Measuring single-spin asymmetry for forward neutron production in wide $p_{\rm T}$ range of polarized p + p collisions at $\sqrt{s} = 510 \text{ GeV}^{\dagger}$

M. H. Kim^{*1} for the RHICf Collaboration

With the first polarized p + p collisions achieved in the relativistic heavy-ion collider (RHIC) at a centerof-mass energy (\sqrt{s}) of 200 GeV, non-zero transverse single-spin asymmetry (A_N) for forward neutron production was discovered by an experiment called IP12.¹) In polarized p + p collisions, A_N is defined by a leftright cross-section asymmetry with respect to the beam polarization. A_N of a forward particle produced at pseudorapidity larger than six is particularly important to study a spin-involved diffractive particle production mechanism.

After the discovery of nonzero neutrons $A_{\rm N}$, the PHENIX Collaboration measured them at \sqrt{s} = 62 GeV, 200 GeV, and 500 GeV²⁾ using a hadronic calorimeter with a high energy resolution. The results were theoretically described well by the interference between the spin flip π and spin nonflip a_1 exchange between two protons.³⁾ Recently, one of the PHENIX results at $\sqrt{s} = 200$ GeV was extracted as a function of the longitudinal momentum fraction ($x_{\rm F}$) and transverse momentum ($p_{\rm T}$) more precisely than earlier by unfolding the kinematic spectra, and the updated results were also consistent with the theoretical calculation. However, the nonzero neutrons $A_{\rm N}$ were only studied in a narrow kinematic range of $p_{\rm T} < 0.4$ GeV/c.

The RHICf Collaboration extended the previous measurements up to 1.0 GeV/c to study the kinematic dependence of nonzero neutrons $A_{\rm N}$ in more detail. In June 2017, we installed an electromagnetic calorimeter (RHICf detector) in the zero-degree area of the STAR detector at the RHIC and measured nonzero neutrons $A_{\rm N}$ in the kinematic range of $0.2 < x_{\rm F} < 1.0$ and $0.0 < p_{\rm T} < 1.0$ GeV/c. The RHICf detector has one order of better position and $p_{\rm T}$ resolutions than the one used in the previous measurements, thereby enabling more precise measurements of $A_{\rm N}$.

Neutron events were separated from the photon background using a variable called L_{2D} that describes how early a particle shower is generated in the detector. We installed a thin scintillator counter in front of the RHICf detector to suppress charged hadrons. The remaining photon and charged hadron backgrounds were removed by performing template fits of the L_{2D} and scintillator counter analog to digital converter distributions by scaling those of the neutron, photon, and charged hadron events in a Monte Carlo sample that described p + pcollisions. After the background subtraction, the kinematic values of neutrons, $x_{\rm F}$, $p_{\rm T}$, and azimuthal angle with respect to the beam axis, were unfolded using Bayesian unfolding⁵⁾ to precisely estimate the $A_{\rm N}$ values.

Figure 1 shows the neutron $A_{\rm N}$ s measured by the RHICf experiment as a function of $p_{\rm T}$ in three different $x_{\rm F}$ ranges. The error bars and boxes correspond to the statistical and systematic uncertainties, respectively. The systematic uncertainties mainly originate from the beam center calculation and unfolding processes. In the low- $x_{\rm F}$ range, $A_{\rm N}$ reaches a plateau at low $p_{\rm T}$. In the high- $x_{\rm F}$ range, $A_{\rm N}$ does not reach a plateau, but the absolute value of $A_{\rm N}$ explicitly increases in magnitude with $p_{\rm T}$. A clear $x_{\rm F}$ dependence is observed for the first time in the RHICf experiment.

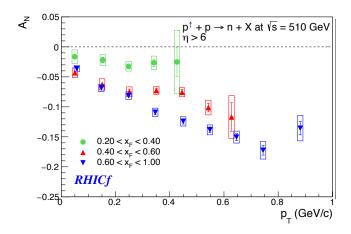


Fig. 1. Forward neutron $A_{\rm N}$ s measured by RHICf experiment as function of $p_{\rm T}$ in different $x_{\rm F}$ regions.

The π and a_1 exchange model partially reproduces the RHICf data because of the $x_{\rm F}$ dependence. Because spin effects by the absorptive correction and interference between the ρ and a_2 exchange can also generate finite $A_{\rm N}$, more comprehensive theoretical considerations are necessary to describe the present results.

References

- 1) Y. Fukao et al., Phys. Lett. B 650, 325 (2007).
- K. Tanida (PHENIX Collaboration), J. Phys. Conf. Ser. 295, 012097 (2011).
- 3) B. Z. Kopeliovich et al., Phys. Rev. D 84, 114012 (2011).
- U. A. Acharya *et al.* (PHENIX Collaboration), Phys. Rev. D 105, 032004 (2022).
- G. D'Agostini, Nucl. Instrum. Methods Phys. Res. A 362, 487 (1995).

 $^{^{\}dagger}$ Condensed from the article in Phys. Rev. D **109**, 012003 (2024)

^{*1} RIKEN Nishina Center