Beam background analysis with the sPHENIX-INTT detector

T. Kato,*1,*2 Y. Akiba,*2 J. Bertaux,*2,*3 D. Cacace,*4 R. G. Cecato,*5 A. Enokizono,*2 Y. Fujino,*1,*2 M. Fujiwara,*2,*6 T. Hachiya,*2,*6 T. Harada,*1,*2 S. Hasegawa,*7 B. Hong,*8 J. Hwang,*2,*8 M. Ikemoto,*2,*6 Y. Ishigaki,*2,*6 M. Kano,*2,*6 T. Kikuchi,*1,*2 T. Kondo,*9 T. Kumaoka,*2 C. M. Kuo,*10 R. S. Lu,*11 N. Morimoto,*2,*6 I. Nakagawa,*2 R. Nouicer,*4 G. Nukazuka,*2 I. Omae,*2,*6 R. Pisani,*4 Y. Sekiguchi,*2 C. W. Shih,*2,*10 M. Shimomura,*6 R. Shishikura,*1,*2 W. C. Tang,*2,*10 H. Tsujibata,*2,*6 W. Xie,*3 and H. Yanagawa*1,*2

The sPHENIX experiment at Brookhaven National Laboratory launched in 2023 with Au + Au collisions at $\sqrt{s_{\mathrm{NN}}} = 200$ GeV, following successful detector commissioning. Three most inner detectors, MVTX, INTT,¹⁾ and TPC forming the tracking system of sPHENIX frequently observed some trajectories along the beam direction (z-axis) during the commissioning as well as throughout production run of p+p in 2024. This disrupts the stable operation for all trackers.²⁾ These trajectories appear as the series of hits (cluster) connected in z-axis maintaining overlapping hits in azimuthal (ϕ) direction from one z segment to the next, as shown in Fig. 1.

The INTT strip-type silicon sensor comprises of strip width of 78 μ m in ϕ and either 16 or 20 mm length in z-direction. It is oriented towards the collision point in the barrel shaped configuration. The trajectory from the ideal collision point near z=0 should traverse the sensor nearly perpendiculary, preventing formation of multiple hit cluster in z-direction, unlike the hit pattern shown in Fig. 1. These true hits from collision can possibly form a multiple z-cluster size by the accidental coincidence between adjacent hits in z-segment, as shown in Fig. 2 (top). The accidental effect was estimated by the full Monte-Carlo (MC) based on the GEANT for the INTT and the HIJING³⁾ models as an event generator. As the z-size of the cluster increases, the probability decreases by an order of magnitude, as shown in red histogram.

However, the observed data (green) shows distinctively thicker tail towards the larger z-cluster size, which cannot be reproduced by the simple accidental MC. To identify the origin of the thick tail in data, the correlation plot between the z-cluster size and the collision vertex of the event is presented in Fig. 2 (bottom). As can be observed, the population of large-z-size clusters is significantly smaller in the region where

- *1 Department of Physics, Rikkyo University
- *2 RIKEN Nishina Center
- *3 Department of Physics and Astronomy, Purdue University
- *4 Physics Department, Brookhaven National Laboratory
- *5 Instrumentation Division, Brookhaven National Laboratory
- *6 Department of Mathematical and Physical Sciences, Nara Women's University
- *7 Advanced Science Research Center, Japan Atomic Energy Agency
- *8 Department of Physics, Korea University
- *9 Information Systems Technology Division, Tokyo Metropolitan Industrial Technology Research Institute
- *10 Department of Physics, National Central University
- *11 Department of Physics, National Taiwan University

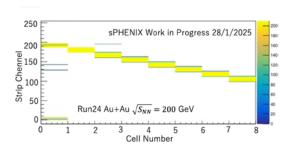


Fig. 1. INTT hit map of of a given event in particular acceptance of the INTT detector observed in Run24 Au + Au collision. The vertical and horizontal axis depict hit channels in ϕ and segmentation cells in z direction. The color coordinate of hits represents energy loss of a hit.

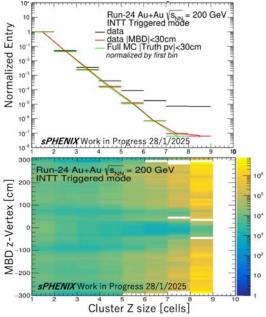


Fig. 2. (Top) z-cluster size distribution for the MC (red), the data (green), the data with z-vertex cut (black). (Botttom) The collision z-vertex position (horizontal axis) dependence of the z-cluster size (vertical axis).

the vertex z is within 30 cm. When the event selection of $|z_{\rm vertex}| < 30$ cm is applied, the data histogram (black) was accurately reproduced by the MC in Fig. 2 (top). This study provides insights for better operation of other trackers.

References

- 1) Y. Akiba et al., RIKEN Accel. Prog. Rep. 57, S1 (2023).
- 2) A. Enokizono et al., int the report.
- X. -N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991).