First observation of $^{28}O^{\dagger}$

Y. Kondo,^{*1,*2} N. L. Achouri,^{*3} H. Al Falou,^{*4,*5} L. Atar,^{*6} T. Aumann,^{*6,*7,*8} H. Baba,^{*2} K. Boretzky,^{*7}

C. Caesar,^{*6,*7} D. Calvet,^{*9} H. Chae,^{*10} N. Chiga,^{*2} A. Corsi,^{*9} F. Delaunay,^{*3} A. Delbart,^{*9} Q. Deshayes,^{*3} Zs. Dombrádi,^{*11} C. A. Douma,^{*12} A. Ekström,^{*13} Z. Elekes,^{*11} C. Forssén,^{*13} I. Gašparić,^{*14,*2,*6}

- Zs. Dombrádi, ^{*11} C. A. Douma, ^{*12} A. Ekström, ^{*13} Z. Elekes, ^{*11} C. Forsén, ^{*13} I. Gašparić, ^{*14,*2,*6} J.-M. Gheller, ^{*9} J. Gibelin, ^{*3} A. Gillibert, ^{*9} G. Hagen, ^{*15,*16} M. N. Harakeh, ^{*7,*12} A. Hirayama, ^{*1}
 C. R. Hoffman, ^{*17} M. Holl, ^{*6,*7} A. Horvat, ^{*7} Á. Horváth, ^{*18} J. W. Hwang, ^{*19,*20} T. Isobe, ^{*2} W. G. Jiang, ^{*13}
 J. Kahlbow, ^{*6,*2} N. Kalantar-Nayestanaki, ^{*12} S. Kawase, ^{*21} S. Kim, ^{*19,*20} K. Kisamori, ^{*2} T. Kobayashi, ^{*22}
 D. Körper, ^{*7} S. Koyama, ^{*23} I. Kuti, ^{*11} V. Lapoux, ^{*9} S. Lindberg, ^{*13} F. M. Marqués, ^{*3} S. Masuoka, ^{*24}
 J. Mayer, ^{*25} K. Miki, ^{*22} T. Murakami, ^{*26} M. Najafi, ^{*12} T. Nakamura, ^{*1,*2} K. Nakano, ^{*21} N. Nakatsuka, ^{*26}
 T. Nilsson, ^{*13} A. Obertelli, ^{*9} K. Ogata, ^{*27,*28,*29} F. de Oliveira Santos, ^{*30} N. A. Orr, ^{*3} H. Otsu, ^{*2}
 T. Otsuka, ^{*23,*2} T. Ozaki, ^{*1} V. Panin, ^{*2} T. Papenbrock, ^{*16,*15} S. Paschalis, ^{*6} A. Revel, ^{*3,*30} D. Rossi, ^{*6}
 A. T. Saito, ^{*1} T. Y. Saito, ^{*23} M. Sasano, ^{*2} H. Sato, ^{*2} Y. Satou, ^{*20} H. Scheit, ^{*6} F. Schindler, ^{*6} P. Schrock, ^{*24}
 M. Shikata, ^{*1} N. Shimizu, ^{*31} Y. Shimizu, ^{*2} H. Simon, ^{*7} D. Sohler, ^{*11} O. Sorlin, ^{*30} L. Stuhl, ^{*19,*2}
 Z. H. Sun, ^{*16,*15} S. Takeuchi, ^{*1} M. Tanaka, ^{*32} M. Thoennessen, ^{*33} H. Törnqvist, ^{*7,*6} Y. Togano, ^{*34,*1}
 T. Tomai, ^{*1} J. Tscheuschner, ^{*6} J. Tsubota, ^{*1} N. Tsunoda, ^{*24} T. Uesaka, ^{*2} Y. Utsuno, ^{*35} I. Vernon, ^{*36}
 H. Wang, ^{*2} Z. Yang, ^{*2} M. Yasuda, ^{*1} K. Yoneda, ^{*2} and S. Yoshida^{*37}

The doubly-magic candidate nucleus ²⁸O and its neighboring nucleus ²⁷O have been observed by the invariant mass method at SAMURAI, RIBF. Secondary

- t Condensed from the article in Nature 620, 965 (2023)
- *1Department of Physics, Tokyo Institute of Technology
- *2 **RIKEN Nishina Center**
- *3 LPC Caen UMR6534, Université de Caen Normandie, ENSI-CAEN, CNRS/IN2P3
- *4 Lebanese University
- *5 Lebanese-French University of Technology and Applied Science
- *6 Institut für Kernphysik, Technische Universität Darmstadt
- *7GSI Helmholtzzentrum für Schwerionenforschung GmbH
- *8 Helmholtz Research Academy Hesse for FAIR
- *9 Irfu, CEA, Université Paris-Saclay
- *10 Institute for Basic Science
- *11 Hungarian Academy of Sciences (ATOMKI)
- *12ESRIG, University of Groningen
- *13Institutionen för Fysik, Chalmers Tekniska Högskola
- *14 Ruđer Bošković Institute
- ^{*15} Physics Division, Oak Ridge National Laboratory
- *¹⁶ Department of Physics and Astronomy, University of Tennessee
- *17 Physics Division, Argonne National Laboratory
- *¹⁸ Eötvös Loránd University
- *19 Center for Exotic Nuclear Studies, Institute for Basic Science
- *20Department of Physics and Astronomy, Seoul National Universitv
- *21Department of Advanced Energy Engineering Science, Kyushu University
- *22 Department of Physics, Tohoku University
- *23 Department of Physics, The Unversity of Tokyo
- *24 Center for Nuclear Study, University of Tokyo
- $^{\ast 25}$ Institut für Kernphysik, Universität zu Köln
- *²⁶ Department of Physics, Kyoto University
- *27Department of Physics, Kyushu University
- *²⁸ Research Center for Nuclear Physics, Osaka University
- ^{*29} Department of Physics, Osaka City University
- *30 Grand Accélérateur National d'Ions Lourds (GANIL)
- *31 Center for Computational Sciences, University of Tsukuba
- *32Department of Physics, Osaka University
- *33 Facility for Rare Isotope Beams, Michigan State University
- ^{*34} Department of Physics, Rikkyo University
- *35Advanced Science Research Center, Japan Atomic Energy Agency
- *³⁶ Department of Mathematical Sciences, Durham University
- *37Liberal and General Education Center, Institute for Promotion of Higher Academic Education, Utsunomiya University

beams of ${}^{29}F$ and ${}^{29}Ne$ were produced through the projectile fragmentation of a ⁴⁸Ca primary beam at 345 MeV/nucleon on a 15-mm-thick beryllium target. The beam energies of ²⁹F and ²⁹Ne were 235 and 228 MeV/nucleon with average intensities of 90 and 8000 particles per second, respectively. In addition to the standard SAMURAI setup for detecting heavy ions and neutrons, a liquid hydrogen target system (MI- $NOS^{(1)}$) and neutron detector array (NeuLAND²⁾) were installed to realize high luminosity and enable threeand four-neutron coincidence detection.

A resonance of the ²⁸O ground state was observed at $0.46^{+0.05}_{-0.04}$ MeV in the decay energy spectrum of ²⁴O and the four neutrons. In addition, a resonance of ^{27}O was observed at 1.09 ± 0.04 MeV in the decay energy spectrum of ²⁴O and the three neutrons. The analysis of partial decay energy spectra of subsystems indicated that the unbound nuclei sequentially decayed through the ²⁶O ground state. The measured energies were compared to theoretical results including *ab-initio*-type calculations, including large scale shell model calculations and a newly developed statistical approach based on the coupled-cluster method.

The measured momentum distribution of ²⁸O following one-proton removal from ²⁹F shows better agreement with the distribution for $d_{5/2}$ proton removal calculated using a distorted wave impulse approximation approach than with the distribution for $s_{1/2}$, leading to a 5/2⁺ assignment for the $^{29}\mathrm{F}$ ground state. A spectroscopic factor of $0.48^{+0.05}_{-0.06}$ was obtained from the measured cross section. From the comparison of the spectroscopic factor to shell model calculations, it is concluded that the N = 20 shell closure disappears in ²⁸O.

- References
- 1) A. Obertelli et al., Eur. Phys. J. A 50, 8 (2014).
- 2) K. Boretzky et al., Nucl. Instrum. Methods Phys. Res. A 1014, 165701 (2021).