs are formed far away from the core, resulting in large R_{c-2n} and R_m .

Figure 1 shows the relationship between R_{c-2n} and R_m obtained by varying R_{pair} . $R_{c-2n} = 5.75$ fm is obtained with $R_{pair} \approx 3.8$ fm, regardless of β . The results of $\beta = 0.4, 0.6, 0.8, \text{ and } 1.0$ are compared with experimental values.^{1,2)} The comparison reveals that the experimental values of R_{c-2n} and R_m are consistently explained only when the quadrupole deformation is $0.4 \leq \beta \leq 1.0$.

This is due to the shrinkage of the subsystem ¹⁷B in ¹⁹B. To elucidate it, I show the neutron single-particle energies as a function of β in Fig. 2. The strength parameters of the WS potential for the $\Omega^{\pi} = 1/2^+$ and $5/2^+$ states are fixed by the experimental value of the *s*-wave scattering length $a_s = -50$ fm and the predicted *d*-wave resonance at 1.14 MeV, respectively (*e.g.*, see Ref. 1)). For other Ω^{π} states, the standard strength parameter by Bohr and Mottelson is used. Here, Ω is a spin-projection onto the symmetry axis of the quadruole deformation.

^{*1} Department of Computer Science and Engineering, University of Aizu

Fig. 1. Relationship between R_{c-2n} and R_m obtained by varying the parameter R_{pair} . The results assuming six valence neutrons and deformations of $\beta = 0.4, 0.6, 0.8$, and 1.0 are compared with experimental values.^{1,2}

Fig. 2. Neutron single-particle energies in ¹⁹B are shown as a function of deformation β . In the inserted diagram, blue (light blue) represents the neutron skin (halo).

The single-particle energies of the neutron [211]3/2 and [220]1/2 states become deeper with increasing β , and the radius of the density distribution of six valence neutrons reduces from 5.65 fm ($\beta = 0.4$) to 5.07 fm ($\beta = 1.0$) at a fixed $R_{c-2n} = 5.75$ fm.

In conclusion, large quadrupole deformation is shown to be necessary to understand the experimental values of R_{c-2n} and R_m consistently. Regarding the halo-neutron pair, the present study predicts the *p*-wave component that is of equal magnitude to the *s*-wave (for example, about 20% at $\beta = 0.6$), and such large *p*-wave component has not been reported previously. Further researches are needed to reconcile the structure of the halo-neutron pair.

References

- 1) K. J. Cook *et al.*, Phys. Rev. Lett. **124**, 212503 (2020).
- 2) T. Suzuki et al., Nucl. Phys. A 658, 313 (1999).
- L. Gaudefroy *et al.*, Phys. Rev. Lett. **109**, 202503 (2012).