Determination of half-life of ⁸⁹Rh by measuring in-flight decay

H. Suzuki,*¹ N. Fukuda,*¹ H. Takeda,*¹ Y. Shimizu,*¹ M. Yoshimoto,*¹ Y. Togano,*¹ Y. Yanagisawa,*¹ K. Kusaka,*¹ M. Ohtake,*¹ H. Sato,*¹ S. Michimasa,*¹ N. Fukunishi,*¹ and B. Blank*²

The in-flight decay of ⁸⁹Rh was measured to deduce its half-life using two-fold particle-identification (PID) sections, the second stage of the BigRIPS separator and the ZeroDegree spectrometer. Moreover, its production cross section was deduced.

Inconsistent results were observed for the half-life of $^{89}\text{Rh}.$ One was ${\gtrsim}1.5~\mu\text{s}$ estimated from Ref. 1). In this experiment at the LISE spectrometer in GANIL, 89 Rh was produced using a 112 Sn + nat Ni reaction and its yield was consistent with the yield systematics of the neighboring RIs. Thus, its half-life was considered to be comparable to or longer than the time of flight (TOF) in the spectrometer ($\sim 1.5 \mu s$). The other was <120 ns, invesitgated at RIBF, RIKEN.²⁾ Using a ¹²⁴Xe + Be reaction, no events of ⁸⁹Rh were obtained at F11, the final focal plane of the ZeroDegree spectrometer. The production yield at the F0 target was estimated from the yield systematics, and in-flight decay during the flight from F0 to F11 was assumed. Subsequently, the upper limit of the half-life was deduced to be 120 ns. Thus, direct measurement of the decay was required to determine the half-life.

We measured the in-flight decay of ⁸⁹Rh at RIBF. The proton-rich RI beams including ⁸⁹Rh were produced from a 120-particle nA 345-MeV/nucleon ¹²⁴Xe beam impinged on a 4-mm Be target. The fullystripped ⁸⁹Rh was identified³⁾ in the second stage of the BigRIPS. With a 4.9 hours primary-beam dose, 17 events were obtained as shown in Fig. 1. They were reidentified in the following sepctrometer, ZeroDegree, whether they maintained ⁸⁹Rh until F11 or decayed to ⁸⁸Ru by proton emissions. The PID method in the ZeroDegree spectrometer was basically the same with the one in the second stage. In the PID, the mass-tocharge ratios (A/q) could not be deduced for the events that $^{89}_{45}\text{Rh}$ decayed to $^{88}_{44}\text{Ru}$, because their magneticrigidity values changed before and after the decays. In contrast, the atomic number Z at F11 was properly deduced to be 44, because the velocity almost unchanged by the decay. Figure 2 shows the Z spectra of the all events and the ⁸⁹Rh events at F7. Among 17 events of ⁸⁹Rh at F7, eight events were located around Z =44, suggesting their decays to ⁸⁸Ru. The remaining nine events were ⁸⁹Rh until F11. From the numbers of ⁸⁹Rh nuclei at F7 and F11 and the γ -corrected TOF of 258 ns, its half-life was determined to be 281 \pm 101 ns (preliminary).

The production cross section of 89 Rh was deduced from its half-life, γ -corrected TOF from F0 to F7, the

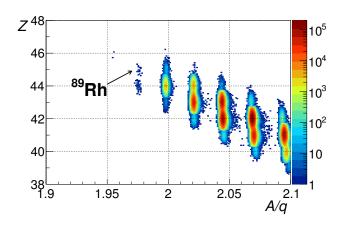


Fig. 1. (Preliminary) Z versus A/q PID plots in the second stage of the BigRIPS for ⁸⁹Rh produced by the reaction of ¹²⁴Xe + Be (4 mm) at 345 MeV/nucleon. Seventeen events of ⁸⁹Rh were obtained.

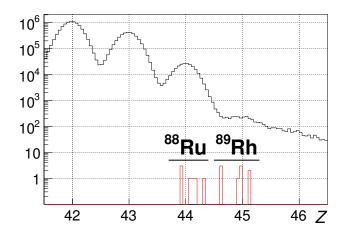


Fig. 2. (Preliminary) Z spectra in the ZeroDegree spectrometer for all events (black) and 89 Rh events at F7 (red). Till F11, eight nuclei of 89 Rh decayed to 88 Ru.

observed events at F7, and the transmission in the Bi-gRIPS. It was $(3.81^{+2.46}_{-0.80}) \times 10^{-10}$ mb (preliminary), and was $\sim 1/20$ of expected cross section from the systematics of the other isotopes with N=Z-1. This small cross section might cause the inconsistent short half-life estimated in the Ref. 2).

More elaborate analysis is now in progress.

References

- 1) K. Rykaczewski *et al.*, Phys. Rev. C **52**, R2310 (1995).
- 2) I. Čeliković et al., Phys. Rev. Lett. 116, 162501 (2016).
- N. Fukuda et al., Nucl. Instrum. Methods Phys. Res. B 317, 323 (2013).

^{*1} RIKEN Nishina Center

^{*2} LP2i Bordeaux