Laser spectroscopy of triply charged ²²⁹Th isomer for a nuclear clock[†]

A. Yamaguchi, *1,*2,*3 Y. Shigekawa, *4 H. Haba, *4 H. Kikunaga, *4,*5 K. Shirasaki, *6 M. Wada, *7 and H. Katori *1,*2,*8

The low-energy nuclear isomer of ²²⁹Th (^{229m}Th) can be excited from the nuclear ground state (^{229g}Th) using a vacuum ultraviolet laser, allowing for direct high-precision laser spectroscopy of the atomic nucleus. A nuclear clock based on the resonance frequency of this nuclear transition is expected to outperform current atomic clocks based on atomic electronic transitions. ^{1,2)} ²²⁹Th nuclear clocks have also been proposed for use in the search for new physics, such as dark matter and variations in the fine structure constant. ³⁾

A ²²⁹Th ion in a trap is a suitable platform for an accurate nuclear clock, because the ion can be confined in an isolated environment.²⁾ In contrast to ions in other charge states, triply charged ²²⁹Th (²²⁹Th³⁺) possesses closed electronic transitions required for laser cooling, laser induced-fluorescence detection, and state-preparation of ions. In this study, we report the trapping of the triply charged ²²⁹Th isomer and determination of its nuclear decay lifetime, which is essential to specify the intrinsic linewidth of the nuclear-clock transition.

Figure 1 shows a schematic of our apparatus to trap $^{229}\mathrm{Th^{3+}}$ ions. As an ion source, we use a uranium-233 ($^{233}\mathrm{U}$). The $^{229}\mathrm{Th}$ ions can be obtained as recoil ions from an α -decay of $^{233}\mathrm{U}$. The $^{229}\mathrm{Th}$ ions are cooled by helium buffer gas (2 kPa). In this buffer gas cooling process, the charge state of $^{229}\mathrm{Th}$ ions is prepared to be 3+ by charge exchange collisions. These recoil ions are extracted by a radio-frequency carpet (an ion collector), $^{4)}$ transported by a quadrupole ion guide, and captured by a linear Paul trap. From the $^{233}\mathrm{U}$ source, the $^{229\mathrm{m}}\mathrm{Th^{3+}}$ ions can be obtained with a branching ratio of approximately 2%. $^{5)}$

Figure 2 (left) shows electronic levels of Th³⁺ relevant to this study. We use three transitions: ${}^2F_{5/2} \leftrightarrow {}^2D_{3/2}$ (1088 nm), ${}^2F_{5/2} \leftrightarrow {}^2D_{5/2}$ (690 nm) and ${}^2F_{7/2} \leftrightarrow {}^2D_{5/2}$ (984 nm). The 1088-nm transition and the 690-nm + 984-nm transitions are the two closed electronic transitions. The branching ratios from ${}^2D_{5/2}$ to ${}^2F_{5/2}$ and ${}^2F_{7/2}$ are calculated to be 12% and 88%, respectively. We performed saturated absorption spectroscopy, where the 1088-nm laser burned

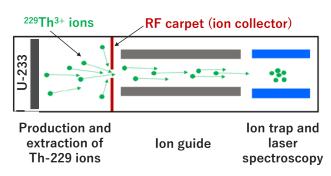


Fig. 1. A schematic of ²²⁹Th³⁺ ion trap system. The ²²⁹Th³⁺ ions from the ²³³U source are collected by an RF carpet, transported by an ion guide, and captured by an ion trap where laser spectroscopy is performed.

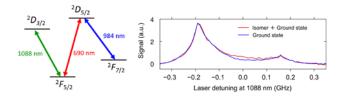


Fig. 2. (Left) Electronic level structure of a triply charged thorium ion relevant to this study. (Right) The signal from ^{229m}Th³⁺ ions can be extracted as a difference between signals from ions in the isomer and nuclear ground state (red) and those from the nuclear ground state (blue).

a hole in the velocity distribution of the ions in the ${}^2F_{5/2}$ state. The 690-nm and 984-nm transitions were used to detect ions via laser-induced fluorescence at 984 nm.

To selectively detect signals from ^{229m}Th³⁺ ions in a trap, we developed a nuclear-state-selective spectroscopy technique. Here, we use two different 984nm laser frequencies to detect ions. With one frequency, $^{229\mathrm{g}}\mathrm{Th}^{3+}$ ions mainly emit fluorescence. With the other 984-nm laser frequency, both ^{229g}Th³⁺ and $^{229\mathrm{m}}\mathrm{Th^{3+}}$ ions emit fluorescence. The signal from $^{229\mathrm{m}}\mathrm{Th^{3+}}$ ions can be extracted by taking the difference between them (Fig. 2 (right)). By measuring the decay of signals from ^{229m}Th³⁺, we determined its nuclear decay half-life to be $1400 \ (+600/-300)$ s. This corresponds to $80(20) \mu Hz$ in terms of the natural linewidth of the nuclear transition, which is more than an order of magnitude narrower than the linewidth of state-of-the-art ultrastable lasers.⁶⁾ This result offers a key parameter for the ²²⁹Th³⁺ nuclear clock and its applications in the search for new physics.

[†] Condensed from the article in Nature **629**, 62 (2024)

^{*1} Quantum Metrology Laboratory, RIKEN

^{*2} RIKEN Center for Advanced Photonics

^{*3} PRESTO, Japan Science and Technology Agency

^{*4} RIKEN Nishina Center

Esearch Center for Accelerator and Radioisotope Science, Tohoku University

^{*6} Institute for Materials Research, Tohoku University

^{*7} Wako Nuclear Science Center (WNSC), IPNS, KEK

^{*8} Department of Applied Physics, Graduate School of Engineering, University of Tokyo

References

- 1) E. Peik, C. Tamm, Europhys. Lett. 61, 181 (2003).
- C. J. Campbell *et al.*, Phys. Rev. Lett. **108**, 120802 (2012).
- 3) M. S. Safronova *et al.*, Rev. Mod. Phys. **90**, 025008 (2018).
- M. Wada et al., Nucl. Instrum. Methods Phys. Res. B 204, 570 (2003).
- 5) J. Thielking et al., Nature **556**, 321 (2018).
- 6) W. Zhang et al., Phys. Rev. Lett. 119, 243601 (2017).