Anion exchange experiments of tungsten for liquid phase chemistry of seaborgium (Sg, element 106)

T. K. Sato,*1,*2 Y. Miyachi,*2,*1 K. Tsukada,*1 M. Asai,*1 Y. Ito,*1 H. Natori,*2,*1 and Y. Nagame*1

Seaborgium (Sg) may form anionic compounds in a 5×10^{-4} M HF/0.1 M HNO₃ aqueous solution, according to cation exchange experiment.¹⁾ Our group has been planning an experiment using the multi-column technique to investigate the detailed anion exchange behavior of Sg. We expect that the anion exchange behavior of ²⁶⁵Sg (half-life 8.5 s/14.4 s), which is produced in the 248 Cm(22 Ne, 5n) reaction without the influence of decay products of Sg can be observed using a series of three ion exchange columns consisting of a cation exchange column, an anion exchange column, and another cation exchange column. In this study, anion exchange experiments of tungsten (W), as a lighter homolog of Sg, using 181 W (Half-life: $T_{1/2} = 121.2$ d) in an HF/HNO₃ aqueous solution, were performed for the future liquid-phase chemistry of Sg.

¹⁸¹W was produced in the ¹⁸¹Ta(p, n) or ¹⁸¹Ta(d, 2n)reactions at the JAEA tandem accelerator facility or supplied through the Supply Platform of Short-lived Radioisotopes from RIKEN. After the ion exchange purification, it was prepared in a 0.2 M HF aqueous solution as a carrier-free tracer. We measured the distribution coefficient (K_d) of ¹⁸¹W in various anionexchange conditions. In each anion-exchange procedure for the K_d -value evaluation, the ¹⁸¹W solution, a dried anion exchange resin (MCI GEL CA08Y, MIT-SUBISHI CHEMICAL GROUP), and an HF/HNO₃ were mixed to be a desired HF/HNO₃ concentration. The mixture was shaken for a certain time. After centrifugation, the amount of ¹⁸¹W was determined in the solution by counting the X-ray originating ¹⁸¹W. The distribution coefficient (K_d) of W between an aqueous solution and an anion exchange resin was measured as a function of the HF and HNO₃ concentrations ([HF] and $[HNO_3]$).

We confirmed that the chemical equilibrium was reached in a few minutes regardless of the experimental conditions; therefore, the shaking time was fixed at 10 min. The dependence of the $K_{\rm d}$ values of W on [HF] was obtained as shown in Fig. 1. $K_{\rm d}$ decreased with increasing [HF] in the range 10^{-4} M < [HF] < 10^{-2} M, whereas $K_{\rm d}$ increased with [HF] in the range 10^{-2} M < [HF] < 1 M. The trends were consistent with those reported in the Refs. 2) and 3). The dependence of the $K_{\rm d}$ values of W on [HNO₃] determined the valence of anionic compounds of W in HF aqueous solution was 1.5 regardless [HF]. Because the theoretical

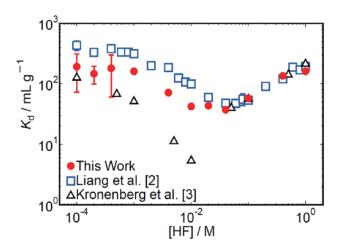


Fig. 1. Variations in the distribution coefficient (K_d) of $^{181}\mathrm{W}$ on the anion-exchange resin as a function of the HF concentration ([HF]). The concentration of HNO₃ was constant (0.1 M).

calculations have suggested that W would form monovalent and divalent complexes in HF aqueous solution, we concluded that the amounts of molecules of each valence could be similar.

Short-lived ⁸⁸Zr and ¹⁷⁵Hf were also supplied from the Supply Platform of Short-lived Radioisotope project. We are planning the model experiment of the multi-column procedure using the isotopes based on the results obtained in this study.

References

- 1) M. Schädel et al., Radiochim. Acta 77, 149 (1997).
- X. H. Liang et al., J. Radioanal. Nucl. Chem. 292, 917 (2012).
- 3) A. Kronenberg et al., Radiochim. Acta $\mathbf{92}$, 395 (2004).

^{*1} Advanced Science Research Center, Japan Atomic Energy Agency

^{*2} Graduate School of Science and Technology, Ibaraki University