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Fermi operator expansion method for nuclei and inhomogeneous
matter with a nuclear energy density functional†
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It is critically important to calculate nuclear mat-
ter in various phases with different temperatures, as
it is essential for simulation studies of supernovae and
neutron stars. The nuclear energy density functional
method at finite temperature is a desirable choice for
studying the inhomogeneous neutron-star matter in
outer and inner crusts. Moreover, near the boundary
between the inner crust and the core, various exotic
phases, “nuclear pasta.,” are expected to appear.
In order to properly treat thermally dripped nu-

cleons and to study the transition from inhomoge-
neous to uniform nuclear matter, the coordinate-space
representation is preferable. Furthermore, to find
novel structure at finite temperature, it is desired to
perform the calculation without assuming any spa-
tial symmetry of the configuration using the three-
dimensional (3D) coordinate-space representation. As
the 3D coordinate-space solution is computationally
demanding, most of the finite-temperature mean-field
calculations for nuclei either adopt the harmonic-
oscillator-basis (shell-model-basis) representation or
are restricted to the spherical systems.
A conventional solution of the finite-temperature

mean-field theory can be summarized as follows: (1)
Construct the mean-field Hamiltonian H, which de
pends on one-body densities; (2) diagonalize the
Hamiltonian to obtain the eigenvalues and the eigen-
vectors, H|i⟩ = ϵi|i⟩; and (3) calculate the densities,
then, go back to (1) to achieve self-consistency. In step
(3), the Fermi-Dirac distribution function f(x) is used
to calculate the densities, ρ =

∑
i f(ϵi)|i⟩⟨i|. A trun-

cation with respect to the eigenvector |i⟩ may be pos-
sible at low temperature, while, at high temperature,
one needs to compute all the eigenvalues and eigenvec-
tors. As this diagonalization is needed every iteration,
it requires a large amount of numerical resources.
The objectives of the present study are to investigate

an alternative method for the finite-temperature mean-
field calculation and to examine its performance for nu-
clear systems. The methodology is known as the Fermi
operator expansion (FOE) method in condensed mat-
ter physics.1,2) It is also known as an order-N (O(N))
method;3) thus, the number of computational opera-
tions linearly scales with respect to either the parti-
cle number or the dimension of the one-particle space.
In O(N) methods, the “nearsightedness” of many elec
tron systems plays a crucial role.4) As the nearsight-
edness is due to the destructive interference effect in
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quantum mechanical many-particle systems, I expect
that it is applicable to nuclear systems as well. How-
ever, as the size of a nucleus is roughly ten femtome-
ters at most, the nearsightedness principle has been
assumed to have a minimal effect in practice. The sit-
uation may be different for hot nuclei and macroscopic
neutron-star matters. It is worthwhile to study O(N)
methods used to calculate nuclei at finite temperature
and inhomogeneous nuclear matter.
I examine the applicability and the usefulness of the

FOE method in nuclear energy density functional ap-
proaches at finite temperature. The one-body density
matrix, which is identical to the Fermi operator, is ex-
panded in terms of the Chebyshev polynomials up to
the finite order. The maximum degree of the poly-
nomials is inversely proportional to the temperature.
Thus, the FOE method becomes extremely efficient for
calculations at high temperature. Polynomial expan-
sion is applied to calculations of the entropy, which
allows for the estimation of the free energy without
diagonalization of the Hamiltonian matrix.
I investigate thermal properties of the shape tran-

sition and the liquid-gas transition in isolated nu-
clei. For periodic non-uniform nuclear matter, the
self-consistent iteration is initiated with different ini-
tial states, such as the simple cubic and bcc configura-
tions. At low temperature, both the simple cubic and
bcc states exist as self-consistent solutions. I found
that the cubic state is lower in free energy than the
bcc state. The transition to the uniform matter takes
place at Tc, a value that is smaller than that of a larger
cell. This volume effect on the critical temperature Tc

is due to the volume dependence of the entropy of the
uniform matter.
The advantageous features of the FOE method from

a computational perspective can be summarized as fol-
lows: (1) The matrix diagonalization is not involved
in the calculation, including the calculation of the en-
tropy; (2) the calculation of the density matrix ρij is
independent of the index j. Thus, it is suitable for
distributed-memory parallel computing; and (3) the
computational cost could scale linearly with respect to
the space dimension N , when N is large enough. Here,
N is the dimension of matrix ρij .
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