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A new approach to the ATDHF equation

K. Sato∗1,∗2

To describe large-amplitude collective motion in
atomic nuclei, several versions of the adiabatic time-
dependent Hartree-Fock (ATDHF) theory have been
proposed since the 1970’s, but they encounter diffi-
culties such as non-uniqueness of solutions. To over-
come these problems, Matsuo et al. proposed an ad-
vanced version of the ATDHF theory, the adiabatic
self-consistent collective coordinate (ASCC) method.1)

Both the ATDHF and ASCC equations are given by
the adiabatic expansion of the invariance principle of
the Schödinger equation,

δ⟨ϕ(q, p)|i∂t − Ĥ|ϕ(q, p)⟩ = 0. (1)

Here, q is the collective coordinate and p is its con-
jugate momentum. In this report, we focus on the
ATDHF equation by Villars.2,3) According to the
generalized Thouless theorem, the state vector in the
ATDHF/ASCC theory can be written in the form of

|ϕ(q, p)⟩ = eiĜ(q,p)|ϕ(q)⟩. In the adiabatic expansion,
Ĝ is expanded in powers of p. In the conventional AT-
DHF and ASCC theories, the expansion up to only
the first order is considered. Recently, the ASCC
theory including the second-order collective operator
has been proposed.4) There, Ĝ(q, p) is expanded as
Ĝ(q, p) = pQ̂(1)(q) + 1

2p
2Q̂(2)(q), and the possible con-

tribution of Q̂(2) to the collective dynamics has been
highlighted. In the ASCC theory including Q̂(2), the
equations of motion comprise the four equations below.

δ⟨ϕ(q)|Ĥ − ∂qV Q̂(1)|ϕ(q)⟩ = 0, (2)

δ⟨ϕ(q)|[Ĥ, Q̂(1)]− 1

i
P̂− 1

i
∂qV Q̂(2)|ϕ(q)⟩=0, (3)

δ⟨ϕ(q)|[Ĥ,
1

i
P̂ ]− ω2(q)Q̂(1)

− ∂qV ∂qQ̂
(1)|ϕ(q)⟩ = 0, (4)

δ⟨ϕ(q)|[Ĥ,
1

i
Q̂(2)] + [[Ĥ, Q̂(1)], Q̂(1)]

− 2∂qQ̂
(1)|ϕ(q)⟩ = 0. (5)

We have adopted the coordinate system in which the
inverse inertial mass B(q) is unity. In the conven-
tional ATDHF/ASCC theory, Q̂(2) is omitted. In the
ATDHF theory,2,3) Eqs. (2) and (3) are employed as
the equations of motion, and the collective momentum
operator P̂ is treated as the differential operator i∂q,
which leads to the differential equation for the state
vector |ϕ(q)⟩. By contrast, in the conventional ASCC
theory, the equations of motion comprise three equa-
tions, two of which are Eqs. (2) and (3). The last
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one is derived by considering a linear combination of
Eqs. (4) and (5) and eliminating ∂qQ̂

(1). The equations
derived from Eqs. (3)–(5) are called the moving-frame
RPA equations. It is the extension of the RPA equa-
tions for large-amplitude collective motion and is an
eigenvalue problem with eigenvalues given by ω2(q) in
Eq. (4).
As in the general RPA equations, the moving-frame

Eqs. (3)–(5) can be rewritten in the matrix form.

(A−B)Q(1) − P − ∂qVQ(2) = 0, (6)

(∂qVD − ω2)Q(1) + (A+B)P = ∂qV ∂qQ
(1),

(7)

(2D +C)Q(1) + (A+B)Q(2) = 2∂qQ
(1). (8)

Here, C and D are contributions from [[Ĥ, Q̂(1)], Q̂(1)]
and ∂qQ̂

(1), respectively. In this approach, Eqs. (6)–

(8) are simultaneously solved, and Q(1) is obtained as
a solution to these differential equations, rather than
a eigenvector of the moving-frame RPA equations as
in the conventional ASCC theory. This is the essential
difference between the two ASCC approaches. Here,
one idea may arise, that is, to adopt Eqs. (3) and (4)
omitting Q̂(2), and solve the differential equations for
Q̂(1). This serves as a new approach to solve the AT-
DHF equation. Here, the differential equation for Q̂(1)

is solved rather than the state vector. In fact, one can
easily see that Eqs. (6) and (7) reduce to one ordinary
differential equation as below.

∂qV
d

dq
Q(1)=

[
(A+B) (A−B)+D′−ω2

]
Q(1),

with D′ = ∂qVD. At an equilibrium point q = q0
where ∂qV (q0) = 0, it reduces to the RPA equation.
By dividing the both sides by ∂qV ̸= 0 and taking the
limit q → q0, one can see that it is a singular point
of this differential equation. Actually, this singular-
ity leads to non-uniqueness of the solution that may
be interpreted as one of the reasons for the numerical
instability observed in the ATDHF studies. Detailed
analysis on this equation will be reported in a future
publication.
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