Study of ²⁵²Cf fission fragments with MRTOF-MS: β -decay correlated mass measurement of ¹⁰⁷Zr

S. Kimura,^{*1,*2} M. Wada,^{*1} H. Haba,^{*2} T. Niwase,^{*3} M. Rosenbusch,^{*2} and P. Schury^{*1} for the SHE-Mass Collaboration

Spontaneous fission (SF) of 252 Cf can produce neutron-rich nuclides spanning the broad region on the nuclear chart. In the case of Zr, it covers the neutronrich isotopes around N = 60. The shape of neutronrich Zr isotopes is sensitive to and drastically changes with neutron number. In addition, a spherical sub-shell closure around N = 70 is predicted. Thus, the evolution of their ground-state properties has been of interest. Herein, we briefly report new mass measurements of 107 Zr₆₇ with a multi-reflection time-of-flight mass spectrograph (MRTOF-MS) combining with a β -TOF detector, $^{1)}$ which enables simultaneous time-of-flight (TOF) and β -decay events detection.

The isotope of interest was produced via SF of a 9.25 MBq^{252} Cf source and collected by a gas cell (GC) cryogenically cooled to 55 K. The GC's He gas pressure was regulated to maintain a density equivalent to 150 mbar at room temperature. The collected ions were converted to extremely low-energy ions and transported to an ejection device to the MRTOF-MS. Thereafter, their masses were measured at the MRTOF-MS.

Figure 1 shows the TOF spectrum of the ions of massto-charge ratio (A/q) = 53.5. We found a candidate of 107 Zr²⁺'s peak located approximately 400 keV heavier than the 2020 Atomic Mass Evaluation's extrapolation. To confirm this, we used the β -decay information correlated to the TOF events. To make the correlation, the TOF events were first selected by the fit process with the TOF spectrum, and then all β -decay events that occurred within the time window centered on the selected TOF events were collected as the correlated

Fig. 1. TOF spectrum of A/q = 53.5 ion series. Red lines show the fit results with the phenomenological fitting function.

- ^{*1} Wako Nuclear Science Center (WNSC), IPNS, KEK
- *² RIKEN Nishina Center
- ^{*3} Department of Physics, Kyushu University

ones. Figure 2(a) shows the correlated β -decay curve of $^{106}\text{Nb}^1\text{H}^{2+}$. The fit function comprised the decay curve, which included the contribution of the daughter nuclide and a constant background. The measured halflife, $T_{1/2,\text{meas}}(^{106}\text{Nb}) = 970(40)$ ms, was consistent with the literature value of 1.02(5) s.²⁾ The correlated β decay curve of the candidate of $^{107}\text{Zr}^{2+}$ is presented in Fig. 2(b). The extracted half-life, assuming ^{107}Zr , was $T_{1/2,\text{meas}} = 128(56)$ ms and consistent with the literature value of 146(4) ms.²⁾ Thus, we have concluded that the peak is $^{107}\text{Zr}^{2+}$ and determined its mass with the uncertainty of 40 keV, previously measured with the uncertainty of 449 keV.³⁾

Fig. 2. TOF event correlated β -decay curves. Red lines show the fit results with the decay curve plus a constant background.

References

- T. Niwase *et al.*, Prog. Theor. Exp. Phys. **2023**, 031H01 (2023).
- 2) ENSDF, https://www.nndc.bnl.gov.
- 3) R. Knöbel et al., Eur. Phys. J. A 52, 138 (2016).