Searching for universality of dineutron correlation at the surface of Borromean nuclei[†]

A. Corsi,^{*1} Y. Kubota,^{*2} J. Casal,^{*3} M. Gomez,^{*3} and T. Uesaka^{*2} for the S018 Collaboration

The dineutron correlation has been systematically studied in three different Borromean nuclei near the neutron dripline, ¹¹Li, ¹⁴Be, and ¹⁷B, via the (p, pn) knockout reaction measured at the RIBF at RIKEN during the S018 experiment.

Secondary beams were produced using projectile fragmentation of a ⁴⁸Ca primary beam at 345 MeV/nucleon with a typical intensity of 400 particle nA on a Be target. Fragmentation products were separated, detected, and identified via the BigRIPS fragment separator. The cocktail beam was composed of 11 Li, 14 Be, and 17 B, with a percentage of 80%, 12%, and 8%, respectively. Each component impinged on the secondary target with an average energy of 246, 265, and 277 MeV/nucleon, respectively. The secondary target was the 15-cm thick liquid hydrogen target from the MINOS device.¹⁾ The recoil neutron and proton were detected by the WINDS neutron array, and an array of plastic scintillators with a drift chamber for the proton. Apart from that, the standard SAMURAI setup was used during this experiment.

The method, introduced by Kubota *et al.*,²⁾ consisted of the measurement of the correlation angle between the momentum in the A-1 system (¹⁰Li in the case of ¹¹Li, for example), and the momentum of the removed neutron. The correlation angle is related to the neutron configuration, in the sense that angles larger than 90° in momentum space, and therefore smaller than 90° in coordinate space, point to a compact dineutron correlation. The missing momentum of the removed neutron has also been measured and can be considered a proxy of the peripherality of the reaction.¹⁾ Combining the two sets of information in a single plot as in Fig. 1, the dineutron correlation can be studied as a function of peripherality.

As in the case of ${}^{11}\text{Li},{}^{2)}$ a dineutron correlation appears in the periphery of ${}^{14}\text{Be}$ and ${}^{17}\text{B}$, but is damped compared to that for ${}^{11}\text{Li}$. As shown in Fig. 1, we provided an upper limit of systematic error using a Montecarlo simulation. Despite the large uncertainty towards small k_y , we remark that the value of the correlation angle at the maximum is distinctly above 90°.

Experimental data have been compared to theoretical calculations combining three-body models to describe the structure of Borromean nuclei and an eikonal sudden description of the (p, pN) reaction.³ Overall,

Fig. 1. Average correlation angle as a function of the momentum of the removed neutron k_y for (p, pn) reaction on ¹¹Li, ¹⁴Be, and ¹⁷B. The points are presented with their statistical (bars) and systematic errors (band).

the three-body model reproduces pretty well the experimental observables with the only exception of 14 Be. The damping of the dineutron correlation observed in 14 Be with respect to the theoretical calculation is interpreted as due to the presence of configurations with an excited core, that cannot be predicted within the three-body model.

This study provides the first experimental hint of the universality of dineutron correlation in the low-density surface of Borromean nuclei. We have shown that fast nucleon removal induced by high-energy quasi-free scattering is the tool of choice to reduce the effect of final-state interactions. Nevertheless, consistent measurements using different probes may help to confirm the universal character of dineutron correlation in Borromean halo nuclei.

References

- 1) A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).
- Y. Kubota, A. Corsi *et al.*, Phys. Rev. Lett. **125**, 252501 (2020).
- J. Casal, M. Gómez-Ramos, Phys. Rev. C 104, 024618 (2021).

[†] Condensed from the article in Phys. Lett. B **840**, 137875 (2023)

^{*1} Département de Physique Nucléaire, IRFU, Le Centre CEA de Saclay

^{*2} RIKEN Nishina Center

^{*&}lt;sup>3</sup> Departamento de Fisica, Universidad de Sevilla