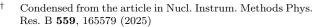
Activation cross sections of ${}^{7}\text{Li-induced reactions on }{}^{nat}\text{Ti:}$ Implications for monitor reactions †


M. Aikawa,*1,*2,*3 S. Goto,*3,*2 D. Gantumur,*3,*2 D. Ichinkhorloo,*4,*2 N. Ukon,*5,*2 N. Otuka,*6,*2 S. Takács,*7,*2 and H. Haba*2

Radionuclides can be produced in charged-particle-induced reactions for medical applications. Among the projectiles, ⁷Li may offer new pathways to producing medical radionuclides, e.g., ²¹¹Rn for the ²¹¹Rn/²¹¹At generator. ¹⁾ Practical production of ²¹¹Rn requires maximizing its yield while minimizing unnecessary by-products. For these requirements, the optimization of target thickness and beam parameters, which requires reliable monitor reactions, is essential. However, suitable monitor reactions for ⁷Li-induced reactions have not yet been identified. Therefore, we started a systematic study of potential monitor reactions for ⁷Li projectiles. ²⁾

Titanium is a target material for monitor reactions induced by some other charged particles. It is also considered a promising target for ⁷Li-induced monitor reactions. In a literature survey using the EXFOR library, we found an absence of experimental data on the cross sections of the reactions. Therefore, we conducted experiments with ⁷Li beams to determine the activation cross sections and physical thick target yields. The experimental yields were compared with calculated values derived from the measured cross sections to validate our results. The reactions were evaluated for their suitability for monitoring ⁷Li beam energy and intensity.

Three targets, comprising two for the excitation functions and one for the thick target yields, were irradiated at the AVF cyclotron at RIKEN. All experiments utilized 72-MeV $^7\mathrm{Li}$ beams and employed the stacked-foil activation technique. To identify the radioactive products, off-line γ -ray spectrometry was used.

Targets #1 and #2, which were prepared for the excitation function measurements, consisted of thin metallic foils of nat Ti (2.34 \pm 0.02 mg/cm²), nat Cu (4.49 \pm 0.04 mg/cm²), and 27 Al (1.21 \pm 0.01 mg/cm²). The targets were 17 sets of Cu-Al-Ti-Al and Ti-Al-Cu-Al foils. The 27 Al foils were interleaved to catch recoiled products from the adjacent nat Cu or nat Ti

^{*1} Faculty of Science, Hokkaido University

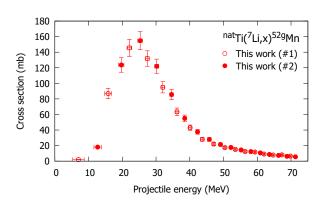


Fig. 1. Cross sections of nat Ti(7 Li, x) 52g Mn reaction.

foils. Target #3, for the thick target yields, consisted of seven thick nat Ti foils (22.7 \pm 0.2 mg/cm²).

All the targets were irradiated with $^7\mathrm{Li}$ beams for 60, 60, and 30 min, respectively. The average beam currents measured by the Faraday cups were 314 ± 16 nA (target #1), 321 ± 16 nA (target #2), and 309 ± 15 nA (target #3). The incident beam energy was 71.6 ± 0.4 MeV. The energy degradation in the targets was calculated using stopping powers derived using the SRIM code. 3

 γ rays emitted from the activated foils were measured using two high-purity germanium detectors. One detector was assigned to targets #1 and #3, and the other to targets #2 and #3. Each foil was measured three or four times to follow the decay of the reaction products. The nuclear data for the γ -ray spectrometry were retrieved from the online databases NuDat 3.0^4) and LiveChart.⁵⁾

Production cross sections for ^{54,52g}Mn, ^{51,49,48}Cr, ⁴⁸V, and ^{48,47,46}Sc were determined. The cross sections obtained using targets #1 and #2 agree with each other within the uncertainty. The physical thick target yields for ^{54,52g}Mn, ⁵¹Cr, ⁴⁸V, and ^{48,47,46}Sc were also determined using target #3. The yields were compared with the calculated values using the measured cross sections. The good agreement between them enhances the reliability of both the experimental cross sections and thick target yields.

The production cross sections of $^{52g}\mathrm{Mn}$ ($T_{1/2}=5.591$ d) derived from 744.23-keV ($I_{\gamma}=90.0\%$) γ rays are shown in Fig. 1. The properties of the excitation function indicate that the reaction is suitable for monitoring $^7\mathrm{Li}$ beams. In addition, the reactions producing $^{54}\mathrm{Mn}$ and $^{51}\mathrm{Cr}$ are also good candidates for monitor

^{*2} RIKEN Nishina Center

^{*3} Graduate School of Biomedical Science and Engineering, Hokkaido University

 $^{^{*4}\,\,}$ Nuclear Research Center, National University of Mongolia

^{*} Advanced Clinical Research Center, Fukushima Medical University

^{*6} Nuclear Data Section, International Atomic Energy Agency

^{*7} Institute for Nuclear Research (ATOMKI)

reactions.

References

- E. Maeda *et al.*, J. Radioanal. Nucl. Chem. **323**, 921 (2020).
- M. Aikawa *et al.*, Nucl. Instrum. Methods Phys. Res. B 554, 165441 (2024).
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B **268**, 1818 (2010).
- 4) National Nuclear Data Center, The NuDat 3.0 database, http://www.nndc.bnl.gov/nudat3/.
- 5) International Atomic Energy Agency, LiveChart of Nuclides, https://www-nds.iaea.org/livechart/.