Examination of supernova nucleosynthesis with CRIB: measurement of the $^{13}\mathrm{N}(\alpha,p)^{16}\mathrm{O}$ reaction

A. Psaltis,*¹ H. Yamaguchi,*² S. Hayakawa,*^{2,*3} S. Ahn,*⁴ S. Bae,*² V. Beaty,*¹ S. M. Cha,*⁴ K. Y. Chae,*⁵ S. Do,*⁶ G. M. Gu,*^{4,*5} S. Hanai,*² N. Imai,*² N. Iwasa,*⁷ D. Kahl,*⁸ A. Kim,*⁶ C. H. Kim,*⁵ S. H. Kim,*⁵ N. Kitamura,*² S. Kubono,*⁹ M. La Cognata,*¹⁰ M. La Commara,*¹¹ M. Lee,*¹ J. Li,*² F. L. Liu,*² E. Lopez-Saaverda,*¹² K. Okawa,*² R. G. Pizzone,*¹⁰ M. Sferrazza,*¹³ Y. Yamamoto,*² and Q. Zhang*^{2,*14}

Stars with initial masses exceeding $\sim 8\,M_{\odot}$ end their lives in core-collapse supernovae, producing radioactive isotopes, such as $^{44}\mathrm{Ti}$ and $^{56}\mathrm{Ni}$, via nuclear reactions in the ejected material. These isotopes, observed in supernova remnants, provide insights into explosion conditions. The $^{13}\mathrm{N}(\alpha,\,p)^{16}\mathrm{O}$ reaction has been identified as a bottleneck in explosive nucleosynthesis, influencing the yields of $^{44}\mathrm{Ti},\,^{56}\mathrm{Ni},$ and short-lived isotopes ($^{48}\mathrm{V},\,^{52}\mathrm{Mn},\,^{55}\mathrm{Fe}$) detectable by future X- and γ -ray missions. $^{1,2)}$

The $^{13}{\rm N}(\alpha,\,p)^{16}{\rm O}$ reaction, critical for core-collapse supernova nucleosynthesis (T=2-5 GK), remains largely unexplored in the relevant energy range. Two recent studies were attempted to address this gap: one study used a ($^7{\rm Li},\,t$) transfer to investigate mirror states in analog $^{17}{\rm O},^{3)}$ and the other study directly measured the reaction with an active-target system at center-of-mass energies $E_{c.m.} \sim 3.3-6$ MeV.⁴)

We performed a new direct measurement of $^{13}\mathrm{N}(\alpha,\,p)^{16}\mathrm{O}$ reaction with the low-energy radioactive ion beam facility CRIB⁵⁾ using thick-target in inverse kinematics (TTIK) method. We produced radioactive ¹³N beam using a primary ¹³C⁶⁺ ²⁰⁰ particle nA beam at 6.0 MeV/nucleon (78 MeV) from the AVF cyclotron and cryogenic hydrogen target with 300-Torr H₂ gas at an effective temperature of 90 K via ${}^{13}C(p, n){}^{13}N$ reaction in inverse kinematics. After the production target, the primary and secondary beams were separated using two electric dipoles and a velocity (Wien) filter. Close to the final focal plane, the secondary beam passed through a pair of position-sensitive Parallel-Plate Avalanche Counter (PPAC) detectors to track its position and intensity, event by event. The ¹³N beam had an average intensity of $I = 8 \times 10^5$ pps, which is

^{*2} Center for Nuclear Study, University of Tokyo

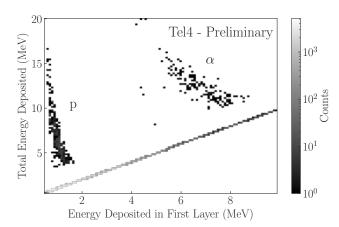


Fig. 1. ΔE -E plot from Telescope 4 ($\theta = 62^{\circ}$). The two particle groups—p & α —are clearly separated.

the highest recorded, with >90% purity. Finally, the $^{13}{\rm N}$ beam entered a helium-filled target chamber (P=250 Torr) which had a 10 $\mu{\rm m}$ Havar foil window to contain the gas in the chamber. The helium gas was sufficiently thick to completely stop the secondary beam, and thereby, can scan the excitation function of $^{17}{\rm F}$ at the center of mass energies between 1.5–6 MeV. We used five silicon telescopes to detect protons from $^{13}{\rm N}(\alpha,\,p)^{16}{\rm O}$ reaction and elastically scattered α -particles. Each telescope comprised ΔE and E layers with thicknesses of 41–300 $\mu{\rm m}$ and 1500 $\mu{\rm m}$, respectively. The ΔE layer featured an orthogonal, double-sided layout for x- and y-position determination

Figure 1 shows preliminary results from the telescope at $\theta=62^\circ$ relative to the beam direction, clearly identifying protons from the (α,p) reaction and elastically scattered α -particles. The next steps include reconstructing reaction positions within the target chamber and subtracting background events using argon gas data. These results will improve the $^{13}{\rm N}(\alpha,p)^{16}{\rm O}$ reaction rate and allow us to explore its role in core-collapse supernova nucleosynthesis.

References

- 1) S. Subedi et al., Astrophys. J. 898, 5 (2020).
- 2) K. Hermansen et al., Astrophys. J. 901, 77 (2020).
- 3) A. Meyer et al., Phys. Rev. C 102, 035803 (2020).
- 4) H. Jayatissa et al., Phys. Rev. C 105, L042802 (2022).
- Y. Yanagisawa *et al.*, Nucl. Instrum. Methods Phys. Res. A **539**, 74 (2005).

^{*3} National Institutes for Quantum Science and Technology

^{*4} Center for Exotic Nuclear Studies, Institute for Basic Science

^{*5} Department of Physics, Sungkyunkwan University

^{*6} Center for Extreme Nuclear Matters, Korea University

^{*7} Department of Physics, Tohoku University

^{*8} Facility for Rare Isotope Beams (FRIB)

^{*9} RIKEN Nishina Center

 $^{^{*10}}$ Laboratori Nazionali del Sud-INFN

 $^{^{*11}}$ University Federico II and INFN, Napoli

^{*12} Argonne National Laboratory

 $^{^{\}ast 13}$ Faculté des Sciences, Universitè libre de Bruxelles

^{*&}lt;sup>14</sup> School of Nuclear Science and Technology, Lanzhou University