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A neural network approach for orienting heavy-ion collision events†
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It has been recognized that at relativistic energies,
a strong linear response relation exists between the
higher-order mean square anisotropic flows and mul-
tipole deformations.1) This implies that anisotropic
flows will serve as a sensitive probe for the nuclear
deformations. Considering the presence of statistical
effects, we focused on orienting individual events from
a microscopic perspective.
Utilizing the isospin-dependent Boltzmann-Uehling-

Uhlenbeck (IBUU) transport model, ultra-central col-
lisions (b < 1 fm) occurring between stable pro-
late nuclei of 238U were simulated at 1 GeV/nucleon
with random orientations. The collision orienta-
tion is represented by Euler angles as Ω(φ, θ, 0) =
Rz(φ)Ry(θ)Rx(0), with φ1,2 = θ1,2 = 0 denoting the
body-body collision whose long axis coincides with the
x-axis of the laboratory. By filtering out events with
spectators from the projectiles, we have

θ2 ∈

{
[θ1, 180

◦ − θ1] θ1 < 90◦

[180◦ − θ1, θ1] θ1 ≥ 90◦
(1)

and

φ2 = φ1 (2)

with θ1 ∈ [0◦, 180◦] and φ1 ∈ [0◦, 180◦], and the sub-
scripts 1 and 2 respectively corresponding to the target
and the projectile. All orientations are ultimately cat-
egorized into six cases, as indicated in Table 1.

Table 1. The initial collision orientations corresponding

to the six classification cases.

Case θ1 (Target) θ2 (Projectile)

1 [0◦, 30◦] ∪ [150◦, 180◦] [0◦, 30◦] ∪ [150◦, 180◦]

2 [0◦, 30◦] ∪ [150◦, 180◦] [30◦, 60◦] ∪ [120◦, 150◦]

3 [0◦, 30◦] ∪ [150◦, 180◦] [60◦, 120◦]

4 [30◦, 60◦] ∪ [120◦, 150◦] [30◦, 60◦] ∪ [120◦, 150◦]

5 [30◦, 60◦] ∪ [120◦, 150◦] [60◦, 120◦]

6 [60◦, 120◦] [60◦, 120◦]

Commonly used observables generated via IBUU
simulations are input to a neural network to map the
classification of orientations. As shown in Fig. 1, the
network called the convolutional orientation classifier
(COF) includes inputs such as the anisotropic flows
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Fig. 1. Schematic of the structure of the convolutional ori-

entation filter (COF) neural network.

in transverse momentum-rapidity space vn(pt, y0) with
n = 1, 2, 3, 4, the average anisotropic flow of individual
events ⟨vn⟩ , the multiplicities of charged particles Mτ

with τ = p, π−, π+,∆−,∆+,∆++ labeling the types of
particles, and the counts of emitted particles at differ-
ent angles θ⊥(ϕ) in the transverse(longitudinal) plane.
The classification accuracy of the COF network ex-
ceeds 70% on both the training and validation sets
whose output-channel probability distributions on the
actual cases are displayed in Fig. 2. Additionally, we
observed that the observables corresponding to differ-
ent COF channels are consistent with the real classifi-
cation cases.

Fig. 2. The probability distribution of the actual case at

different predicted channels.
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