Development of a large-scale production system of astatine-211 for targeted alpha-particle therapy

H. Arata,^{*1,*2} T. Kurihara,^{*1,*2} S. Nakamura,^{*1,*2} N. Sato,^{*1} X. Yin,^{*1} A. Nambu,^{*1} Y. Shigekawa,^{*1} Y. Kanayama,^{*1} H. Arai,^{*1,*2} Y. Nagasawa,^{*2} and H. Haba^{*1}

Astatine-211 (211 At), with half-life of 7.214 h, is one of the promising radionuclides for targeted α -particle therapy.¹⁾ Due to the proper ranges of the α particles in tissue, the ²¹¹At-labeled medicine is effective in killing cancer cells. We have been developing production technologies of ²¹¹At in the ²⁰⁹Bi(⁴He, 2n)²¹¹At reaction at the AVF cyclotron, 2^{-5} where 2^{11} At is produced by irradiating a ⁴He²⁺ beam with a maximum intensity of 25-particle μA (p μA) to a stational metal Bi target. To meet the rapidly growing demand of ²¹¹At in Japan, further development to increase the production yield of ²¹¹At by using more intense beams from the RIKEN Ring Cyclotron (RRC) and the recently upgraded RIKEN Linear Accelerator (SRILAC)⁶⁾ is an important issue. However, owing to the low melting point $(271.5^{\circ}C)$ and thermal conductivity $(7.97 \text{ W/m} \cdot \text{K at})$ 300 K) of the metal Bi, the target melts when the intensity is increased to $>25 \text{ p}\mu\text{A}$ in the conventional system,⁴⁾ making it impossible to quantitatively produce ²¹¹At. Thus, we devised a novel ²¹¹At production system with a rotating Bi target and a dry distiller for chemical separation of ²¹¹At.⁷⁾

Figure 1 shows a layout of the developed ²¹¹At production system. The metal ²⁰⁹Bi target is placed in the target vessel. By rotating the vessel, a centrifugal force maintains the target shape even if the target melts due to the irradiation. Because it can be irradiated from any direction, there is no need to construct a costly vertical beam line. The target vessel is heated with a high-frequency induction heater (HFIH) and ²¹¹At sublimated from the target is transported to a hot laboratory (HL) by a He gas stream. Thus, chemical separation of ²¹¹At can be realized immediately after or during

*1 RIKEN Nishina Center

*² Metal Technology Co. Ltd.

irradiation to reduce its radioactive decay loss.

The ²⁰⁹Bi target in the vessel made of carbon (60mm inner diameter $(i.d.) \times 27$ -mm height) was irradiated in He gas (100 kPa) with a 28-MeV ${}^{4}\text{He}^{+}$ beam from the RRC through Be foils (14- μ m thickness \times 2) (Exp. 1). The ²⁰⁹Bi target was sufficiently thick to completely stop the beam $(>200 \text{ mg/cm}^2)$. The beam intensity was 0.25 p μ A. During irradiation, the target vessel was rotated at 800 rpm and cooled in He gas. After the irradiation, the rotation was stopped, the target vessel was heated to 650°C with HFIH, and ²¹¹At was sublimated and transported with He carrier gas at a flow rate of 0.5 L/min to the HL through a perfluoroalkoxy alkane (PFA) tube (1.5-mm *i.d.* \times 12-m long) heated to 110°C. In the HL, ²¹¹At was collected with an activated charcoal trap (4-mm *i.d.* \times 50-mm long). In a separate experiment (Exp. 2), the ²⁰⁹Bi target in the vessel rotated at 2000 rpm was irradiated with a 25-p μ A ${}^{4}\text{He}^{+}$ beam for 85.5 min. ${}^{211}\text{At}$ was sublimated at 750°C and transported through the PFA tube (1.6-mm i.d.) at the He flow rate of 0.25 L/min to the PFA tube trap $(1-\text{mm } i.d. \times 1-\text{m } \log)$ cooled with liquid nitrogen at the HL. Finally, the PFA trap was washed with 300 μ L of chloroform $(CHCl_3)$ to collect ²¹¹At in a glass vial. The radioactivities of ²¹¹At in the activated charcoal, PFA trap, and vial were determined by γ -ray spectrometry with a Ge detector. The chemical yields of ²¹¹At were estimated by comparing the radioactivities to that produced in the stational ²⁰⁹Bi target (1-mm thickness) placed just before the target vessel in a separate irradiation (Fig. 1).

The chemical yield of ²¹¹At with the activated charcoal in Exp. 1 was 77 \pm 3% which was sufficiently high to compare it with those obtained in the conventional method.^{3–5)} In Exp. 2, 206 \pm 10 MBq of ²¹¹At at EOB was trapped in the PFA tube, and 186 \pm 8 MBq, which is useful for general medical research, was recovered in the vial with CHCl₃. We plan to continue the development of this system using more intense beams, such as that of 100 pµA from the RRC and SRILAC.

References

- Y. Feng and M. R. Zalutsky, Nucl. Med. Biol. 100–101, 12 (2021).
- 2) N. Sato et al., RIKEN Accel. Prog. Rep. 50, 262 (2017).
- 3) S. Yano et al., RIKEN Accel. Prog. Rep. 50, 263 (2017).
- 4) Y. Wang et al., RIKEN Accel. Prog. Rep. 53, 192 (2020).
- 5) X. Yin *et al.*, in this report.
- N. Sakamoto and T. Nagatomo, Nucl. Phys. News **32**, 21 (2022).
- H. Arata *et al.*, Patent Publication No. WO2023095818 (2023).