Development of a CCONE-based calculation system contributing to the consideration of nuclide production methods

S. Sakai,*1 H. Otsu,*1 O. Iwamoto,*2 N. Iwamoto,*2 S. Nakayama,*2 H. Kikunaga,*3 and T. Fukahori*1,*2

The SEKIGUCHI Three-Nucleon Force Project¹⁾ is developing a system for calculating and illustrating nuclide production cross-sections from various nuclear reactions to contribute to the consideration of nuclide production methods useful in the field of applied science. An overview of this system is given below.

- The projectile $(n, p, d, t, {}^{3}\text{He}, \alpha, \text{ and } \gamma)$, kinetic energy of the projectile (E_{proj}) , target (including natural compositions), and nuclide produced can be selected.
- The nuclear reaction model calculation code CCONE²⁾ (default calculation) is used for calculating nuclide production cross-sections.
- The CCONE calculated values are converted to the ENDF-6 format³⁾ for comparison with existing nuclear data libraries.
- The sum of multiple nuclide production cross-sections (e.g., $^{77}\mathrm{Br} + ^{77}\mathrm{Kr}$ (decays to $^{77}\mathrm{Br}$ with a half-life of 1.24 hours⁴⁾)) can also be output.

This system can calculate the thick target yield⁵⁾ (TTY), which is the yield for a target of infinite thickness. TTY is calculated by

$$TTY = \int_0^{E_{\text{proj}}} \frac{\sigma(E)}{S(E)} dE, \tag{1}$$

where $\sigma(E)$ and S(E) represent the nuclide production cross-section and stopping power, respectively. The stopping power is calculated using stopping and range of ions in matter (SRIM).⁶⁾ TTY is only calculated if the projectile is a charged particle. In addition, this system can confirm all residual nuclei that can be produced by a nuclear reaction under the following conditions.

- The maximum nuclide production cross-section exceeds 1 Mb in the CCONE calculation.
- EXFOR⁷⁾ contains experimental values of the nuclide production cross-section.

As an example, this system is applied to 211 At, which is in rapidly increasing demand as an α ray emitter for nuclear medicine therapy.⁸⁾ First, the reaction maximizing the 211 At production cross-section was confirmed under the following conditions.

• Projectile: n, p, d, α , and γ

• E_{proj} : 1–50 MeV

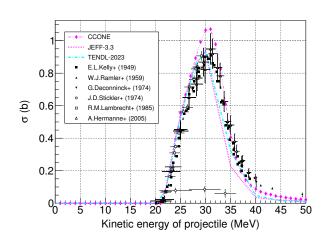


Fig. 1. 211 At production cross-section by $\alpha + ^{209}$ Bi. Nuclear data library values are given for reference. $^{9,10)}$ Experimental values are indicated by black symbols.

• Target: natural element target

As triton and $^3\mathrm{He}$ are practically difficult to use for projectiles, they have been excluded from this calculation. Consequently, the reaction that maximizes the $^{211}\mathrm{At}$ production cross-section is found to be $\alpha + ^{209}\mathrm{Bi}$ ($E_\mathrm{proj} \sim 31$ MeV). Figure 1 shows the $^{211}\mathrm{At}$ production cross-section by $\alpha + ^{209}\mathrm{Bi}$. In addition, we found that $^{206,\,207,\,208,\,210}\mathrm{Bi}$, $^{208-212}\mathrm{Po}$, and $^{208,\,209,\,210,\,212}\mathrm{At}$ can be produced by $\alpha + ^{209}\mathrm{Bi}$ other than $^{211}\mathrm{At}$.

References

- JST ERATO Three-Nucleon Force Project, https://www.jst.go.jp/erato/sekiguchi/.
- 2) O. Iwamoto et al., Nucl. Data Sheets 131, 259 (2016).
- D. A. Brown (editor), CSEWG Document ENDF-102, Report BNL-224854-2023-INRE, Git Revision SHA1: 3576914, Brookhaven National Laboratory (2023).
- 4) NuDat 3.0, https://www.nndc.bnl.gov/nudat3/.
- 5) N. Otuka, S. Takács, Radiochim. Acta 103, 1 (2015).
- J. F. Ziegler *et al.*, Nucl. Instrum. Methods Phys. Res. B **268**, 1818 (2010).
- IAEA Nuclear Data Services, https://www-nds.iaea. org/exfor/.
- Y. Feng, M. R. Zalutsky, Nucl. Med. Biol. 100-101, 12 (2021).
- A. J. M. Plompen *et al.*, Eur. Phys. J. A **56**, 181 (2020).
- 10) A. J. Koning et al., Nucl. Data Sheets 155, 1 (2019).

^{*1} RIKEN Nishina Center

^{*2} Nuclear Science and Engineering Center, Japan Atomic Energy Agency

^{*3} Research Center for Electron Photon Science, Tohoku University