Construction of the gas cell and isotope separation system with resonant laser ionization for a tatine-211 production

T. Sonoda,*1 H. Haba,*1 Y. Shigekawa,*1 Y. Kanayama,*1 A. Nambu,*1 H. Shimizu,*1 T. Nakashita,*1,*2 T. Mochizuki,*3 D. Ishikura,*3 H. Tomita,*3 and N. Sato*1

The gas cell and isotope separation system for the feasibility study of the medical radioisotope production of astatine-211 was constructed in 2024. This system consists of a gas cell, sextupole rf-ion beam guide (SPIG) with differential pumping and a quadrupole mass separator (QMS). The transversal length for the entire system is about 1 m. Owing to its compact structure, the entire system can be installed inside the standard draft chamber. Figure 1 shows a side view of the entire system.

The developing new collection method for ²¹¹At is not applying a chemical separation. One feature of this method is that the isotope separation is feasible. The extraction and collection process for ²¹¹At takes the following steps. ²¹¹At is produced by the $^{209}\mathrm{Bi}(\alpha,2n)^{211}\mathrm{At}$ nuclear reaction. The target is created by vapor-depositing Bi on an aluminium foil.¹⁾ The irradiated target is put into the alumina crucible placed inside the gas cell. The alumina crucible is spiraled by a tungsten filament. A carefully adjusted current is applied to the filament to extract ²¹¹At from the target. The evaporated ²¹¹At atoms flow together with the highly purified argon gas in a laminar flow and arrive at the gas cell exit. The laser beam irradiates ²¹¹At atoms during the transport of gas cell exit hole, where resonant photoionization occurs. The photo-ionized ²¹¹At ions are sent to the QMS via SPIG and are finally detected by an ion counter/silicon detector. In this way, the element and mass selections are dedicated for ²¹¹At.

The system performance was examined by using a stable isotope of ²⁰⁹Bi. The bismuth atoms were produced by evaporation in the gas cell. Figures 2 and 3 show the scan results for the laser wavelength and masses of ²⁰⁹Bi, respectively. The element and mass selections were confirmed for ²⁰⁹Bi.

The gas cell and isotope separation system was successfully constructed. Currently, we are applying $^{211}\mathrm{At}$ for the collection test.

Reference

1) N. Sato et~al., RIKEN Accel. Prog. Rep. ${\bf 50},$ 262 (2017).

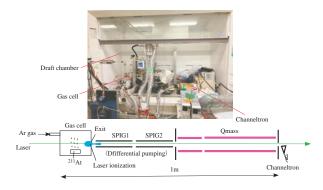


Fig. 1. Side view and layout of the gas cell and isotope separation system for the production of a tatine-211.

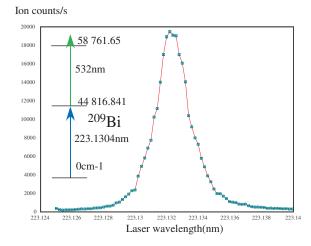


Fig. 2. Examination result of the system performance using a stable Bi isotope (²⁰⁹Bi): ion counts versus the wavelength scan of the first step for resonant laser ionization in the gas cell.

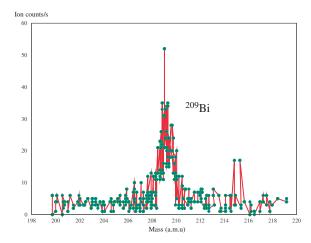


Fig. 3. Result of mass scan for 209 Bi by QMS when the laser wavelength was fixed on resonance for the ionization.

^{*1} RIKEN Nishina Center

^{*2} Graduate School of Arts and Sciences, University of Tokyo

^{*3} Faculty of Engineering, Nagoya University