Doping a CaF₂ crystal with 229 Pa and the γ -ray measurement of 229m Th

Y. Shigekawa,*1 A. Nambu,*1 X. Yin,*1 Y. Kanayama,*1 H. Shimizu,*1 and H. Haba*1

The first excited state of the 229 Th nucleus (229m Th) has an excitation energy of 8.36 eV (148 nm),¹⁾ which leads to an ultraprecise nuclear clock via nuclear laser excitation. In the nuclear clock, the internal conversion (IC) and electron bridge (EB) processes of 229m Th, whose half-lives are much shorter than that of the γ ray emission, must be suppressed to ensure a narrow natural linewidth of the nuclear transition. One of the ways to prohibit the IC and EB processes is doping fluoride compounds with 229m Th. Recently, the γ rays of 229m Th were observed with the 229 Th-doped CaF₂, MgF₂, and LiSrAlF₆ crystals¹⁻³⁾ and ²²⁹ThF₄ films.⁴⁾ The half-life of 229m Th varied with the material (150– 630 s), although the underlying reasons are yet to be elucidated. It is not easy to prepare a variety of ²²⁹Th compounds to investigate the half-life variation due to the small amount of ²²⁹Th available in the world.

We have been aiming to observe the γ rays of 229m Th by doping fluoride crystals with 229 Pa $(T_{1/2}=1.50$ d), which decays to 229m Th by electron capture. $^{5-8}$ A large quantity of 229 Pa can be produced by the 232 Th $(p,4n)^{229}$ Pa reaction, 8) which allows us to prepare various 229 Pa-doped crystals by ionizing 229 Pa and implanting it into crystals. This will enable us to study the half-life variation in various crystals and to determine the best crystal suitable for the nuclear clock. In this study, we prepared a 229 Pa-doped CaF₂ crystal and attempted to observe the γ rays of 229m Th.

To produce 229 Pa, two 232 Th metallic foils (total thickness 0.12 mm) were irradiated with a 29.6-MeV proton beam at the RIKEN AVF cyclotron. The average beam current was $10.2~\mu\text{A}$, and the irradiation time was 9.2 hours. The chemical separation of 229 Pa was performed in the previously developed method. The chemical yield of Pa was around 90%. The radioactivity of 229 Pa in the purified sample was 610(30) MBq at the end of the bombardment (EOB). The reaction by-products, 232 Pa ($T_{1/2}=1.32$ d) and 230 Pa ($T_{1/2}=1.4$ d), had radioactivities of 40(1) and 16.4(5) MBq at EOB, respectively. The purified 229 Pa sample was dissolved in $10~\mu\text{L}$ of 1~M HNO₃/0.4 M HF (Pa stock solution).

For the 229 Pa implantation (Fig. 1(a)), we first dropped 1 μ L of the Pa stock solution on a Re filament coated with colloidal graphite.⁶⁾ The filament was heated to $\sim 2000^{\circ}$ C for 8 min. Here, Pa compounds were reduced to Pa atoms by the graphite, and Pa ions were produced by surface ionization. The Pa ions were accelerated to 30 keV and implanted into

Fig. 1. (a) Schematic of the ionization and implantation of $^{229}\mathrm{Pa}$. (b) Schematic of the γ -ray measurement of $^{229m}\mathrm{Th}$. (c) Photon count rate as a function of the time for the 147-nm (red) and 172-nm (blue) BP filters, measured by PMT1. It is estimated that $^{229}\mathrm{Pa}$ and $^{229m}\mathrm{Th}$ were in radiative equilibrium at the measurement start time.

a CaF₂ crystal. The total efficiency for ionization and implantation was 0.32(1)%. The radioactivity of $^{229}\mathrm{Pa}$ in the crystal was 91(5) kBq at the start time of the measurement of the $^{229m}\mathrm{Th}~\gamma$ rays. This radioactivity was close to the value we targeted (100 kBq) to obtain a sufficient count rate of $^{229m}\mathrm{Th}~\gamma$ rays (~1 s $^{-1}$). $^{5)}$

The crystal was then annealed at 400°C for 1 min to incorporate ²²⁹Pa into appropriate crystal sites. After the crystal cooled down, it was placed in the apparatus shown in Fig. 1(b) and the γ -ray measurement started 14 min after the end of the annealing. The 229m Th γ rays were measured with a photomultiplier (PMT1) through bandpass (BP) filters centered at 147 and 172 nm. The 147-nm filter passed the 229m Th γ rays, while the 172-nm filter blocked them. Another photomultiplier (PMT2) was used to detect scintillation photons induced by high-energy radiation, enabling background photon reduction in PMT1 via anticoincidence. Figure 1(c) shows the measured photon count rates over time. The data for each BP filter was well fitted with the sum of the decay curves of ²²⁹Pa, ²³²Pa, and ²³⁰Pa. From the fitting, the count rates of ²²⁹Pa, ²³²Pa, and ²³⁰Pa at the measurement start time for the 147-nm BP filter were determined to be 1.0(3), 0.7(3), and 0.833(9) s⁻¹, respectively, while those for the 172-nm BP filter were 0.0(1), 0.59(1), and $0.581(4) \text{ s}^{-1}$, respectively. The count rate of ²²⁹Pa for the 147-nm filter was much higher than that for the 172-nm BP filter, which could indicate the observation of the 229m Th γ rays. For further confirmation,

⁽a)

Re filament

Max 6 A

Filament

Colloidal

graphite

229Pa sample

CaF₂ crystal

(b)

Vacuum (10⁻⁵ Pa)

PMT1(VUV)

147-nm BP filter

CaF₂ + 229Pa

Scintillation

PMT2(UV)

172-nm BP filter

CaF₂ trystal

CaF₂ crystal

Elapsed time (d)

^{*1} RIKEN Nishina Center

we need to reduce the amounts of 232 Pa and 230 Pa by mass separation. Moreover, the time from annealing to the measurement needs to be reduced to observe the growth curve and determine the half-life of 229m Th.

References

- 1) J. Tiedau et al., Phys. Rev. Lett. 132, 182501 (2024).
- 2) S. Kraemer et al., Nature 617, 706 (2023).
- 3) R. Elwell et al., Phys. Rev. Lett. 133, 013201 (2024).
- 4) C. Zhang et al., Nature 636, 603 (2024).
- Y. Shigekawa *et al.*, RIKEN Accel. Prog. Rep. **55**, 124 (2022).
- Y. Shigekawa *et al.*, RIKEN Accel. Prog. Rep. **55**, 126 (2022).
- Y. Shigekawa *et al.*, RIKEN Accel. Prog. Rep. **56**, 145 (2023).
- Y. Shigekawa *et al.*, J. Radioanal. Nucl. Chem. **333**, 1479 (2024).