High-precision mass measurements of ground and isomeric states of $^{97}\mathrm{Cd}$ and $^{99}\mathrm{In}$ using ZD MRTOF-MS

W. Xian, *1,*2,*3 M. Rosenbusch, *4 C. Fu,*1 M. Wada, *2,*5 H. Ishiyama, *4 D. Hou, *1,*2,*5 J. M. Yap, *1,*4 S. Zha, *1,*2 A. Takamine, *4,*6 V. H. Phong, *4 S. Nishimura, *4 T. T. Yeung, *4,*7 S. Iimura, *4,*8 P. Schury, *2 N. Fukuda, *4 Y. Hirayama, *2 Y. Ito, *9 S. Kimura, *2 K. Kusaka, *4 T. M. Kojima, *4 J. Lee, *1 H. Miyatake, *2 S. Michimasa, *4 T. Niwase, *6 M. Ohtake, *4 T. Sonoda, *4 H. Suzuki, *4 Y. Shimizu, *4 H. Takeda, *4 Y. Togano, *4 Y. X. Watanabe, *2 H. Wollnik, *10 Y. Yanagisawa, *4 and M. Yoshimoto *4

The doubly magic nucleus, ¹⁰⁰Sn, is pivoltal for understanding shell evolution and exotic nuclei magicity. The magicity of $^{100}\mathrm{Sn}$ and the nature of single-particle states of nuclei in the vicinity serve as a benchmark for nuclear shell models to constrain their configuration space. With identical proton and neutron numbers, $^{100}\mathrm{Sn}$ is an ideal system to investigate the impact of proton-neutron interaction on the nuclear structure of lighter nuclei, especially of those with $N = Z^{(1)}$ Moreover, the rapid proton capture process (rp-process) is predicted to end around nuclei with $A \approx 100$ and $N \approx Z^{(2)}$ Structure information of ¹⁰⁰Sn provides key information for understanding the nucleosynthesis in astrophysics. In 2024, in-beam γ -ray spectroscopy and joint mass spectrometry experiments (NP2112-RIBF211) were initiated to probe ¹⁰⁰Sn and its neighboring nuclei. Here, we present the identifications and mass measurements of ⁹⁷Cd, ⁹⁹In and their isomers by multi-reflection time-of-flight mass spectrograph at ZeroDegree spectrometer (ZD MRTOF-MS).

To produce radioactive ions (RIs) of interest, primary beams of ¹²⁴Xe, accelerated to 345 MeV/nucleon, bombarded a Be target at the entrance of BigRIPS. The secondary beams generated by the in-flight fragmentation were then accepted, identified, and transported to the focal plane F8, where they interacted with a liquid hydrogen target, producing excited 100 Sn through n, 2n knock-out reaction from $^{101,\,102}$ Sn, respectively, for γ -ray spectroscopic measurements. Following the reaction, the products and unreacted secondary beams were collected and transported to the end of the ZeroDegree spectrometer, where RIs were captured by an RFcarpet-type helium gas catcher (RFGC) and analyzed by ZD MRTOF-MS. By introducing an in-MRTOF deflector (IMD),³⁾ target ions of multiple mass numbers can be measured simultaneously, while excluding other mass numbers. Additionally, the implementation of a

Fig. 1. (a) TOF spectrum of ions with m/q = 48.5. (b) TOF spectrum of ions with m/q = 48.5, and 49.5.

 β -TOF detector⁴⁾ at the end of the ion flight path allows for the determination of time-of-flight (TOF) while simultaneously capturing subsequent β decay events. This facilitates the identification of RIs through coincident measurement of TOF and β decay.

During beam time, ZD MRTOF-MS operated at a high mass resolving power $m/\Delta m \approx 700$ k, achieved through sophisticated ion optics tuning.⁵⁾ The isomers of $^{97}\mathrm{Cd}$ and $^{99}\mathrm{In}$ were clearly separated from their ground states, with measurement uncertainties of approximately 20 keV, as shown in Fig. 1, along with ions from neighboring mass numbers. The observation of coincident β events from $^{97\mathrm{g,\,m}}\mathrm{Cd}$ and $^{99}\mathrm{In}$ further verifies the peak assignments for the corresponding RIs, while the β decay time spectrum helps to estimate the half-lives of the ground and isomeric states of ions of interest.

References

- 1) B. Cederwall et al., Nature **469**, 68–71 (2011).
- 2) H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001).
- M. Rosenbusch *et al.*, Nucl. Instrum. Methods Phys. Res. A **1047**, 167824 (2023).
- T. Niwase et al., Prog. Theor. Exp. Phys. 2023 031H01 (2023).
- 5) W. Xian, M. Rosenbusch *et al.*, RIKEN Accel. Prog. Rep. **54** (2021).

^{*1} Department of Physics, The University of Hong Kong

^{*2} Wako Nuclear Science Center (WNSC), IPNS, KEK

^{*3} Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University

^{*4} RIKEN Nishina Center

^{*5} Institute of Modern Physics, Chinese Academy of Sciences

^{*6} Department of Physics, Kyushu University

^{*7} Department of Physics, University of Tokyo

^{*8} Department of Physics, Rikkyo University

^{*9} Advanced Science Research Center, Japan Atomic Energy Agency

^{*&}lt;sup>10</sup> Department of Chemistry and Biochemistry, New Mexico State University