
Solvent extraction of ¹⁸¹W with tri-n-octylamine in HF/HNO₃ system towards the chemistry of Sg

S. Mitra,*1 A. Nambu,*1 and H. Haba*1

Seaborgium (Sg) is the group 6 member of the Periodic Table, sharing its group with Mo and W. The pioneering aqueous chemistry of Sg was to study the fluoride complexation and hydrolysis in 5×10^{-4} M HF/0.1 M HNO₃ and in 0.1 M HNO₃ by cation exchange chromatography. $^{1,2)}$ The decay events of the short-lived 265 Sg $(T_{1/2}=7.1~\mathrm{s}),^{1,2)}$ however, could not be observed because of time consuming sample preparation and the chemical properties of Sg was discussed based on only three¹⁾ and one²⁾ time-correlated α - α events of the decay products of ²⁶⁵Sg, i.e., ²⁶¹Rf and 257 No. After those pioneering studies, there have been no reports on the aqueous chemistry of Sg for more than 20 years. The decay data of $^{265}\mathrm{Sg}$ and $^{261}\mathrm{Rf}$ used in the experiments at the time were significantly revised by our group and the long-lived $^{265}\mathrm{Sg}^{a,b}$ $(T_{1/2})$ $= 8.5 \text{ s}, 14.4 \text{ s})^{3}$ opened up the possibility of nextgeneration Sg chemistry by directly observing Sg isotopes with the GARIS gas-jet system and the continuous flow extraction apparatus coupled to liquid scintillation counters.⁴⁾ The first step towards such exploration is to choose a chemical system for Sg by studying chemical properties of its lighter homologues Mo and W. Complex formations of Mo and W with chloride, fluoride and sulphate have been studied by ion exchange chromatography and solvent extraction.^{5–7)} In this work, we studied the fluoride complexation of W using tri-n-octylamine (TOA) as an extractant.

The radiotracer ¹⁸¹W ($T_{1/2} = 121.2 \text{ d}$) was produced by bombardment of ^{nat}Ta metal foils (100 μ m × 4) with a 24-MeV d beam extracted from the RIKEN AVF cyclotron. After irradiation, ¹⁸¹W was chemically separated from Ta by a liquid-liquid extraction method using methylisobutyl ketone as the extractant. The purified 181 W was stored in 0.01 M HNO₃. The solvent extraction of $^{181}\mathrm{W}$ was carried out with 0.01 M TOA in toluene from $10^{-4} - 1$ M HF/0.01 M HNO₃ solutions. To 1.9 mL of the acid solutions, 100 μ L of ¹⁸¹W stock solution was added followed by the addition of 2 mL 0.01 M TOA in polypropylene (PP) tubes. The number of $^{181}\mathrm{W}$ atoms used for each batch extraction was 9×10^{10} . The PP tubes were shaken for 10 min at 20°C and centrifuged for 5 min to achieve complete phase separation; we confirmed the extraction equilibrium was reached within 5 s in 0.5 M HF/0.01 M HNO₃ in a separate experiment. After that, 1 mL aliquots of both phases were subjected to γ -ray spectrometry employing a Ge detector. The concentration of TOA was also varied to deduce chemical species of W. Distri-

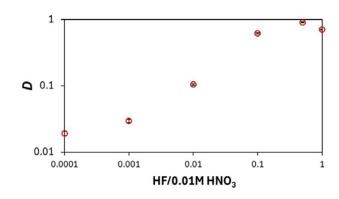


Fig. 1. Variation of D value with increasing [HF] ([HNO₃ = 0.01 M; [TOA] = 0.01 M).

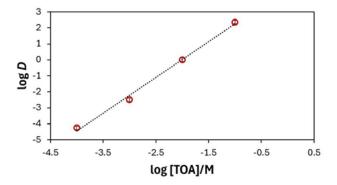


Fig. 2. Variation of D values as a function of [TOA].

bution ratio was calculated by $D = A_{\rm org}/A_{\rm aq}$, where $A_{\rm org}$ and $A_{\rm aq}$ are the radioactivity in the organic and aqueous phases, respectively.

Figure 1 represents the variation of D values with increasing [HF]. The D value of W increases with increasing [HF] suggesting the formation of anionic oxo-fluoro-complexes like [WO₃F]⁻, WO₂F₂(H₂O)₂, WO₂F₃(H₂O)⁻, [WO₂F₄]²⁻, and [WOF₅]⁻.6,8,9)

In Fig. 2, a slope of the D value in 0.5 M HF/0.01 M HNO₃ vs. [TOA] plot in logarithmic scale is estimated to be 2.2 ± 0.1 indicating that two molecules of TOA are associated with the extracted complex of W. The extracted species is possibly $[WO_2F_4]^{2-}$ as deduced in Refs. 8) and 9) Next, we plan to study the variation of D values of W along with Mo by changing [HF] and [TOA] to understand the speciation mechanism in more detail.

References

- 1) M. Schädel et al., Radiochim. Acta 77, 149 (1997).
- 2) M. Schädel et al., Radiochim. Acta 83, 163 (1998).
- 3) H. Haba et al., Phys. Rev. C 85, 024611 (2012).
- 4) H. Haba, EPJ Web of Conf. 131, 07006 (2016).
- T. Yokokita *et al.*, J. Radioanal. Nucl. Chem. **303**, 1091 (2015).
- 6) A. Toyoshima $et~al.,~{\rm J.}$ Radioanal. Nucl. Chem. ${\bf 317},~421~(2018).$
- Y. Komori *et al.*, J. Radioanal. Nucl. Chem. **303**, 1385 (2015).
- 8) V. Pershina, Radiochim. Acta **92**, 455 (2004).
- X. H. Liang et al., J. Radioanal. Nucl. Chem. 292, 917 (2012).