A study of ⁶He + p reaction: elastic scattering and neutron transfer reactions

Q. Zhang,*^{1,*2} M. Sferrazza,*³ H. Yamaguchi,*¹ S. Hayakawa,*¹ K. Okawa,*¹ P. Descouvemont,*³ D. S. Ahn,*⁴ S. Cherubini,*⁵ T. Chillery,*¹ M. La Cognata,*⁵ A. Di Pietro,*⁵ S. Etelaeniemi,*⁶ G. Gu,*⁷ S. Hanai,*¹ Y. Honda,*⁶ J. Hu,*⁸ J. Hwang,*⁴ N. Imai,*¹ T. Kawabata,*⁶ S. Kim,*⁷ C. Kim,*⁷ N. Kitamura,*¹ J. T. Li,*¹ Y. Y. Li,*⁸ F. L. Liu,*^{1,*9} S. Masuoka,*¹ G. Pizzone,*⁴ K. Sakanashi,*⁶ C. Soomi,*⁴ N. Tian,*⁸ T. S. Wang,*² and K. Yako*¹

The measurement of the $^6\mathrm{He}$ + p experiment at 8 MeV/nucleon in inverse kinematics at the CNS Radio-isotope Beam Separator (CRIB) was completed in Feb. 2024. The $^6\mathrm{He}(\mathrm{p},p)^6\mathrm{He}$, $^6\mathrm{He}(\mathrm{p},d)^5\mathrm{He}$ and $^6\mathrm{He}(\mathrm{p},t)^4\mathrm{He}$ were measured simultaneously in the angle range of 8° to 75° in the laboratory system, and a full description of the processes were obtained. In particular, the one-neutron and two-neutron transfer reactions provide valuable insights into the halo structure of $^6\mathrm{He}$. $^{1,2)}$

The detection setup was identical to the experiment in May 2023 described in a previous report.³⁾ The secondary beam ⁶He was produced by bombarding a cryogenic gas cell filled with deuterium using a ⁷Li³⁺ beam at 8.3 MeV/nucleon, with a maximum intensity of ~ 4.4 electric μA (e μA). The ⁶He beam energy at the CH₂ target was 7.28 MeV/nucleon, and the intensity reached to 6×10^5 cps with a purity of >87%, with the main contamination obtained from triton due to the same ratio of charge-to-mass. Two multi-wire drift chambers (MWDC)⁴⁾ were used to monitor the beam intensity⁵⁾ and track the beam position event by event. The tracking efficiencies of MWDCa (upstream) and MWDCb (downstream) were 90% and 95%, respectively, for the applied voltages of -895 V and -796 V. Six silicon telescopes were installed in the F3 chamber to detect the reaction products.

Figure 1 shows the energy versus laboratory angle of the protons measured at the telescopes, accumulated for 54 minutes using an intense ⁶He beam of 2.45×10^5 cps. The kinematical loci of protons calculated for several reactions are also shown in the figure. The locus of the elastic proton (p_0) scattering from ⁶He is clearly visible (solid curve). We also observe the inelastic protons (p_1) scattering from the ⁶He $(p, p_1)^6$ He, where ⁶He is at the first excited state $(J^{\pi} = 2^+, E_x = 1.8 \text{ MeV})$, as indicated by the dashed curve. The

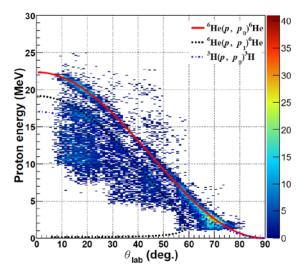


Fig. 1. Energy vs angle of the measured protons (at the telescopes) with the kinematical reaction curves of ${}^{6}\text{He}(\mathbf{p},p_{0}){}^{6}\text{He}$ (solid curve), ${}^{6}\text{He}(\mathbf{p},p_{1}){}^{6}\text{He}$ (dashed curve), and ${}^{3}\text{H}(\mathbf{p},p_{0}){}^{3}\text{H}$ (dashed-dotted curve).

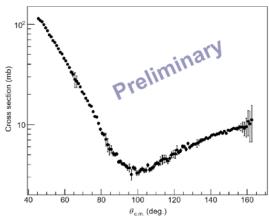


Fig. 2. Cross-section of the ${}^{6}\text{He}(p, p_0){}^{6}\text{He}$ reaction.

preliminary cross section of the elastic scattering was obtained by considering the geometry of the six telescopes, as shown in Fig. 2.

A detailed analysis is currently in progress. The elastic scattering cross section will be analyzed within the continuum-discretized coupled channels (CDCC) theory to provide the potential optical parameters for further analyses of the $^6{\rm He}({\rm p},t)^4{\rm He}$ reaction using the distorted wave Born approximation (DWBA) method.

References

- 1) L. Giot et al., Phys. Rev. C 71, 064311 (2005).
- R. Wolski et al., Phys. Lett. B 467, 8 (1999).

^{*1} Center for Nuclear Study, University of Tokyo

^{*2} School of Nuclear Science and Technology, Lanzhou University

^{*3} Department of Physics, Université Libre de Bruxelles

^{*4} Center for Exotic Nuclear Studies, Institute for Basic Science

 $^{^{*5}}$ INFN - Laboratori Nazionali del Sud

^{*6} Department of Physics, Osaka University

^{*7} Department of Physics, Sungkyunkwan University

^{*8} Institute of Modern Physics, Chinese Academy of Sciences

^{*9} Department of Nuclear Physics, China institute of atomic energy

- 3) Q. Zhang, M. Sferrazza $et\ al.,$ RIKEN Accel. Prog. Rep. ${\bf 57},$ 25 (2024).
- 4) H. Miya *et al.*, Nucl. Instrum. Methods Phys. Res. B **317**, 701 (2013).
- 5) S. Hayakawa et al., CNS Annual report 2023, (2024).