Consideration of the production method for Auger electron emitter ⁷⁷Br using the CCONE-based calculation system

S. Sakai,** H. Otsu,** O. Iwamoto,** N. Iwamoto,** S. Nakayama,** T. Fukahori,**,** H. Kikunaga,** and T. Yokokita**

Nuclear medicine therapy using nuclides emitting α rays and Auger electrons has recently attracted attention.¹⁾ The SEKIGUCHI Three-Nucleon Force Project²⁾ aims to realise nuclear medicine therapy using the Auger electron emitter ⁷⁷Br, which has a halflife of 2.38 days³⁾ and is readily available for medical use. In addition, ⁷⁷Br is a Group 17 (halogen) element, such as $^{211}\mathrm{At},$ which is in rapidly increasing demand as an α ray emitter for nuclear medicine therapy. Further, its similar chemical properties are useful in understanding differences in biological effects between α rays and Auger electrons. However, reactions and pathways for producing ⁷⁷Br are diverse and the optimal production method is yet to be established. Therefore, we considered the optimal production method for $^{77}\mathrm{Br}$ using the CCONE-based calculation system.⁴⁾

The reactions that maximize the ⁷⁷Br production cross-section and ⁷⁷Br thick target yield⁵⁾ (TTY, yield for a target of infinite thickness) were confirmed under the following conditions.

- Projectile: $n, p, d, \alpha, \text{ and } \gamma$
- Kinetic energy of projectile (E_{proj}) : 1–50 MeV
- Target: enriched target

TTY is obtained using

$$TTY = \int_0^{E_{\text{proj}}} \frac{\sigma(E)}{S(E)} dE, \qquad (1)$$

where $\sigma(E)$ and S(E) represent the nuclide production cross section and stopping power, respectively. The stopping power is calculated using stopping and range of ions in matter (SRIM).⁶⁾ The TTY is calculated only when the projectile is p, d, or α . Consequently, the reaction that maximizes the ⁷⁷Br production cross-section is $\alpha + ^{75}$ As $(E_{\rm proj} \sim 25 \ {\rm MeV})$. Although the reaction maximizing ⁷⁷Br TTY is found to be $p + ^{78}$ Se $(E_{\rm proj} \gtrsim 22 \ {\rm MeV})$, the focus will be on $p + ^{78}$ Se.

All residual nuclei other than 77 Br that can be produced by $p + ^{78}$ Se are confirmed under the following conditions.

- The maximum nuclide production cross-section exceeds 1 Mb in the CCONE calculation.
- EXFOR⁷⁾ contains experimental values of the nuclide production cross-section.

Consequently, we found that 69,70 Ga, $^{72-74}$ Ge, $^{72-77}$ As, $^{74-77}$ Se, and 75,76,78,79 Br can be produced besides 77 Br. Assuming that 69,70 Ga, $^{72-74}$ Ge, $^{72-77}$ As, and $^{74-78}$ Se with an atomic number different from 77 Br can be chemically separated, and the production yields of 75,76,78,79 Br can become an issue. However, when $E_{\rm proj}$ is 23 MeV, only the production yields of 78,79 Br become an issue because the threshold energies of 75 Br and 76 Br are 33.34 and 23.97 MeV, respectively.8)

The time variation of the nuclide production yield $N(t)^{5}$ was confirmed to estimate the number of 78,79 Br produced. N(t) is defined as

$$N(t) = \frac{I_0 y T_h}{\ln 2} \left\{ 1 - \exp\left(-\frac{\ln 2}{T_h} t\right) \right\},\tag{2}$$

where I_0 , y, $T_{\rm h}$, and t represent the beam intensity [1/h] (this time we set $I_0=1$), TTY at a given $E_{\rm proj}$, half-life [h], and beam irradiation time [h], respectively. For stable nuclei, $N(t)=I_0yt$. Table 1 indicates that the ^{77–79}Br TTYs by $p+^{78}{\rm Se}$ ($E_{\rm proj}=23~{\rm MeV}$), half-life of ^{77–79}Br,³⁾ and ^{77–79}Br production yields just after 24 hours of irradiation. Table 1 shows that the ^{78,79}Br production yields are less than 1% of the ⁷⁷Br production yield. In conclusion, $p+^{78}{\rm Se}$ ($E_{\rm proj}\sim23~{\rm MeV}$) seems to be optimal.

Table 1. $^{77-79}$ Br TTYs by $p + ^{78}$ Se $(E_{proj} = 23 \text{ MeV})$ (y), half-life of $^{77-79}$ Br $^{3)}$ $(T_{\rm h})$, and $^{77-79}$ Br production yields just after 24 hours of irradiation $(N \ (t = 24 \ \text{h}))$.

Nuclide	y	$T_{ m h}$	N (t = 24 h)
$^{77}\mathrm{Br}$	3.401×10^{-3}	2.38 d	7.081×10^{-2}
$^{78}{ m Br}$	2.609×10^{-3}	$6.45 \min$	4.046×10^{-4}
$^{79}{ m Br}$	1.176×10^{-5}	-	2.880×10^{-4}

References

- 1) D. Filosofov et al., Nucl. Med. Biol. 94-95, 1 (2021).
- 2) JST ERATO Three-Nucleon Force Project, https://www.jst.go.jp/erato/sekiguchi/.
- 3) NuDat 3.0, https://www.nndc.bnl.gov/nudat3/.
- 4) O. Iwamoto et al., Nucl. Data Sheets 131, 259 (2016).
- 5) N. Otuka, S. Takács, Radiochim. Acta 103, 1 (2015).
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B **268**, 1818 (2010).
- IAEA Nuclear Data Services, https://www-nds.iaea. org/exfor/.
- 8) Q-Value Calculator (QCalc), https://www.nndc.bnl.gov/qcalc/.

^{*1} RIKEN Nishina Center

^{*2} Nuclear Science and Engineering Center, Japan Atomic Energy Agency

^{*3} Research Center for Electron Photon Science, Tohoku University