In-beam γ -ray spectroscopy of 100 Sn

X. Liu, *1,*2 M. L. Cortés, *2 T. Gao, *1 J. Lee, *1 P. Doornenbal, *2 W. Marshall, *2,*3 M. Kurata-Nishimura, *2 H. Otsu, *2 and S. Kovama *2

The heaviest self-conjugate nucleus, ¹⁰⁰Sn, has long attracted attention due to its unique nucleon numbers for protons and neutrons on the proton drip-line and the path of the astrophysical rapid proton capture process. Investigating the magicity of ¹⁰⁰Sn and the single-particle structure of its neighboring nuclei is crucial for advancing our understanding of nuclear forces and nucleosynthesis. Currently, $^{100}\mathrm{Sn}$ is best reached at in-flight separation facilities through the fragmentation of a ¹²⁴Xe beam. The decay properties of the ¹⁰⁰Sn have been studied in detail at GSI, NSCL, and RIBF. $^{1-3)}$ To further explore its excited states and mass properties, experiment NP2112-RIBF211, designed for simultaneous in-beam γ -ray and mass spectroscopy of ¹⁰⁰Sn, was conducted in June 2024. In this report, the in-beam γ -ray spectroscopy part of the experiment will be briefly introduced.

In the experiment, a ¹²⁴Xe primary beam at 345 MeV/nucleon was provided by SRC with an average intensity of 120 particle nA. The primary beam was directed onto a 4-mm-thick ⁹Be target, producing neutron-deficient tin isotopes. The BigRIPS separator was tuned to center on ¹⁰¹Sn, while simultaneously accepting ¹⁰²Sn. At the F8 focal plane, the average beam intensities of ¹⁰¹Sn and ¹⁰²Sn were approximately 1.6 pps and 35 pps, respectively. The layout of the in-beam setup at F8 is shown in Fig. 1. A 35-mm-thick CRYPTA liquid hydrogen target⁴⁾ was employed to induce the 1n- and 2n-removal reactions from $^{101}\mathrm{Sn}$ and $^{102}\mathrm{Sn}$. The beam energies before and after the target were approximately 210 MeV/nucleon and 140 MeV/nucleon, respectively. The γ rays emitted in-flight from the reaction products were detected using the high-efficiency DALI2⁺ array.⁵⁾ The beam particles and reaction residues were identified in BigRIPS and ZeroDegree spectrometers on an event-byevent basis via the $B\rho$ -ToF- ΔE method.

The particle identification (PID) of BigRIPS and ZeroDegree is shown in Fig. 2. The ZeroDegree PID was obtained after selecting $^{101}\mathrm{Sn}$ and $^{102}\mathrm{Sn}$ in BigRIPS (without DALI2⁺ γ -ray gate). Over the 205 hours of data acquisition, around $1000^{-100}\mathrm{Sn}$ nuclei were identified from the $^{101}\mathrm{Sn}(p,pn)^{100}\mathrm{Sn}$ and $^{102}\mathrm{Sn}(p,p2n)^{100}\mathrm{Sn}$ knockout reactions. Detailed analyses of γ -ray spectroscopy and cross sections are still on-going.

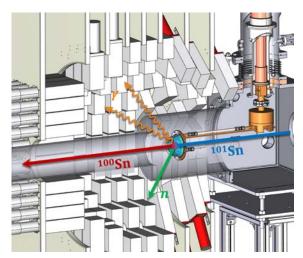


Fig. 1. Layout of the setup for in-beam γ -ray spectroscopy at F8 with a diagram of the $^{101}{\rm Sn}(p,pn)^{100}{\rm Sn}$ reaction in the liquid hydrogen target.

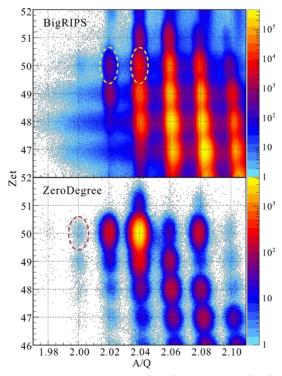


Fig. 2. Particle identification (PID) of BigRIPS (top) and ZeroDegree (bottom). $^{101,\,102}$ Sn in BigRIPS and 100 Sn in ZeroDegree are circled by dotted lines.

References

- 1) C. B. Hinke et al., Nature 486, 341 (2012).
- 2) D. Bazin et al., Phys. Rev. Lett. 101, 252501 (2008).
- 3) D. Lubos et al., Phys. Rev. Lett. 122, 222502 (2019).
- 4) X. Liu et al., submitted to RIKEN Acce. Prog. Rep.
- I. Murray et al., RIKEN Acce. Prog. Rep. 51, 158 (2018).

^{*1} Department of Physics, The University of Hong Kong

^{*2} RIKEN Nishina Center

^{*3} School of Physics, Engineering and Technology, The University of York