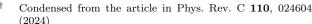
Investigation of the determination of nuclear deformation using high-energy heavy-ion scattering[†]

S. Watanabe, *1,*2 T. Furumoto, *3 W. Horiuchi, *4,*5,*2,*6 T. Suhara, *7 and Y. Taniguchi*8,*2,*9


Deformation of atomic nuclei is a fundamental characteristic that influences nuclear structure and reaction dynamics. Accurate determination of the quadrupole deformation length (δ_2) is essential for understanding nuclear behavior, as it reflects collective properties of nucleus. Conventionally, δ_2 has been determined using the deformed potential (DP) model,¹⁾ which assumes the relation:

$$\delta_2 = \delta_2^{\text{(pot)}},\tag{1}$$

where $\delta_2^{(\text{pot})}$ denotes the deformation length of the nuclear potential. However, this assumption has no basis and is questionable because $\delta_2^{(\text{pot})}$ includes the information on the projectile and target nuclei, and also the nuclear force. Based on this unestablished assumption (1), δ_2 has been experimentally determined via the DP model.

This study aimed to investigate the validity of the DP model by systematically comparing $\delta_2^{(\text{pot})}$ with δ_2 directly derived from the deformed density (DD) model. The DD model is based on the double-folding model, and the diagonal and coupling potentials are constructed by folding the effective nucleon-nucleon interaction with the projectile and target densities. The coupling potentials are calculated using the transition densities, which reflect the deformation effect (δ_2). Thus, the DD model enables us to extract δ_2 directly as opposed to via $\delta_2^{(\text{pot})}$.

In this study, we calculated the inelastic scattering cross sections for the 2_1^+ state of $^{12}\mathrm{C}$, denoted as $\sigma(2_1^+)$, using the DD and DP models. We analyzed $\sigma(2_1^+)$ for $^{12}\mathrm{C}$ projectiles on $^{12}\mathrm{C}$, $^{16}\mathrm{O}$, $^{40}\mathrm{Ca}$, and $^{208}\mathrm{Pb}$ targets in a wide range of the incident energies ($E/A=50-400~\mathrm{MeV}$). We first assume the deformed density characterized by $\delta_2=-1.564~\mathrm{fm}$. Then, we can construct the diagonal and coupling potentials microscopically via the folding procedure. Once these potentials are determined, $\sigma(2_1^+)$ can be calculated in the standard Coupled-Channel framework. The result of the DD model was used as a reference calculation in this study. By contrast, in the DP model, we derived the coupling

^{*1} National Institute of Technology (KOSEN), Gifu College

Fig. 1. Deformation length of the nuclear potential $\delta_2^{(\text{pot})}$ derived from ^{12}C inelastic scattering cross sections at E/A = 50--400 MeV, divided by $\delta_2 = -1.564$ fm. The filled circles, open triangles, open squares, and open circles represent the results for the scattering by ^{12}C , ^{16}O , ^{40}Ca , and ^{208}Pb targets, respectively.

potential by assuming a deformed potential characterized by $\delta_2^{(\text{pot})}$. The value of $\delta_2^{(\text{pot})}$ was determined to reproduce the $\sigma(2_1^+)$ calculated with the DD model. Finally, we systematically compared $\delta_2^{(\text{pot})}$ with δ_2 in high-energy heavy-ion scattering and elucidated the relationship between them.

Figure 1 shows the energy dependence of $\delta_2^{(pot)}$, derived from $\sigma(2_1^+)$ calculated using the DD model. It should be noted that the values of $\delta_2^{(\text{pot})}$ were divided by δ_2 . The filled circles, open triangles, open squares, and open circles represent the results for the scattering of ¹²C by ¹²C, ¹⁶O, ⁴⁰Ca, and ²⁰⁸Pb targets, respectively. The results indicate that $\delta_2^{(pot)}$ was systematically underestimated by approximately 20-40%, and exhibits strong dependencies on incident energy and target mass. Notably, $\delta_2^{(\text{pot})}$ became smaller as the target mass increased. This significant discrepancy raises questions about the reliability of determining δ_2 from $\delta_2^{(\text{pot})}$ in high-energy heavy-ion scattering. A systematic underestimation of the quadrupole deformation length is thus expected in studies relying on the DP model's assumption of $\delta_2 = \delta_2^{\text{(pot)}}$.

Reference

 D. T. Khoa and G. R. Satchler, Nucl. Phys. A 668, 3 (2000).

^{*2} RIKEN Nishina Center

^{*3} College of Education, Yokohama National University

^{*4} Department of Physics, Osaka Metropolitan University

^{*5 (}NITEP), Osaka Metropolitan University

^{*6} Department of Physics, Hokkaido University

^{*7} National Institute of Technology (KOSEN), Matsue College

^{*8} Department of Computer Science, Fukuyama University

^{*9} National Institute of Technology (KOSEN), Kagawa College