RIKEN Accelerator Progress Report

1990

vol. 24
CONTENTS

I. INTRODUCTION .. 1

II. OPERATION OF ACCELERATORS

1. RRC Operation .. 3
2. RILAC Operation .. 5
3. AVF Cyclotron Operation .. 6
4. Cyclotron Operation .. 7
5. Tandetron Operation ... 8

III. RESEARCH ACTIVITIES

1. Nuclear Physics

1. Measurement of Total Interaction Cross Section for 11Li+12C at 45 MeV/u .. 9
2. Three α Disintegration of 12C in the Field of 208Pb Nucleus at 35 MeV/u .. 11
3. Coulomb Breakup Reaction of 90 MeV/u 14O .. 12
4. Tensor Analyzing Powers of 1H($d,^3$He)n Reaction at 200 MeV 13
5. Polarization Measurement of 12B and 13B in the Reaction 15N + 197Au at 112 MeV/u ... 14
6. Negative Pion Production in Subthreshold Nuclear Collisions 15
7. Target Dependence of Surface Muon Yields in Heavy Ion Reactions 16
8. Identification of Z near 30 Nuclei .. 17
9. First Observation of a Proton-Rich Isotope 65As .. 18
10. Coulomb Excitation of Unstable Nucleus 76Kr ... 19
11. Isomer Decay of 136Ce Studied by GARIS ... 20
12. γ Vibrational States in 164Dy .. 21
14. Nuclear Polarization of 33Si with Optical Pumping in Solids 23
15. Cross Sections of 209Bi(40Ar,axn)$^{245-5}$Es Reactions 25
17. Yields of Long-Lived Isotopes around $A=169$ Produced in the 14N + 181Ta Reaction at $E_{\gamma N}=35$ MeV/u .. 27
18. Dynamical Collective Properties of Nuclei at Finite Temperature 28
19. Dissociation Cross Sections of 11Li .. 29
20. Induced Fission Studied with a Multi-Dimensional Langevin Equation .. 30
21. Approximate Ground State of the Lipkin Model Hamiltonian in Density-Matrix Formalism .. 31
22. Energy and Baryon Number Densities in Ultrarelativistic Heavy Ion Collisions .. 32

2. Atomic and Solid-State Physics

1. Ionization of Helium Atoms by Proton Impact .. 33
2. Atomic Effects on Nuclear Beta Decay .. 34
3. Electron Screening in the d\textit{tu} Molecule ... 35
4. Calculation for (\textit{u}^+\textit{u}^-) Formation by Collision of \textit{u}^- on (u^+e) .. 36
5. Cross Sections for Positronium Formation from He and Ar, Calculated by the Eikonal Method .. 37
6. Calculation of the Correlation Diagram of the Ne^+-Ne System .. 38
7. Theoretical Study of High-Energy Ion-Atom Collisions ... 39
8. Investigation of a HD^+ Energy Level in Hyper-Radial Adiabatic Approximation .. 40
9. Charge State Distribution Measurements of 77 MeV/u Ar Ions Which Have Passed through a Carbon Foil .. 41
10. Ratio of the Radiative to the Total Electron Capture Cross Section of 77 MeV/u Ar^{18+} Ions on a Carbon Target .. 42
11. Multiple Inner-Shell Ionization of Target Atoms by 92 MeV/u Ar-Ion Impact .. 43
12. A Trial of Doppler Beam-Foil Spectroscopy Using Relativistic Heavy (95 MeV/u Ar^{17+}) Ion Beams .. 45
13. Angular Correlation between K-X Rays and Scattered Particles in 10 and 20 MeV Ne^{7+}-Ne Collisions .. 46
14. Angular Distribution Measurement of K-X Rays Emitted from an Ar Beam Passing through C Foil .. 47
15. High Resolution L X-Ray Angular Distribution Measurement on Terbium .. 48
16. Atomic Bremsstrahlung in the MO Process .. 49
17. Nickel \textit{L\alpha} X-Ray Emission Spectra of Nickel Compounds .. 50
18. Two-Photon Decay of a He-Like Ge^{30+} Excited State Produced by Resonant Transfer and Excitation (RTE) .. 51
19. Multiply Charged Ions and Cluster Ions Produced from Frozen Targets under Energetic Heavy Ion Impact .. 53
20. Search for Relativistic Electron Emission in Relativistic Heavy Ion Atom Collisions .. 54
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Electron Spectra from Doubly Excited Boron Ions Produced by Double</td>
</tr>
<tr>
<td></td>
<td>Electron Capture</td>
</tr>
<tr>
<td>57</td>
<td>Beam-Foil Lifetime Measurements of the $2p^53p$ and $2p^53d$ Levels in</td>
</tr>
<tr>
<td></td>
<td>Ti XIII</td>
</tr>
<tr>
<td>58</td>
<td>Neutral Atomic Beam Source with a Pulsed Heater</td>
</tr>
<tr>
<td>60</td>
<td>Magnetic Property of BiPbSr$_2$FeO$_6$</td>
</tr>
<tr>
<td>61</td>
<td>Behavior of Kr Atoms Implanted into Aluminum</td>
</tr>
<tr>
<td>62</td>
<td>RBS Investigation of Ar implanted AlN$_x$ Thin Films on Glassy Carbon</td>
</tr>
<tr>
<td>63</td>
<td>Development of Nuclear Track Microfilters</td>
</tr>
<tr>
<td>64</td>
<td>Temperature Measurement of Solid Surface during 50 MeV Ar$^{4+}$</td>
</tr>
<tr>
<td></td>
<td>Beam Bombardment</td>
</tr>
<tr>
<td>65</td>
<td>1. Mössbauer Emission Spectroscopy of 57Fe Arising from 57Mn</td>
</tr>
<tr>
<td></td>
<td>in Chromium Metal and its Oxides</td>
</tr>
<tr>
<td>66</td>
<td>2. 99Ru Mössbauer Spectroscopy on Adducts of Ruthenocene with</td>
</tr>
<tr>
<td></td>
<td>Halogens</td>
</tr>
<tr>
<td>67</td>
<td>3. Measurements of Time-Differential γ-Ray Perturbed Angular</td>
</tr>
<tr>
<td></td>
<td>Correlation (TDPAC) and Emission Mössbauer (EM) Effects for 99Ru</td>
</tr>
<tr>
<td></td>
<td>in α-Fe$_2$O$_3$ Using 99Rh as a Source Nuclide</td>
</tr>
<tr>
<td>68</td>
<td>4. Time-Differential γ-Ray Perturbed Angular Correlation</td>
</tr>
<tr>
<td></td>
<td>(TDPAC) and Emission Mössbauer (EM) Spectroscopy of 99Ru in</td>
</tr>
<tr>
<td></td>
<td>Fe$_3$O$_4$ Using 99Rh as a Source Nuclide</td>
</tr>
<tr>
<td>69</td>
<td>5. Angular-Momentum Effect in Heavy Ion-Induced Fusion Reactions</td>
</tr>
<tr>
<td>70</td>
<td>6. Heavy-Ion Reactions of Copper with 14N and 40Ar Ions of</td>
</tr>
<tr>
<td></td>
<td>Intermediate Energies</td>
</tr>
<tr>
<td>71</td>
<td>7. Yields of Nuclear Reaction Products Induced by 95 MeV/u-40Ar</td>
</tr>
<tr>
<td>72</td>
<td>8. Dry Separation of Radioactive Nuclides from a Gold Target Irradiated</td>
</tr>
<tr>
<td></td>
<td>with 135 MeV/u 14N Ions</td>
</tr>
<tr>
<td>73</td>
<td>9. Preparation of a Radioactive Multitracer Solution from Gold Foil</td>
</tr>
<tr>
<td></td>
<td>Irradiated with 135 MeV/nucleon 14N Ions</td>
</tr>
<tr>
<td>74</td>
<td>10. A Multitracer Study of the Adsorption of Metal Elements on Hydrated</td>
</tr>
<tr>
<td></td>
<td>Ferric Oxide</td>
</tr>
<tr>
<td>75</td>
<td>11. A Multitracer Study of Adsorption of Metal Elements on Clay Minerals</td>
</tr>
<tr>
<td></td>
<td>and Marine Sediments</td>
</tr>
<tr>
<td>76</td>
<td>12. Preparation of No-Carrier-Added 105Ag and 106mAg and</td>
</tr>
<tr>
<td></td>
<td>Their Chemical Behavior</td>
</tr>
<tr>
<td>77</td>
<td>13. Proton Irradiation-Induced Defects in LEC-GaAs Studied by Positron</td>
</tr>
<tr>
<td></td>
<td>Annihilation</td>
</tr>
<tr>
<td>78</td>
<td>14. Generation of Slow Positron Beam from natB(p,xn)11C Reaction</td>
</tr>
<tr>
<td>79</td>
<td>15. Positron Annihilation Study on Defects in LEC-GaAs Grown from</td>
</tr>
<tr>
<td></td>
<td>Ga-rich Melt</td>
</tr>
</tbody>
</table>
16. Development of an Ion Beam Sputtering Method to Prepare Long-Lived Carbon Stripper Foils ... 80
17. Hydrogen Desorption from Diamond-Like Carbon Film during Ion Beam Irradiation ... 81
18. Elastic Recoil Detection and the Forward Scattering Analysis of Nitride Films ... 82
19. Analysis of Contamination Processes during Vacuum Deposition of Thin TiN Films ... 84
20. Depth Profile of Hydrogen in the Volcanic Glass Studied by Heavy-Ion Rutherford Scattering ... 85
21. Side Determination of Weathered Egg Shell by Heavy-Ion Rutherford Scattering ... 86
22. Heavy Ion Probe Rutherford Scattering Applied to Pathological Samples ... 87

4. Radiation Chemistry and Radiation Biology
1. High-Density Excitation by Heavy Ions: Track-Depth Resolved Luminescence of N-Ions Injected-Helium Gas and Liquid ... 88
2. Analytical Formula for the Dose around the Path of an Ion and Its Application ... 89
3. Chromosome Fragmentation in Syrian Golden Hamster Embryo Cells Irradiated with Heavy Ions ... 90
4. Studies on Induced Mutations by Ion Beams in Plants ... 91

5. Instrumentation
1. Design of a Microbeamline for a Compact Cyclotron ... 92
2. Design of a Decay Muon Channel Using an Axially Symmetric Magnetic Field for a Pion Injector ... 94
3. Development of an Induction Accelerator for the Heidelberg Test Storage Ring ... 95
4. Status of the Radioactive Beam Facility RIPS ... 96
5. Characteristics of Magnetic Elements in RIPS ... 98
6. Control System of RIPS ... 100
7. Yield Study of Radioactive Beams of RIPS ... 101
8. Performance of Isotopic Separation in RIPS ... 102
9. Test Experiment of the GARIS/IGISOL ... 103
10. Velocity Distribution of IGISOL Ion Beams ... 105
11. Resonance Ionization Spectroscopy with IGISOL ... 107
13. Field Measurements of the SMART Magnets ... 109
14. Test for Dispersive-Mode Beam Transport to the SMART Spectrograph ... 110
15. Detector System for Secondary Reactions of Unstable Nuclei .. 112
16. Identification of Intermediate-Mass Fragments with Counter Telescopes ... 113
17. Improvement of Position Determination for Two-Dimensional Position-Sensitive Silicon Detector 114
18. Energy Loss Straggling of High Energy Heavy Ions in a Silicon Detector ... 115
19. Responses of Large Position-Sensitive Detectors to Heavy Ion Beams .. 116
20. Test of Si Photodiodes for Scintillation of Liquid Xe by Heavy Ions ... 118
21. Response of a CsI(Tl) Scintillator to Charged Particles of Energies around 80 MeV/u 119
22. Identification of Charged Particles using Phoswich Detector ... 120
23. A Test for SMART Neutron Detectors .. 121
24. Data Acquisition System at the RIKEN Ring Cyclotron ... 123
25. High Speed Serial Data Link for PC-9801 .. 125

6. Material Analysis
 1. Measurement of the Surface Angle of a Non-Flat Target from the L/K X-ray Yield Ratio for Quantitative PIXE Analysis ... 126
 2. PIXE Analysis under Non-Vacuum Operation .. 127

IV. NUCLEAR DATA
 1. Status Report of the Nuclear Data Group .. 128
 2. Cross Section Data for 68Ge Production ... 129
 3. On the Production Cross Sections of 82Sr .. 130
 4. Nuclear Reaction Data for the Production of 111In ... 131
 5. Cross Sections Calculated by an ALICE Code in the A=50–60 Region .. 132

V. DEVELOPMENT OF ACCELERATOR FACILITIES
 1. Ion Accelerator Development
 1. Test-Bench Performance of ECR Ion Source (NEOMAFIOS) ... 133
 2. Improvements of the RIKEN Ring Cyclotron Control System .. 135
 3. Development of a LNA Laser for Polarized 3He Ion Source of Injector AVF Cyclotron 136
 4. RIKEN (Japan) – RAL (U.K.) Collaboration on Muon Science Research ... 138
 2. Synchrotron Radiation Source Development
 1. Status of the Synchrotron Radiation Project ... 139
 2. Design Modification of the Lattice of the SPring-8 Storage Ring ... 141
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Study of Linear Coupling Compensation for the Storage Ring of SPring-8 (2)</td>
<td>143</td>
</tr>
<tr>
<td>4.</td>
<td>Lattice Parameter Distortions at Insertion Devices</td>
<td>145</td>
</tr>
<tr>
<td>5.</td>
<td>Study of Multipole Field Effects due to Correctors on the Beam Dynamics</td>
<td>147</td>
</tr>
<tr>
<td>6.</td>
<td>Calculated Spectral Distributions of On-axis Brilliance from Insertion Devices in the SPring-8</td>
<td>149</td>
</tr>
<tr>
<td>7.</td>
<td>Progress in Magnet System for the SPring-8 Storage Ring</td>
<td>151</td>
</tr>
<tr>
<td>8.</td>
<td>Magnetic Field Measurements of a Prototype Quadrupole Magnet for the SPring-8 Storage Ring</td>
<td>153</td>
</tr>
<tr>
<td>9.</td>
<td>Magnetic Field Measurements of a Prototype Dipole Magnet for the SPring-8 Storage Ring</td>
<td>155</td>
</tr>
<tr>
<td>10.</td>
<td>Design of a Power Supply System for SPring-8 Storage Ring Magnets</td>
<td>156</td>
</tr>
<tr>
<td>11.</td>
<td>Bump Magnet of SPring-8</td>
<td>158</td>
</tr>
<tr>
<td>12.</td>
<td>Measurement of a 508 MHz Model Coupler for the SPring-8 Storage Ring</td>
<td>160</td>
</tr>
<tr>
<td>13.</td>
<td>Measurement of a 508 MHz Model Cavity for the SPring-8 Storage Ring</td>
<td>162</td>
</tr>
<tr>
<td>14.</td>
<td>Design of the Prototype Cavity for the SPring-8 Storage Ring</td>
<td>164</td>
</tr>
<tr>
<td>15.</td>
<td>Test stand of a Klystron for the SPring-8 Storage Ring</td>
<td>166</td>
</tr>
<tr>
<td>16.</td>
<td>All-Metal Gate Valve with an RF Contact</td>
<td>168</td>
</tr>
<tr>
<td>17.</td>
<td>Pumping Speed of NEG Strips Distributed in a 4 m-Long Vacuum Chamber</td>
<td>169</td>
</tr>
<tr>
<td>18.</td>
<td>Experimental Device for Measurement of Photon Induced Gas Desorption</td>
<td>171</td>
</tr>
<tr>
<td>19.</td>
<td>Vacuum Characteristics of a NEG Wafer Module</td>
<td>172</td>
</tr>
<tr>
<td>20.</td>
<td>Performance Test of Lumped NEG Pump</td>
<td>174</td>
</tr>
<tr>
<td>21.</td>
<td>Alteration of the Cracking Pattern of CO\textsubscript{2} with CO Generated on the Hot Filaments of the Pressure Gauges</td>
<td>176</td>
</tr>
<tr>
<td>22.</td>
<td>Estimation of the Photo-Desorption Yield of OFHC Absorber</td>
<td>178</td>
</tr>
<tr>
<td>23.</td>
<td>Equilibrium Characteristics of NEG in LNP</td>
<td>179</td>
</tr>
<tr>
<td>24.</td>
<td>Monte Carlo Simulation in the LNP Structure</td>
<td>180</td>
</tr>
<tr>
<td>25.</td>
<td>Thermal Load Test of the Absorber for the Crotch with an Electron Beam</td>
<td>181</td>
</tr>
<tr>
<td>26.</td>
<td>Thermal Analysis of a Crotch for the SPring-8 Storage Ring</td>
<td>183</td>
</tr>
<tr>
<td>27.</td>
<td>Heated Water Bakeout System</td>
<td>185</td>
</tr>
</tbody>
</table>
Page 28
Sensitivity Calibration of Nude Ionization Gauges for Several Gases Using a Spinning Rotor Gauge .. 187

Page 29
Vacuum Characteristics of a Mixed Pumping System .. 189

Page 30
Manufacture of a Complicated Ceramic Chamber and Its Joining Methods to an Aluminum-alloy Chamber ... 191

Page 31
Mounting of a Straight Section Vacuum Chamber with Slide Guides 193

Page 32
Bellows Assembly with RF Sliding Finger Shielding 195

Page 33
Problems for Improvement of Existing Aluminum-Alloy Flange 197

Page 34
Bending Fabrication of a Vacuum Chamber .. 199

Page 35
Mounts of the Straight Section Vacuum Chamber with Leaf Springs 201

Page 36
Design of the Control System for the SPring-8 .. 202

Page 37
Design of the Beam Diagnostic System for the SPring-8 Storage Ring 204

VI. RADIATION MONITORING

1. Neutron Dose Around an Iron Beam Stopper ... 206
2. Residual-Activities in the Ring Cyclotron Facility 207
3. Leakage Radiation Measurements in the Ring Cyclotron Facility 209
4. Routine Monitoring of the Cyclotron, RILAC, TANDETRON, and the Personal Monitoring of RIKEN Accelerator Workers 211
5. Leakage-Radiation Measurements in the Cyclotron Building 212

VII. LIST OF PUBLICATIONS .. 215

VIII. LIST OF PREPRINTS .. 219

IX. PAPERS PRESENTED AT MEETINGS ... 223

X. SUBJECTS UNDER CONTRACT .. 233

XI. LIST OF SEMINARS .. 234

XII. LIST OF PERSONNEL ... 236

AUTHOR INDEX
I. INTRODUCTION

This annual report covers the activities of the RIKEN Accelerator Facility for the year of 1990. The Facility possesses an intermediate-energy heavy-ion accelerator complex composed of a central booster accelerator, RIKEN Ring Cyclotron (RRC), and two injectors, a heavy-ion linear accelerator (RILAC) and an AVF cyclotron (AVF). The accelerators were constructed under a long-term project starting in 1974: The RILAC brought out the first beam in 1980, the RRC in December 1986, and the AVF in April 1989. The two injectors may also be used in stand-alone modes. In addition, a 1-MeV Tandetron is in operation. The heavy ions so far accelerated are ranged from deuterons to xenon, with beam energies up to 135 MeV. They have been served for research work of a variety of disciplines including nuclear physics, atomic physics, nuclear and radiation chemistry, condensed matter physics, and radiation biology. The users range over 11 laboratories of 50 in the whole RIKEN. There is also a large involvement of outside users. For the period 198 staff researchers and 68 graduate students from other domestic and foreign institutions contributed to the activities at the Facility.

The report also covers activities associated with two major projects which have newly started. One is the joint project between RIKEN and Japan Atomic Energy Research Institute (JAERI) to build an 8-GeV synchrotron radiation source (SPring-8) at the site of Harima Science Garden City, Hyogo Prefecture. The construction has started in April 1990 and will be completed in several years. The other is an international project between RIKEN and RAL (U.K.) on muon science research. An intense pulsed muon beam is to be facilitated at RAL in combination with the synchrotron. The construction work was initiated, recently.

With respect to the RRC complex, this annual period may be marked as the first full year in which the AVF was employed for routine operation. The entry of AVF as an injector brought a significant increase in the capability of the RRC complex. The maximum energies of lighter ions reached goal values; 35 new beams were added to the list of accomplishment in the past year. A dual injector system also contributes to elongation of beam hours. The RRC was operated for 178 days during December 2, 1989, to November 10, 1990. This number will be further increased in coming years. Among other developments in the RRC complex, the installation of a Neomafios ECR ion source in place of a PIG source at RILAC started in September 1990. The new source will become available in the early 1991 and contribute to grade up the energies of RILAC-injected beams. Another effort was directed to lower energy bounds. Operation of RRC at 7 MeV/u was established beyond the original limit. This was to enhance the access to studies using fusion-like reactions. The fabrication of a polarized ion source of hydrogen for AVF has started and the completion is scheduled in the next summer. The device aims at gaining a broader prospect for the beams of 210-MeV protons and 270-MeV deuterons.

There were also remarkable efforts to develop the experimental apparatus at RRC beam channels. In particular a projectile-fragment separator called RIPS started its full operation providing high-energy beams of radioisotopes. The apparatus yields intense beams, which are about two orders of magnitude stronger than the other existing analogues. This encourages the studies on nuclear reactions with unstable nuclei. In this connection a large acceptance magnetic spectrometer for the secondary reactions is in preparation to be located downstream of RIPS. An on-line mass separator of the GARIS-IGISOL type has also become employed for experiments. It is primarily used to study heavy unstable nuclei including possible super-heavy elements (SHE). We have another magnetic spectrometer called SMART, which is a tandem-type high-precision charged-particle analyzer with broad angular and momentum acceptances. It has an access to neutron spectroscopy as well. It is under the process of debugging and tuning and is scheduled to be completed in the early summer of 1991.

During the past year, heavy ion beams from the RIKEN accelerators have been serving for various studies. RRC has run for 116 days for experiments among which about 70% went to nuclear physics and the rest to the other research fields by covering 17 subjects for the former and 20 subjects for the latter. RILAC has run for 89 days by itself for its own users. They were primarily used for studies on atomic physics and other fields of science.

Studies on and with unstable nuclei were extensively pursued. Experiments with RIPS are...
directed to three major categories. Studies on anomalous properties of extremely neutron-rich nuclei by observing the secondary reactions were upgraded; High-energy Coulomb dissociation mechanism among other processes were exploited to measure unstable-nucleus reaction cross sections of astrophysical interests; Attempts to produce spin-polarized unstable nuclei were pursued through dynamical and optical methods. It has been shown that the projectile fragmentation reaction by itself offers a useful means to produce polarized isotopes. The setups for laser spectroscopy have been developed, and an optical pumping method for polarization was tested for isotopes in semi-conductors.

A challenging program to search for SHE isotopes has started using GARIS-IGISOL. A possible new scheme based on a particular type of reaction process is to be used to enhance the production and survival probabilities. A preliminary experiment indicated a promising result.

The group of nuclear theorists was strengthened this year by inviting three visiting professors and five post doctoral fellows. The activity now covers nuclear phenomena from low to relativistic energies.

Experiments on atomic physics were made by using RRC, RILAC, and a section of the AVF ECR ion source. Electron capture and loss cross sections and γ-ray emission processes in high energy atomic collisions were investigated with RRC. A detailed study of collision mechanism was performed through observation of spin alignment effects at RILAC. Beam foil spectroscopy steadily continued with RILAC Ti beams. Two-electron capture processes at low energies were studied with ECR.

Muon beam channels at RRC was completed and an effort was extended to a new beam channel at RAL. Meanwhile the target dependence of a surface muon yield was studied.

Studies of nuclear and radiation chemistry have continued with various methodologies. Mossbauer and perturbed angular correlation techniques were used to study the properties of magnetic and high-T_c superconducting materials. Rutherford scattering and PIXE techniques were applied to the analysis of impurities contained in high-purity industrial materials and in the compositions of medical environmental and geological samples. Positron annihilation analysis proved the dislocation in semiconductors. A systematic study on the production cross sections in high-energy heavy-ion reactions continued by using various ions. On this basis a multi-tracer technique is being developed to be applied, e.g., to oceanography problems.

Studies of radiation biology were performed in two aspects, space biology and radiotherapy. Effects of irradiation of high-energy heavy ions were studied on biological samples such as spores, beans, and shrimp eggs to simulate the effects of cosmic rays. Basic studies on heavy-ion cancer therapy were carried out by irradiating mice and mammal culture cells with RRC.

While new developments continued, one accelerator has ceased operation. The 160-cm cyclotron was shut down in April 1990 after a successful service for more than 25 years. A special volume entitled the 160-cm Cyclotron was issued as a supplement of this Report to summarize and memorize the research accomplishments obtained with the accelerator.
II. OPERATION OF ACCELERATORS

1. RRC Operation

For nearly one year December 2, 1989, through November 10, 1990, the RRC machine time scheduled for user’s experiments totaled 178 days, which excludes the periods spent in carrying out long and short term regular machine overhauls and in developing and improving the machine. Among 178 days, relatively large part of 48 days (27%) were spent in preparing beams, because almost half of the beams demanded by the users were new ones. The shut-down time due to machine trouble amounted to 14.5 days (8%). Eventually 115.5 days (65%) were devoted to proceed nuclear (70% in portion) and non-nuclear (30% in portion) experiments. The AVF cyclotron-injected beam time exceeded the linac-injected beam time in a ratio of 7 to 3. Regular long-term overhauls were carried out for 3 weeks in the winter and for 8 weeks in the summer.

An extensive improvement were made for almost the whole parts of the machine during the summer overhaul; the improvement was very effective in quick starting up, stable operation, and easy maintenance of the machine.

In Fig. 1 the new beams were shown in the space of the acceleration energy per nucleon versus the atomic mass number of ion, together with the beams accelerated so far. Almost the whole region of beams, except for 210 MeV protons and 185 MeV/u 3He particles obtainable by AVF injection, have been covered this year. Since the summer overhaul the linac was shut down for replacing the old PIG ion source with an ECR ion source. The new source will grade up the linac performance greatly, and thereby the energies of the linac-injected beams will be pushed up to the maximum design values. This is scheduled at the beginning

<table>
<thead>
<tr>
<th>Particle</th>
<th>Charge</th>
<th>RF F (MHz)</th>
<th>h</th>
<th>Energy (MeV/u)</th>
<th>Intensity (nA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>1</td>
<td>24.6</td>
<td>5</td>
<td>70</td>
<td>50 (*)</td>
</tr>
<tr>
<td>12C</td>
<td>5</td>
<td>35</td>
<td>9</td>
<td>42</td>
<td>200</td>
</tr>
<tr>
<td>13C</td>
<td>6</td>
<td>32.6</td>
<td>5</td>
<td>135</td>
<td>350 (*)</td>
</tr>
<tr>
<td>14N</td>
<td>6</td>
<td>35</td>
<td>9</td>
<td>42</td>
<td>50</td>
</tr>
<tr>
<td>15N</td>
<td>6</td>
<td>35</td>
<td>10</td>
<td>34</td>
<td>200</td>
</tr>
<tr>
<td>16O</td>
<td>5</td>
<td>20.187</td>
<td>10</td>
<td>10.65</td>
<td>100</td>
</tr>
<tr>
<td>18O</td>
<td>7</td>
<td>24.6</td>
<td>5</td>
<td>70</td>
<td>1,100 (*)</td>
</tr>
<tr>
<td>20Ne</td>
<td>7</td>
<td>30.5</td>
<td>5</td>
<td>115</td>
<td>200 (*)</td>
</tr>
<tr>
<td>22Ne</td>
<td>5</td>
<td>25</td>
<td>9</td>
<td>20.6</td>
<td>—</td>
</tr>
<tr>
<td>24Mg</td>
<td>8</td>
<td>32.6</td>
<td>5</td>
<td>135</td>
<td>500 (*)</td>
</tr>
<tr>
<td>27Al</td>
<td>7</td>
<td>35</td>
<td>9</td>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>31P</td>
<td>8</td>
<td>29</td>
<td>5</td>
<td>100</td>
<td>600</td>
</tr>
<tr>
<td>20Ne</td>
<td>9</td>
<td>33</td>
<td>9</td>
<td>37</td>
<td>150</td>
</tr>
<tr>
<td>22Ne</td>
<td>8</td>
<td>28</td>
<td>10</td>
<td>21</td>
<td>40</td>
</tr>
<tr>
<td>24Mg</td>
<td>11</td>
<td>29</td>
<td>5</td>
<td>100</td>
<td>30 (*)</td>
</tr>
<tr>
<td>27Al</td>
<td>13</td>
<td>29</td>
<td>5</td>
<td>100</td>
<td>60 (*)</td>
</tr>
<tr>
<td>40Ar</td>
<td>11</td>
<td>20</td>
<td>10</td>
<td>10.3</td>
<td>1,500</td>
</tr>
<tr>
<td>40Ca</td>
<td>12</td>
<td>28</td>
<td>10</td>
<td>21</td>
<td>200</td>
</tr>
<tr>
<td>44Ca</td>
<td>13</td>
<td>28</td>
<td>9</td>
<td>26</td>
<td>600</td>
</tr>
<tr>
<td>40Ca</td>
<td>16</td>
<td>26</td>
<td>5</td>
<td>80</td>
<td>40 (*)</td>
</tr>
<tr>
<td>48Ca</td>
<td>17</td>
<td>28.1</td>
<td>5</td>
<td>95</td>
<td>40 (*)</td>
</tr>
<tr>
<td>64Zn</td>
<td>14</td>
<td>28</td>
<td>9</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>64Zn</td>
<td>20</td>
<td>25</td>
<td>9</td>
<td>20.6</td>
<td>10</td>
</tr>
<tr>
<td>65Cu</td>
<td>18</td>
<td>25</td>
<td>10</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>84Kr</td>
<td>18</td>
<td>20</td>
<td>10</td>
<td>10.3</td>
<td>70</td>
</tr>
<tr>
<td>133Xe</td>
<td>24</td>
<td>20</td>
<td>11</td>
<td>8.5</td>
<td>— (*)</td>
</tr>
<tr>
<td>135Xe</td>
<td>21</td>
<td>18</td>
<td>11</td>
<td>7</td>
<td>50 (*)</td>
</tr>
</tbody>
</table>

Table 1. RRC beams during April 1987 – November 1990.

* Sumijyu Accelerator Service, Ltd.
of next year. We successfully operated the RRC rf system at 18 MHz which is lowered from the nominal value of 20 MHz; thus the lowest beam energy of 7 MeV/u in the linac injection has been available in the acceleration harmonics of 11. This acceleration mode was applied to a xenon beam. Table 1 lists the acceleration parameters and the maximum intensities used during each experiment run for the beams accelerated so far. New beams are denoted by asterisks.

Fig. 1. RRC beams during April 1987–November 1990.
II-2. RILAC Operation

This year, the PIG ion source, which had been used for many years, of RILAC was replaced with a new ECR ion source. For the replacement, regular RILAC operation was discontinued by the end of July. The remaining period of the year was devoted to the modification of the injector high voltage station and the installation of the ECR ion source on it. Tables 1 to 3 show the operation statistics for the calendar year 1990. The "overhaul and improvement" in Table 1 includes the ion source renewal. During regular operation, there arose no serious trouble except carelessly mistaking 66Zn$^{5+}$ ions for 64Zn$^{5+}$ ions gave a loss in beam time to RIKEN Ring Cyclotron.

<table>
<thead>
<tr>
<th>Day</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam time</td>
<td>123 33.7</td>
</tr>
<tr>
<td>Frequency change</td>
<td>6 1.6</td>
</tr>
<tr>
<td>Overhaul and improvement</td>
<td>95 26.0</td>
</tr>
<tr>
<td>Periodic inspection and repair</td>
<td>21 5.8</td>
</tr>
<tr>
<td>Machine trouble</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Scheduled shut down</td>
<td>120 32.9</td>
</tr>
<tr>
<td>Total</td>
<td>365 100</td>
</tr>
</tbody>
</table>

Table 2. Beam time for individual research groups.

<table>
<thead>
<tr>
<th>Day</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic physics</td>
<td>33 26.8</td>
</tr>
<tr>
<td>Solid-state physics</td>
<td>21 17.1</td>
</tr>
<tr>
<td>Nuclear chemistry</td>
<td>24 19.5</td>
</tr>
<tr>
<td>Radiation chemistry</td>
<td>7 5.7</td>
</tr>
<tr>
<td>Accelerator research</td>
<td>4 3.3</td>
</tr>
<tr>
<td>Beam transportation to RRC</td>
<td>34 27.6</td>
</tr>
<tr>
<td>Total</td>
<td>123 100</td>
</tr>
</tbody>
</table>

Table 3. List of ions used in this year.

<table>
<thead>
<tr>
<th>Ion</th>
<th>Mass</th>
<th>Charge state</th>
<th>Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>14</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Ne</td>
<td>20</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Al</td>
<td>27</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Si</td>
<td>28</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Ar</td>
<td>40</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Ar</td>
<td>40</td>
<td>4</td>
<td>45</td>
</tr>
<tr>
<td>Ti</td>
<td>48</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Cr</td>
<td>52</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Cu</td>
<td>63</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Zn</td>
<td>64</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Zn</td>
<td>64</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Kr</td>
<td>84</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Kr</td>
<td>84</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Xe</td>
<td>132</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Xe</td>
<td>132</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

The newly installed ECR ion source, called NEOMAFIOS, developed and manufactured by C.E.N.-G., France, arrived at our facilities in February 1990. Performance tests and operation training for the new ion source were repeated on a test bench until the end of July. August through the middle of November, we successively carried out the removal of the old PIG ion source system from the injector high voltage station, the installation of the ECR ion source system, and the preparation of peripheral equipments. Most of the instruments on the station were replaced with new ones designed for the ECR ion source system.

Adjustment of the ECR ion source combined with beam transport in the injector system was started in the middle of November and acceleration test of RILAC using an 40Ar$^{8+}$ beam in the end.

Beam acceleration will be reopened for users in the middle of January 1991.

References
1) E. Ikezawa et al.: This Report, p. 133.
II-3. AVF Cyclotron Operation

A. Goto, M. Kase, Y. Yano, T. Kageyama, S. Kohara, M. Nagase, K. Hatanaka, *
H. Isshiki,** R. Abe,** S. Otsuka,** H. Akagi,** T. Ishikawa,**
R. Ichikawa,** and T. Maie**

We have routinely operated the AVF cyclotron since we began beam service for users last October. The cyclotron has been exclusively used as an injector for RIKEN Ring Cyclotron (RRC). We accelerated various ions from deuteron to argon in a total of sixteen cases as shown in Table 1. The designed maximum energies from RRC have been achieved for these ions except for deuteron.

The vacuum chamber of the cyclotron was opened three times for repairs of a phase defining slit and a joint of a cooling pipe on a dummy dee and for a scheduled overhaul in summer. At the overhaul time we checked rf contacts, driving mechanism systems and others, and found no problems on them. We also replaced the septum of the deflector and the electrodes of the inflector with new ones. These new ones are in an essential sense spares for these elements, though some modifications were made to the original ones: the vertical clearance of the septum in the region where last few revolutions pass through was widened from 12 mm to 14 mm, and the gap of the infector was also widened from 5 mm to 8 mm.

The performance of the cyclotron has been good as a whole, but there are still some problems with respect to beam transmission, which have not been resolved. At the moment the beam transmission through the cyclotron is around 10% for beams of up to several tens of eμA. A beam loss in the injection beam transport line is among the losses, when a beam intensity is very high. The problem of a beam loss near and during extraction is rather serious: at a high beam intensity, more than half of the beam is lost in the outermost region just before extraction (20 or 30 mm in radial width).

Because a high intensity beam of deuterons is planned to be used for isotope production in the near future, the radiation shield effect of the cyclotron vault was checked by accelerating deuterons at 5 MeV/u. The result suggests that we should strengthen the shield of the hole in the ceiling which is just above the cyclotron and through which the injection beam line passes.

Table 1. AVF beams accelerated in September 1989 – November 1990.

<table>
<thead>
<tr>
<th>Ion</th>
<th>RF Frequency (MHz)</th>
<th>Energy* (MeV/u)</th>
<th>Main coil current (A)</th>
<th>Average field (T)</th>
<th>Externall current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>12.3</td>
<td>4.0 (70)</td>
<td>303</td>
<td>0.80</td>
<td>500</td>
</tr>
<tr>
<td>d</td>
<td>13.8</td>
<td>5.0 (--)**</td>
<td>343</td>
<td>0.90</td>
<td>1000</td>
</tr>
<tr>
<td>12C*+</td>
<td>16.3</td>
<td>7.0 (135)</td>
<td>810</td>
<td>1.60</td>
<td>-----</td>
</tr>
<tr>
<td>14N*+</td>
<td>12.0</td>
<td>3.8 (67)</td>
<td>578</td>
<td>1.37</td>
<td>1000</td>
</tr>
<tr>
<td>14N*+</td>
<td>12.3</td>
<td>4.0 (70)</td>
<td>604</td>
<td>1.41</td>
<td>800</td>
</tr>
<tr>
<td>14N*+</td>
<td>13.0</td>
<td>4.4 (80)</td>
<td>680</td>
<td>1.49</td>
<td>2500</td>
</tr>
<tr>
<td>14N*+</td>
<td>16.3</td>
<td>7.0 (135)</td>
<td>685</td>
<td>1.50</td>
<td>5000</td>
</tr>
<tr>
<td>15N*+</td>
<td>12.3</td>
<td>4.0 (70)</td>
<td>699</td>
<td>1.51</td>
<td>2000</td>
</tr>
<tr>
<td>15N*+</td>
<td>15.25</td>
<td>6.1 (115)</td>
<td>690</td>
<td>1.50</td>
<td>1300</td>
</tr>
<tr>
<td>16O*+</td>
<td>16.3</td>
<td>7.0 (135)</td>
<td>616</td>
<td>1.43</td>
<td>2500</td>
</tr>
<tr>
<td>16O*+</td>
<td>14.5</td>
<td>5.5 (102)</td>
<td>615</td>
<td>1.42</td>
<td>1700</td>
</tr>
<tr>
<td>18O*+</td>
<td>14.85</td>
<td>5.8 (---)**</td>
<td>646</td>
<td>1.46</td>
<td>300</td>
</tr>
<tr>
<td>20Mg*+</td>
<td>14.5</td>
<td>5.5 (102)</td>
<td>856</td>
<td>1.63</td>
<td>-----</td>
</tr>
<tr>
<td>27Al*+</td>
<td>14.5</td>
<td>5.5 (102)</td>
<td>824</td>
<td>1.60</td>
<td>200</td>
</tr>
<tr>
<td>40Ar*+</td>
<td>13.0</td>
<td>4.4 (80)</td>
<td>747</td>
<td>1.55</td>
<td>300</td>
</tr>
<tr>
<td>40Ar*+</td>
<td>14.02</td>
<td>5.2 (95)</td>
<td>935</td>
<td>1.67</td>
<td>700</td>
</tr>
</tbody>
</table>

* The values in the parentheses show the energies obtained by the coupled operation with RRC.

** These ions were accelerated only with the AVF cyclotron.

* Research Center for Nuclear Physics, Osaka University.
** Sumijyu Accelerator Service, Ltd.
II-4. Cyclotron Operation

K. Ogiwara, T. Kageyama, S. Kohara, and I. Kohno

The 160 cm cyclotron was operated on a 24 h-a-day basis during the period XXV from Jan. 1 to Apr. 30, 1990. The statistics of the machine operation time is shown in Table 1.

<table>
<thead>
<tr>
<th>Table 1. Cyclotron operation in the period XXV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oscillator</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>Reading of the time meter on Jan. 06 1990 (h)</td>
</tr>
<tr>
<td>Reading of the time meter on Apr. 30 1990 (h)</td>
</tr>
<tr>
<td>Difference (h)</td>
</tr>
<tr>
<td>Schedule in this period:</td>
</tr>
<tr>
<td>Beam-time</td>
</tr>
<tr>
<td>Overhaul and installation</td>
</tr>
<tr>
<td>Periodical inspection and repair</td>
</tr>
<tr>
<td>Schedule shutdown</td>
</tr>
<tr>
<td>Machine trouble</td>
</tr>
</tbody>
</table>

Table 2 shows the beam-time allotment to various activities during this period. Table 3 shows the distribution of the scheduled beam time among various particles.

The cyclotron was shut down on Apr. 30, 1990. The overall net operation time of the oscillator and the ion source over past 23 years attained to 99,753.5 and 106,148.4 hours, respectively. Over all net beam time attained to 61,909.9 hours since 1973.

<table>
<thead>
<tr>
<th>Table 2. Scheduled beam-time and research subjects in period XXV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>RI production for nuclear and solid physics</td>
</tr>
<tr>
<td>Nuclear chemistry</td>
</tr>
<tr>
<td>Radiation biology</td>
</tr>
<tr>
<td>Radiation chemistry</td>
</tr>
<tr>
<td>Radiation damage of polymer</td>
</tr>
<tr>
<td>Radiation damage of semiconductor</td>
</tr>
<tr>
<td>Test of radiation detector</td>
</tr>
<tr>
<td>Outside users</td>
</tr>
<tr>
<td>Radiochemical analyses</td>
</tr>
<tr>
<td>Radiation damage of device for satellite</td>
</tr>
<tr>
<td>Test of single even upset</td>
</tr>
<tr>
<td>Proton irradiation on thyristor</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Percentage in total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. Distribution of the beam-time among particles accerated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>p</td>
</tr>
<tr>
<td>(^3)He(^2+)</td>
</tr>
<tr>
<td>(^4)He(^2+)</td>
</tr>
<tr>
<td>(^12)C(^4+)</td>
</tr>
<tr>
<td>(^16)O(^{4+,5+})</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
The Tandetron was operated for 106 days for 11 months from Nov. 1, 1989 to Sep. 31, 1990, during which \(^1\text{H}, ^4\text{He}, \text{and} ^{11}\text{B}\) were accelerated.

The machine was shut down a few times by following causes; leakage of air through a metal-insulator bond of the duoplasmatron housing, leakage of SF\(_6\) (insulating) gas at the high voltage terminal, and burn of a variable transformer for the electric power supply to an einzel lens.

The Tandetron was used for the experimental studies on the following subjects.

1. Rutherford backscattering spectroscopy
 a) Analysis of the Tb distribution and damage in Tb-implanted CaF\(_2\) (Semiconductor Lab. and Surface Characterization Center)
 b) Ion irradiation effect on Bi-Sr-Ca-Cu-O system, MoS\(_2\), and SrTiO\(_3\) (Surface Characterization Center and Surface and Interface Lab.)
 c) Characterization of AlN\(_x\) (Surface Characterization Center)
 d) RBS analysis of aluminum-titanium nitrides and tantalum oxides. (Metal Physics Lab.)
 e) Behavior of Kr atoms implanted into aluminum by a channeling method. (Metal Physics Lab.)

2. Nuclear reaction analysis
 a) Lattice location of hydrogen in niobium alloys by a channeling method. (Metal Physics Lab.)

3. Particle induced X-ray emission (PIXE)
 a) Application of PIXE to medical, environmental, archaeological, and materials science (Inorganic Chemical Physics Lab.)

4. Sputtered neutral mass spectrometry (SNMS)
 a) Development of a new type of SNMS for ultra-high sensitive detection (Plasma Physics Lab. and Surface Characterization Center)
 b) Development of a multi-use high current ion source for accelerators (Plasma Physics Lab. and Surface Characterization Center)
III. RESEARCH ACTIVITIES

1. Nuclear Physics

1. Measurement of Total Interaction Cross Section for $^{11}\text{Li} + ^{12}\text{C}$ at 45 MeV/u

(Nuclear density distribution, secondary nuclear reaction, heavy ion-collision, neutron halo.)

In the past several years, total interaction cross sections (σ) of various nuclei have been measured in 0.8 GeV/u region and found for extremely neutron rich nuclei such as ^{11}Li or ^{14}Be to have very large radii by fitting σ with a Glauber type calculation. Figure 1 shows the energy dependence of σ obtained by the Glauber type calculation in three cases of matter distribution of ^{11}Li. These results suggest that the measurement of σ of ^{11}Li is important in an energy region of tens of million electronvolts per nucleon, where σ is particularly sensitive to neutron halo.

![Energy dependence of σ for $^{11}\text{Li} + ^{12}\text{C}$ by Glauber Type calculation. Curve a, ^{11}Li with two neutron halo; c, ^{11}Li with no halo; b, intermediate of a and c. Insets illustrate the density distributions for each line; inner curves show a proton distribution and an outer curves a matter distribution of ^{11}Li.](image1.png)

Fig. 1

We thus measured σ of ^{11}Li at 45 MeV/u by a transmission method in the RIKEN Ring Cyclotron radioactive beam line RIPS with the setup shown in Fig. 2. We used ^{18}O (102 MeV/u) as a primary beam and ^{9}Be (2.22 g/cm2) as a production target for ^{11}Li. ^{11}Li beams were separated from other fragments with an achromatic degrader, and identified by measuring an energy loss in SSD (F3SSD) and the time-of-flight (TOF) between scintillators at F2 (f2pl) and at F3 (f3pl). The purity of ^{11}Li as a secondary beam was about 98%. The image of the ^{11}Li beams was defined by using a position sensitive SSD.

![Experimental setup. Because all ^{11}Li nuclei are stopped in the last plastic scintillator, their ranges can be analyzed.](image2.png)

Fig. 2
(F3SSD). Setting a counter telescope composed of SSD's and plastic scintillators downstream of a secondary target (12C 453 mg/cm2), we made particle identification after secondary reactions by range and $\Delta E - E$ analysis.

σ_i is deduced from

$$\sigma_i = \frac{1}{N_i} \log \left(\frac{R_{\text{out}}}{R_{\text{in}}} \right)$$

where R_{out} and R_{in} are the ratios of the counts of incident nuclides after and before entering the counter telescope. The suffix "in" stands for target-in-run and "out", target-out-run, and N_i is the number of a secondary target per unit area.

A preliminary value of σ_i (in Fig. 1) is 1740 ± 30 mb, which suggests that 11Li has neutron halo.

References
4) T. Kubo et al.: This Report, p. 96.
III-1-2. Three α Disintegration of 12C in the Field of 208Pb Nucleus at 35 MeV/u

T. Motobayashi, S. Kox, C. Perrin, F. Merchez, D. Rebreyend, S. Kubono, T. Ichihara, and M. Ishihara

NUCLEAR REACTIONS 208Pb(12C, 3α)208Pb, $E = 35$ MeV/u; measured $\sigma(\theta)$. CsI(Tl) scintillator array, MWPC.

A projectile breakup process was studied for a 12C+208Pb reaction by measuring outgoing three α particles in coincidence. A 35 MeV/u carbon beam was provided by the separate sector cyclotron of SARA facility at ISN Grenoble. Complete kinematical conditions of four body final state (3α and 208Pb) were determined from the energies and scattering angles of the three α particles obtained by a multi-detector system consisting of 3 planes of MWPC and 24 CsI(Tl) scintillators based on the EMRIC device developed at ISN Grenoble. 1)

Figure 1 shows a spectrum for the relative energy of the three outgoing α particles (or the excitation energy measured from the 3-α threshold of 12C). The prominent peak corresponds to the second 0$^+$ state of 12C at $E_{ex} = 7.65$ MeV. The 3$^-$ state at 9.68 MeV is weakly excited. No evidence is seen for possible excitation of the 10.3 MeV state, where the spin assignment is still uncertain and strong effects on the elastic scattering channel is predicted by CDCC calculations. 2)

Figure 2 shows a Dalitz plot for the decay of the second 0$^+$ state of 12C. The events are concentrated on three lines showing that two α particles out of three are in the 8Be ground state with $E_{\text{recoil}} = 92$ keV.

Fig. 1. Relative energy spectrum for outgoing three α particles. The horizontal axis represents the excitation energy from the three α threshold at 7.27 MeV above the ground state of 12C. Two peaks correspond to the second 0$^+$ state at $E_{ex} = 7.65$ MeV and the 3$^-$ state at 9.64 MeV.

Fig. 2. Dalitz plot for three α particles decaying from the second 0$^+$ state of 12C. The events are concentrated on three lines showing that two α particles out of three are in the 8Be ground state with $E_{\text{recoil}} = 92$ keV.

References
III-1-3. Coulomb Breakup Reaction of 90 MeV/u 14O

The Coulomb breakup process, 14O \rightarrow 13N+p, in the field of 208Pb nucleus was studied at 91 MeV/u. It can be related to the inverse reaction 13N(p,γ)14O, which is of great astrophysical interest, because it is a key reaction for the hot CNO cycle. The process via the 1$^-$ state of 14O ($E_{\text{ex}}=5.14$ MeV) is important, and our purpose is to determine the transition probability between the ground 0$^+$ and 1$^-$ states or the radiative width Γ_γ of the 1$^-$ state.

Unstable 14O ions of 91 MeV/u were provided by the RIPS facility at RIKEN. Outgoing proton and 13N were detected in coincidence with the EMRIC device. It consisted of plastic hodoscopes for angle measurement of protons, 24 two-dimensional position-sensitive silicon detectors for the angle determination and particle identification of heavy ions, and 24 CsI(Tl) crystals coupled with PMTs for the identification of protons and total energy measurement (Fig. 1).

Figure 2 shows a two dimensional plot of the energies of the proton and 13N in coincidence. Events are concentrated on the line of $Q_\gamma=0$, where Q_γ denotes the excitation energy of the residual nucleus 208Pb. About 4×10^4 events were collected and they are to be used to deduce Γ_γ after correcting for an experimental background.

Fig. 2. Correlation between the energies of proton and 13N. The kinematical locus of $Q_\gamma = 0$ is shown by the solid line.

References
III-1-4. Tensor Analyzing Powers of $^1\text{H}(^3\text{He})\text{n}$ Reaction at 200 MeV

[NUCLEAR REACTION $^1\text{H}(^3\text{He})\text{n}$, $E = 200$ MeV; measured $A_{xx}(\theta)$, $A_{yy}(\theta)$]

Tensor analyzing powers A_{xx} and A_{yy} have been obtained for the $^1\text{H}(^3\text{He})\text{n}$ reaction at 200 MeV in the region of momentum transfer $q = 0$–500 MeV/c and excitation energy of the final two proton system $E_{\text{ex}} = 0$–8 MeV. The experiment was performed by using the synchrotron Saturne II at Saclay. A part of the results has been reported, where the excitation energy was limited to 0–1 MeV and the data of A_{xx} at high momentum transfers were missing.

Examples of the results are shown in Fig. 1. Only the tensor analyzing powers A_{xx} at around $\theta_{\text{lab}} = 9^\circ$ (corresponding to $q = 120$ MeV/c) depend on both E_{ex} and θ_{qk}, where θ_{qk} is the angle between q and k, relative momentum of the two protons. A plane wave impulse approximation (PWIA) calculation predicts larger admixture of P-wave into the dominant 1S_0 state at higher excitation energies E_{ex}. The P-wave contamination results in the reduction of A_{xx} values at around $q = 200$ MeV/c depending on θ_{qk} by the form, $A_{xx} = a - b \cos 2 \theta_{qk}$, where a is a constant independent of E_{ex}, whereas b increases with E_{ex}. These features are consistent with our observations.

References

III-1-5. Polarization Measurement of ^{12}B and ^{13}B in the Reaction $^{15}\text{N} + ^{197}\text{Au}$ at 112MeV/u

Spin polarization of ^{12}B and ^{13}B were measured in the reaction $^{15}\text{N} + ^{197}\text{Au}$ (target thickness 200 μm) at 112MeV/u by using a radioactive beam line RIPS.13 The beam swinger of RIPS was used to collect fragments at 2, 4, and 6 degrees. ^{12}B and ^{13}B were separated from other fragments with RIPS, and implanted into a Pt stopper placed at the final focus of RIPS (Fig. 1). Spin polarization was deduced from the observed up/down asymmetry in the beta decay of ^{12}B ($T_{1/2}=20.2$ ms) and ^{13}B ($T_{1/2}=17.4$ ms).

Experimental results are presented in Fig. 2. The momentum distribution of ^{12}B shown in the upper part exhibits a single broad peak with a maximum located closed to the momentum corresponding to the incident beam velocity. The spin polarization observed is shown in the lower part of Fig. 2, as a function of the momentum. The size of polarization takes a maximum value near the peak of the momentum distribution while the sign stays negative in the whole range of momentum. The result for ^{13}B is similar to that for ^{12}B. This momentum dependence of the polarization is different from that obtained, $^{14}\text{N} + ^{197}\text{Au}$ at 40MeV/u.20 Up to now we have not yet attained a full understanding of the observed behaviors of polarization. Clearly, further extent of measurement at, e.g., different reaction channels and energies is necessary. Recently, we measured spin polarization of ^{12}B and ^{13}B in $^{15}\text{N} + \text{X}$ reactions ($\text{X}=\text{Al, Nb, Tb, Au}$) at 70 MeV/u. Data Analysis is now in progress.

References
1) T. Kubo \textit{et al.}: This Report, p. 96.

* NSCL, Michigan State University, East Lansing, MI 48824, U.S.A.
** Institut de Physique Nucleaire, B.P. 1, 91406 Orsay, France.
III-1-6. Negative Pion Production in Subthreshold Nuclear Collisions

T. Suzuki, N. Inabe, T. Nakagawa, K. Yoshida, and I. Tanihata

[NUCLEAR REACTION, 14N(C,p^-)X, measured on-(E); deduced slope factor.]

Inclusive π^- spectra have been measured for 14N+C collisions at 67A, 80A and 135A MeV. Experimental details can be found in Ref. 1. Lorentz-invariant cross sections, $(1/p)d^2\sigma/d\Omega dE$, depend exponentially upon the pion energy in the nucleon-nucleon c.m. frame with a inverse slope T_0 as indicated in Fig. 1. In Fig. 2 we plot the slope factors T_0, for π^- produced at $\theta_{c.m.}=90^\circ$, over a wide range of the mass and beam energy. The slope factor T_0 decreases monotonously as the beam energy decreases down to around 100A MeV. However, the behavior seems to change below 100A MeV, where T_0 appears to flatten out down to 25A MeV. Although a slight decrease in the slope factor with beam energy is indeed observed within an error bar, energy distributions below 100A MeV are less steep than expected from the monotonous decrease in the slope factor down to 100A MeV. A recent BUU calculation which includes both the $\Delta\rightarrow N\pi$ channel and the tail portion of the momentum distribution originating from short range correlations reproduces above behavior. 4)

Fig. 1. Lorentz-invariant cross sections, $(1/p)d^2\sigma/d\Omega dE$, for inclusive π^- production in 14N + C collision, at energies indicated. Only statistical errors are shown in the plot. T_0 is the slope factor when the cross sections are parameterized by $\exp(-T_p/T_0)$.

Fig. 2. Slope factor, T_0 for π^- spectra at $\theta_{c.m.}=90^\circ$, plotted as a function of beam energy for a variety of targets and projectiles, at beam energies between 41 and 800A MeV. For comparison, the apparent temperature deduced from π^0 transverse momentum spectrum, $(d\sigma/dp^2)_L$, assuming the isotropic emission with $d\sigma/dp^2 \propto \exp(-T_p/T_0)$ in the frame where the pion source is at rest, are also plotted. The π^- data are from Refs. 1, 2, and the present study. The π^0 data are taken from Ref. 2.

References
III-1.7. Target Dependence of Surface Muon Yields in Heavy Ion Reactions

K. Ishida, T. Matsuzaki, K. Nagamine, R. Kadono, A. Matsushita, H. Kitazawa, Y. Miyake, and E. Torikai

Muon is an elementary particle that has many applied fields such as \(\mu \)SR and \(\mu \)CF. We started to investigate the production of surface muons in various targets using a \(^{14}\)N beam of 135 MeV/u from RIKEN Ring Cyclotron. Since surface muons are produced from decay of positive pions produced in nuclear reactions and stopped near the surface skin of a production target, low-energy pions (below 10 MeV) mostly contribute to the surface muon production. Thus surface muon is a sensitive probe for the investigation of low-energy pion production.

In this experiment, muons were transported through a “Large \(\Omega \)” beam course and were identified by a counter system reported in Ref. 1. Experimental muon yield divided by the number of target nuclei is expected to give a value which is almost proportional to the cross section of low-energy (\(<10\) MeV) pion production. The result is shown in Fig. 1.

In order to understand the target mass dependence of the muon yield, we carried out a Monte-Carlo calculation on the yield of surface muons on the basis of the following model of pion production:\(^{1-4}\)

1) The total pion-production cross section depends on the projectile mass number and the target mass number, \(S_x (A_p A_t)^{2/3} \), where \(S_x \) is a normalized cross section.

2) Pion is emitted from a hot nucleus produced as a result of projectile-target collision, where the number of participating nucleons can be obtained from the values listed in Table 1 of Ref. 2. A pion emission angle is isotropic in the frame moving with a pion source (PS frame).

3) Pion kinetic energy distribution is an exponentially decreasing function with an inverse slope constant \(T_0 \) in the PS frame. Three different values of \(T_0 \) (15, 25, and 35 MeV) were used to cover the uncertainty of this value. The Coulomb interaction of positive pion with the pion source was included as a final pion energy shift.\(^4\)

Result of the calculation is shown in Fig. 1. The scale of the lines calculated relative to the experimental data was chosen arbitrarily with \(S_x = 9 \mu \)b. We found that the conversion efficiency of the produced pions into surface muons is almost independent of the target mass number, as far as \(T_0 \) is taken independent of the target, and, thus, the surface muon yield calculated is almost proportional to the pion production cross section. The measured muon yield is flattened for heavier targets, while it seems consistent with \(A_t^{2/3} \) dependence for lighter targets. Although this tendency is in qualitative agreement with \(\pi^0 \) and \(\pi^+ \) data obtained at lower projectile energies,\(^{3,4}\) the discrepancies from \(A_t^{2/3} \) seems to be more pronounced in our case. This might indicate the effects characteristic of low energy pion emission such as pion reabsorption.

References
III-1-8. Identification of Z near 30 Nuclei

[NUCLEAR REACTIONS 20 A MeV 64Zn + Be, particle identification.]

A Be target of 17.2 mg/cm2 was bombarded with a beam of 20.11 A MeV and 20 enA 64Zn$^{20+}$ provided by RRC with RILAC as an injector. The purpose of the experiment is to observe $T_Z = -1/2$ exotic nuclei such as 61Ga, 63Ge, and 65As. In this Z region, it is difficult to get good particle identification. Our detecting system and the identification abilities of the system are briefly presented as follows.

To determine the charge state, atomic numbers, and masses of the reaction products, we used a detector telescope with RIPS at the RRC facility. The detector telescope, consisting of a PPAC, a MUSIC, and a Position Sensitive Silicon Detector (PSSD) was positioned behind the F3 plane of RIPS. The Time-of-Flight (TOF) was measured by using the RF signal of the cyclotron and PPAC. The flight path was 2,779.6 cm. A ΔE detector is a MUSIC operated in an ionization chamber mode. The chamber was 50 cm in sensitive length and was filled with 76 Torr P10 gas. Remaining energy was measured with a PSSD of 45 mm x 45 mm x 300 μm after MUSIC.

The identification abilities of this detecting system were shown in Figs. 1 and 2.

![Fig. 1](image1.png)

Fig. 1. TOF vs. E (total) contour plot. It shows the resolution of charge states. From outside to inside, the counts are 2, 4, 10, 50, and 360 respectively. Both $A-2q$ line and q line are indicated on the plot.

![Fig. 2](image2.png)

Fig. 2. TOF vs. ΔE contour plot. It shows the resolution of atomic numbers. The scales are similar to Fig. 1. Both $A-2q$ line and Z line are indicated on the plot.

Figure 1 refers to the contour plot of TOF vs. E (total). Here a slight conversion of plot was made so that all the events for each q or Z appear almost on a vertical line. A similar treatment was also made in Fig. 2, which shows a TOF vs. ΔE contour plot which stands for Z distribution. The calibration points of q, Z, and A on the contour plots were obtained from a wedge shaped Al target run using the primary beam. Under the conditions mentioned above, an atomic number resolution of $\sigma_q = 0.24e$ at $Z = 30$ and a charge state resolution of $\sigma_q = 0.26e$ at $q = 30$ were obtained. The resultant A resolution in combination with RIPS was about $\sigma_A \sim 0.26$.

In conclusion, the identification has been carried out successfully for the nuclei of Z near 30.

References
Establishing the limits of the particle stability for nuclei has been a goal of experimentalists for many years. Theoretical estimates predicated that up to 8,000 nuclides might lie within the boundaries of the particle stability of nuclei. Among them, only about 2,000 nuclides have been identified. This field still receives an increasing amount of attention.

A number of exotic nuclei were observed with the advent of the intermediate and high energy heavy ion accelerators. Most of them were produced by projectile fragmentation. However, it is now widely recognized that in the energy domain of tens to a hundred MeV per nucleon, the clean picture of high energy fragmentation can not yet be applied. Mean field effects are still important and a so-called fragmentation peak originates in fact from the superposition of various processes: transfer reactions, direct breakup, sequential breakup, and mixtures of these mechanisms. As for the nuclei of \(Z < 34 \), moreover, there seem no suitable stable nuclei for the projectiles to produce their unobserved isotopes in a proton-rich side via projectile fragmentation. This is because the isotopes to be searched lie far from the stability line. In the present work, the relatively proton-rich stable nucleus \(^{64}\text{Zn} \) was chosen as a projectile to produce unobserved proton-rich isotopes in this \(Z \) region by few-nucleon transfer reactions.

The experiment was carried out on RIPS. A Be target of 17.2 mg/cm\(^2\) was bombarded with a beam of 20.11A MeV \(^{64}\text{Zn}^{20+} \) provided by RRC with RILAC as an injector. Under these conditions, an atomic number resolution of \(\sigma_{Z} = 0.24 \) at \(Z = 30 \) and a mass resolution of \(\sigma_{A} = 0.26 \) at \(A = 60 \) were obtained. Data were accumulated in a 4-h period, during which a primary beam intensity was \(\sim 6 \times 10^9 \) particle/s.

By taking the data corresponding to \(Z = 33 \) and \(A - 2q = 1 \), we have a histogram of \(E \) (total) as displayed in Fig. 1. There appear only two peaks which are \(^{65}\text{As}^{32+} \), and \(^{67}\text{As}^{33+} \), respectively. This is the first observation of a proton-rich isotope \(^{65}\text{As} \).

For clarifying the faithfulness of the observation, consideration should be given to a possible contaminant arising from the neighboring peak of \(Z = 32 \). If a Gaussian distribution is assumed to hold for each \(Z \), the contamination infiltrated into the peak of \(Z = 33 \) accounts for 2.7% of the peak of \(Z = 32 \) according to the \(Z \) resolution. It is much less than the events of \(Z = 33 \).

References
1) V.V. Volkov: Treatise of Heavy-Ion Science, 8, 101 (1989).
Y. Gono, M. Oshima, H. Kusakari, T. Murakami, and M. Sugawara

\[\text{NUCLEAR REACTIONS } ^9\text{Be}(^{70}\text{Ge},3n)^{76}\text{Kr},\ ^{208}\text{Pb}(^{76}\text{Kr},\ ^{76}\text{Kr}^\gamma). \]
\[E(^{70}\text{Ge}) = 320 \text{ MeV}; \text{ measured } E_\gamma. \]

\(\gamma \) rays from the Coulomb excitation of an unstable nucleus \(^{76}\text{Kr}\) were observed for the first time. The nucleus \(^{76}\text{Kr}\) was produced by the \(^9\text{Be}(^{70}\text{Ge},3n)^{76}\text{Kr}\) reaction under the conditions as follows; (1) A \(^{70}\text{Ge}\) beam of 320 MeV was delivered by JAERI tandem accelerator. (2) Targets were 1.5 mg/cm\(^2\) \(^9\text{Be}\) for production and 2 mg/cm\(^2\) \(^{208}\text{Pb}\) for Coulomb excitation. (3) The \(^9\text{Be}\) target was surrounded with 19 BaF\(_2\) crystals. (4) The annular plastic detector (PS) segmented into four was used to detect \(^{76}\text{Kr}\) scattered by Pb. (5) \(\gamma\) rays emitted from Coulomb-excited \(^{76}\text{Kr}\) were measured by 4 HPGe's shielded with a 20 cm Pb from the \(^9\text{Be}\) target. Under these conditions the kinetic energy of the secondary beam of \(^{76}\text{Kr}\) was estimated as 185±21 MeV. The \(\gamma\) rays emitted by Coulomb excitation were measured in coincidence with TOF signals between PS and BaF\(_2\).

The 424 keV \(\gamma\) ray of the \(^2^+_\text{g.s.} \rightarrow 0^+\) transition in \(^{76}\text{Kr}\) is clearly seen in Fig. 1. This peak is concluded to originate from Coulomb excitation of \(^{76}\text{Kr}\) on the basis of the facts that (1) the peak energy was 424 keV after the reasonable Doppler shift correction (424 keV \(\gamma\) rays from other origins should have different Doppler shift) and (2) the yield of this peak was consistent with that estimated for the present experimental setup using a known half-life.\(^1\)

This is a first successfull experiment of Coulomb excitation of unstable nucleus and may open a new possibility of an application of unstable nucleus beams.

References

III-1-11. Isomer Decay of ^{136}Ce Studied by GARIS

NUCLEAR REACTIONS $^9\text{Be}(^{132}\text{Xe}, 5\text{n}), E/A=7.0$ MeV; Gas Filled Recoil Ion Separator; measured $E\gamma$, $I\gamma$, γ-γ-coin, deduced $B(E1)/B(E2)$.

Delayed γ rays in ^{136}Ce were measured by using the $^9\text{Be}(^{132}\text{Xe},5\text{n})^{136}\text{Ce}$ reaction. A 7.0 MeV/u ^{132}Xe beam was delivered by RRC. The reaction product ^{136}Ce was collected to a Pb catcher after the separation of the ^{132}Xe beam by a gas-filled ion separator, GARIS.\(^1\)

γ-Ray spectra taken at a ^9Be target and the catcher positions are shown in Fig. 1(A) and (B), respectively. The 683.1 keV peak in (B) was found for the first time and was assigned as the transition between the 8^+ and 7^- states in ^{136}Ce, as shown in Fig. 2, on the basis of a γ-γ coincidence measurement. The intensity of the γ ray was found to be 1.2% of the 552.1 keV γ ray of the $2^+ \rightarrow 0^+$ transition. The yield corresponds to $\sim 0.3\%$ of the total yield of ^{136}Ce since the isomer ratio of the 10^+ isomer was obtained to be 0.22 in the present experiment. This γ ray yield is the same order of magnitude as that of the weakest γ ray so far observed even with the elaborated compton suppressed multidetector system.

The ratios $B(E1: 8^+ \rightarrow 7^-)/B(E2: 8^+ \rightarrow 6_1^+)$ and $B(E1: 8^+ \rightarrow 7^-)/B(E2: 8^+ \rightarrow 6_2^+)$ were deduced to be 4.3×10^{-5} and 2.2×10^{-4} fm$^{-2}$, respectively. They are relatively large compared with those of other nuclei.\(^2\) This point will be discussed in a forthcoming paper.\(^3\)

References

Fig. 1. γ-ray spectra taken at the target position (A) and the catcher position (B).

Fig. 2. Partial level scheme of ^{136}Ce.
III-1-12. γ-Vibrational States in 164Dy

M. Oshima, H. Kusakari, M. Sugawara, T. Inamura, A. Hashizume, H. Kumagai, S. Ichikawa,* and H. Iimura*

\[\text{NUCLEAR REACTIONS } 164\text{Dy}(^{58}\text{Ni}, ^{58}\text{Ni}^{\gamma}), \ E=240 \]

The 164Dy nucleus is known to be well deformed and to have a one-phonon γ-vibrational state at the lowest excitation energy in this mass region. Thus this nucleus is best suited for the study of the γ-vibrational mode in deformed nuclei. An important question is whether two phonon γ-vibrational states exist or not.1-4 No definite evidence for two phonon γ-vibrational states in deformed nuclei have so far been provided experimentally. Because of this, we have made a multiple-Coulomb-excitation experiment on 164Dy.

164Dy was multiply Coulomb-excited with a beam of 240-MeV 58Ni obtained from the JAERI tandem accelerator. The target 164Dy was a self-supporting metallic foil of 1.8 mg/cm2 in thickness (95% isotopically enriched). Deexcitation γ rays were observed with four Compton-suppressed γ-ray spectrometers (RIKEN BGO-ACS)5 in coincidence with recoiled target atoms and scattered projectiles detected with four PPACs (Parallel Plate Avalanche Counter). PPACs were placed symmetrically with respect to the beam, surrounding the target, so that they covered forward as well as backward angles. The size of PPAC was 10 cm \times 10 cm, and the distance between the center of the PPAC window and the target was 7 cm. PPACs detected recoiled particles as well as scattered ones, and provided the position signals of the particles. The timing signals from PPACs were used to distinguish between the two. The observed γ-ray spectra were corrected for Doppler shifts kinematically by using the position signals.

Figure 1 shows a Doppler-corrected spectrum corresponding to the backward scattering of the projectiles. We observed members of the ground-state rotational band up to 18^+ and of the γ band up to 12^+. The transition from a two-phonon γ-vibrational state to a one-phonon state is, however, not observed in the energy range of 750-1100 keV, which corresponds to the excitation energy of the two-phonon state at 2.0-2.5 times higher than that of the one-phonon state.

Because the Coulomb-excitation cross section is a direct function of B (E2), the upper limit of the unobserved γ-ray intensity gives that of the B (E2; $4\gamma\gamma\rightarrow2\gamma$) value. The estimation shows that B (E2; $4\gamma\gamma\rightarrow2\gamma$) \leq 2.5 W.u. Several theoretical investigations predicted rather large B (E2) values for a neighboring well-deformed nucleus 168Er: for example, self-consistent collective-coordinates analysis done by Matsuo et al. predicted 9 W.u. for this value;1 also Yoshinaga et al. predicted 7 W.u. based on an interacting boson model.2 In 164Dy, however, it can be said that a two-phonon γ-vibrational state with large collectivity does not exist in the energy region between 2.0 and 2.5 times that of the one-phonon γ-vibrational state.

A large scale analysis6 is under way to determine precisely the β- and γ-deformations for the ground and γ band as a function of spin.

References
III-1-13. Study of the Decay Property of ^{20}Na
—Onset Mechanism of the Rapid-Proton Process—

(NUCLEAR STRUCTURE, ^{20}Na, Radioactive beam of ^{20}Mg, Explosive hydrogen burning.)

The rapid-proton (rp) process, which will take place in high-temperature, hydrogen-rich stellar sites such as in novae and super novae, is expected to involve many proton-rich unstable nuclei. However, the nuclear structures are often not well known of these nuclei. It should be worthwhile to check experimentally the key nuclear reactions for nucleosynthesis scenarios in nuclear astrophysics. Some scenarios are still standing on rather fragile bases in a sense of nuclear physics.

Recently, considerable efforts have been made for investigating experimentally the breakout process from the hot-CNO cycle, which leads to the onset of the rp-process. The main sequence of the breakout process is considered to be $^{15}\text{O} (\alpha, \gamma) ^{19}\text{Ne} (p, \gamma) ^{20}\text{Na}$. Although the nuclear structure of ^{20}Na is so crucial for this process, it was almost unknown until recently. We have identified many new levels by the $(^3\text{He}, t)$ and (p, n) reactions on ^{20}Ne, including a possible s-wave resonant state (1+) at 2.637 MeV which is the first excited state above the proton threshold. The stellar reaction rate of the $^{19}\text{Ne} (p, \gamma) ^{20}\text{Na}$ process calculated based on these experimental results is about two orders of magnitude larger than the previous theoretical predictions, suggesting the onset temperature of the rp-process to be about a factor of two smaller than those predicted before. However, these are some assumptions made for this estimate which are the same as in Ref. 3. To learn the mechanism and the absolute temperature of the onset of the rp-process, the decay property of ^{20}Na has to be studied, especially the widths for proton and gamma decays as well as the total widths of the states near and above the proton threshold.

A test experiment was performed to investigate the decay property of the threshold states in ^{20}Na by using the projectile fragment separator RIPS in the RIKEN Ring Cyclotron Facility. Specifically, the decay property of the crucial threshold state, the 2.637 MeV 1+ state, was partly studied.

The secondary beam of ^{20}Mg was produced from the ^{24}Mg induced fragmentation process, and separated by using the RIPS. The primary beam energy was set to 100 MeV/u. The secondary beam had high contaminations of other beams, especially of ^{19}Ne. On the focal plane F3 of the RIPS, ^{20}Mg particles were stopped in an array of silicon detectors of 100 μm, in which the decay protons were measured. Two Ge detectors were also set for gamma decay measurement at 90°. The beta counter made of three sets of $\Delta E-E$ plastic-scintillator telescopes covers about 70% around the silicon detector array. Because of the low intensity of the secondary beam and the severe contamination of other particles, only the proton decay was measured.

In the preliminary result of the experiment, several sharp peaks were observed in the proton spectrum. Even the proton decay information will give an insight to the nuclear structure as well as the resonance property of the states of interest.

To confirm these preliminary results, a final experiment will be performed soon with better setups.

References
III-1-14. Nuclear Polarization of 33Si with Optical Pumping in Solids

K. Shimomura, T. Nakamura, H. Okuno, M. Koizumi, S. Hamada,
N. Inabe, I. Ogawa, K. Suzuki, M. Wada, H. Sunaoshi,
Y. Fukashiro, T. Murayama, T. Kohmoto, T. Shinozuka,
T. Kubo, K. Asahi, T. Inamura, M. Ishihara,
M. Fujioka, and S. Matsuki

NUCLEAR REACTION 40Ar+9Be, $E(^{40}$Ar)=80 MeV/nucleon; optical pumping in solids GaAs; measured β-ray asymmetry from 33Si nuclei; deduced nuclear polarization of 33Si.

Recently much interests have been focussed onto the structure of light neutron-rich isotopes (Ne to Si) with neutron numbers N around 20; it has been suggested from a number of experimental and theoretical investigations that, in this region, the neutron magic number may not be 20 and some nuclei with N around 20 may be deformed.

In order to clarify the situation on this interesting suggestion, it is important to accumulate more detailed experimental data on the nuclei in this region. As part of the experimental program to study the structure of nuclei around this region, we tried to polarize 33Si isotopes implanted into GaAs crystal by optical pumping in solids, thereby measuring the nuclear magnetic moment from the radiation-detected magnetic resonance.

Schematic diagram of the experimental system for the optical pumping in solids is shown in Fig. 1. The isotopes 33Si were produced by a projectile fragmentation process with the interaction of a 80 MeV/n Ar beam and a Be target. After mass separated with the mass separator RIPS at RIKEN, the isotopes 33Si were implanted into a GaAs crystal cooled to about 20 K by contact with liquid He. The implantation rate of the isotope was about 3,400 s$^{-1}$.

The GaAs crystal containing the implanted 33Si was irradiated with circularly polarized laser light to get the spin polarization of electrons excited from the valence band to the conduction band. Through the hyperfine interactions between the excited electrons and the donor nucleus of implanted 33Si, the nuclear spin of 33Si can also be polarized. The pumping source used for this optical pumping is a Ti-sapphire laser excited with an Ar-ion laser. The degree of polarization was measured by detecting the asymmetry of emitted beta-rays distribution with a pair of CaF$_2$(Eu) scintillation-counter telescope set along the magnetic field, one in front of and the other behind the sample. The asymmetry measured under a 2.5 Koe magnetic field is shown in Fig. 2 as a function of the wavelength of the exciting light. Nuclear polarization was achieved only at a narrow region of laser wavelength, consistent with the expectation that only the laser light in that wavelength region can reach the implanted 33Si isotopes. The measured asymmetry corresponds to the nuclear polarization of about 2%. This value is appreciable and...
was obtained for the first time for unstable isotopes by the optical pumping in semiconductor materials.

References

Fig. 2. β-rays asymmetry from 33Si measured as a function of the wavelength of exciting laser light.
III-1-15. Cross Sections of 209Bi(40Ar, αxn)$^{245-246}$Es Reactions

NUCLEAR REACTION 209Bi+40Ar, $E(40\text{Ar})=5.2$ MeV/nucleon; collected reaction products with gas-filled separator; measured α decays; deduced σ_Y for (40Ar, αxn) and (40Ar, α2n).

The (α, xn) reaction, in which precompound α particle emission takes place, is shown to occur significantly even near the Coulomb barrier in an 40Ar induced reaction on 209Bi. Because the α emission can efficiently cool down a highly excited nucleus both in energy and angular momentum, it is considered to be very effective for production of fissile nuclei like superheavy elements (SHE).

The above phenomenon has been known to occur significantly when relatively light heavy ions up to $A=22$ are bombarded. In the case of an 40Ar projectile, the heaviest system known so far is the 181Ta (40Ar, αxn)217-xAc reaction, in which the cross sections of interest have been comparable to the case of the lighter projectiles. However, the residual nuclei produced in this reaction are located at the beginning of the actinide species far from the SHE region in which we are interested in. Therefore, we have considered it worthwhile to measure cross sections of the 209Bi-(40Ar, αxn)$^{245-246}$Es reactions in order to see whether this type of reaction can be promising for the search of SHE.

The present measurement has been done by using the gas-filled separator (GARIS) at the RIKEN Ring Cyclotron. A 209Bi target of about 1 mg/cm2 thickness backed with a thin Al plate was placed 70 cm upstream from the field boundary of a dipole magnet of the GARIS and was bombarded with pulsed 10 MeV/u 40Ar ions. A typical pulse duration was 10 s with a repetition frequency of 0.05 Hz. The effective bombarding energy after the target backing was set to be 5.2 MeV/u. A Si-detector having a 2,000 mm2 effective area was positioned at the focal plane of the GARIS. Alpha decays of the residual nuclei implanted onto the Si detector were measured during a beam-off period. The assignment of the observed α decays was done on the basis of the measured energies and lifetimes.

Figure 1 shows a part of the observed α spectra.

The 7.893 MeV peak has been assigned to 243Es produced in the 209Bi(40Ar, α2n) reaction, while two peaks with $E_\alpha=7.163$ and 7.213 MeV have been assigned to 244Cf produced by the EC decay of 244Es made in the (40Ar, αn) reaction. The present result yields the following cross sections; $\sigma_{\alpha2n}=44\pm15$ nb and $\sigma_{\alpha n}=36\pm15$ nb.

Fig. 1. A part of α spectra observed in the 209Bi+40Ar reaction.

* Cyclotron and Radioisotope Center, Tohoku Univ.

NUCLEAR REACTION 4He, 12C(π^+, pp), (π^+, pn), $P_{\pi} = 1$ GeV/c, pion absorption.

Pion absorption on a nucleon pair (two-body absorption) in the GeV region can be a good probe to study short range correlations in nuclei due to the large momentum transfer. In this energy region, however, the measurement has been made only for a deuteron target. The (π^+, pp) and (π^+, pn) cross sections for 4He and 12C have been measured at $P_{\pi} = 1$ GeV/c. We intend to obtain information about short range correlations for $T=1$ pairs as well as $T=0$ pairs. We chose 4He as a target because of its high density compared with other nuclei, expecting higher momentum components between two nucleons.

The experiment was done at the π^2 beam line (internal target) of the KEK 12GeV Proton Synchrotron, which delivers $10^9 \pi^+$/spill with energies higher than those at existing meson factories (up to 500 MeV). Figure 1 shows the experimental setup, and the angular ranges measured in this experiment are given in Table 1. Forward-going protons with high momentum were measured by using a spectrometer consisting of a dipole magnet, five drift chambers (W1-5), and a hodoscope (FH). Backward-going protons and neutrons were detected with two TOF walls, one made of 10 cm-thick plastic scintillators and the other composed of a stack of scintillators with a total thickness of 15 cm. Flight paths were 2~3 m, and the angular resolution for backward nucleons was better than ± 3 degrees. The thicknesses of the 4He and 12C targets were 3.9 g/cm2 and 6.6 g/cm2, respectively. The 4He target was a cylindrical container made of stainless steel, whose diameter and window thickness were 230 mm and 0.5 mm, respectively.

The measurement has been finished, and data analysis is in progress.

Table 1. Angular ranges measured with setup 1 and 2.

<table>
<thead>
<tr>
<th></th>
<th>forward</th>
<th>backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>setup 1</td>
<td>5-23 degrees</td>
<td>110-170 degrees</td>
</tr>
<tr>
<td>setup 2</td>
<td>17-35 degrees</td>
<td>80-140 degrees</td>
</tr>
</tbody>
</table>

*1 Institute of Physics, University of Tsukuba.
*2 Nuclear Research Center, University of Alberta and TRIUMF.
*3 Laboratory of Nuclear Science, Tohoku University.
*4 Institute for Nuclear Study, University of Tokyo (INS).
*5 Institute for Nuclear Research, Academy of Science (INR) and INS.
*6 Department of Physics and Laboratory for Nuclear Science, Massachusetts Institute of Technology (MIT).
III-1-17. Yields of Long-Lived Isotopes around $A=169$ Produced in the 14N+181Ta Reaction at $E_{14\text{N}}=35$ MeV/u

(Experimental result, Target fragmentation, Yield of the isotopes.)

For our future experiments, collinear laser spectroscopy, the knowledge of the yields of the radioactive products formed by nuclear reactions is very important. This paper reports the yields of the radioactive products around the mass number $A=169$ produced by target fragmentation in the 14N+181Ta reaction at $E_{14\text{N}}=35$ MeV/u, measured with the RIKEN GARIS system.1)

The experimental setup basically uses a thin-target and an Al-catcher foil technique. The identification of radioactive isotopes produced were made from the energies of γ rays and half-lives of the products. The GARIS system was tuned so as to get maximum transmission efficiency for 169Hf. The transmission efficiency of GARIS was $0.49\pm0.11\%$.

Fig. 1. Distribution of the yields of long-lived isotopes produced by target fragmentation in the 14N+181Ta reaction at $E_{14\text{N}}=35$ MeV/u. An average beam intensity was 183 nA. The yields were given by the height on the $N-Z$ plane. For the above mentioned target fragmentation (14N+181Ta\rightarrow^{169}Hf). The target thickness was 8.3 mg/cm2.

Here we present the yields of isotopes produced at the GARIS focus point of long-lived isotopes with half-lives longer than 1 hour. Figure 1 shows the distribution of the yields of long-lived isotopes; the number at each top of the column shows the yield (particles/s) of each isotope. In this illustration, no feeding correction for a sequential decay is included. For the reason of above no feeding correction, the yields of 166Yb, 165Tm are larger than that of 169Lu.

The result that the neighbouring isotopes of a mass difference $\Delta A=12$ ($\Delta A=A_{\text{target}}-A_{\text{isotope}}$), for example 169Lu, are most probable to be produced is in agreement with a previously reported result that the isotopes with $\Delta A=10$ are most probable in the 14N+124Sn reaction at $E_{14\text{N}}=30$ MeV/u.2) However, isotopes with atomic numbers larger than that of the target were not produced in the present target fragmentation.

Finally, the cross section for the 14N+181Ta\rightarrow^{169}Lu reaction is about 124 mb.

A further analysis including feeding correction and the yield of short-lived isotopes is in progress.

References
III-1-18. Dynamical Collective Properties of Nuclei at Finite Temperature

S. Yamaji, H. Hofmann,* and A.S. Jensen**

(Large Scale Collective Motion, Linear Response Theory.)

We derived a selfconsistent transport equation for the nuclear collective motion, computed transport coefficients for a fission, process, and found that a Markovian approximation is a fairly good approximation for temperatures around 2 MeV.11 We then studied the validity of the Markovian approximation in more detail.21

In the present paper, we report a study of the temperature-dependence of the collective vibrational motion of 208Pb within the framework of our theory.

We calculate the collective response function whose imaginary part is the strength function. We plot the strength function of 208Pb with spherical shape as a function of the excitation energy ω for temperatures $T = 0.5, 2,$ and 3 MeV in Fig. 1, and the energy-weighted sum as a function of temperature in Fig. 2. To get the energy-weighted sum, we fit the sum of two strength functions of harmonic oscillator type $\chi^{(i)}_{\text{osc}}(\omega)$ and $\chi^{(2)}_{\text{osc}}(\omega)$ to the strength function $\chi^{(i)}_{\text{pot}}(\omega)$. We then calculate the energy-weighted sum S_i by the relation $S_i = \hbar^2/2M_i k^2$, M_i and k being the inertia of the i-th harmonic vibration and the coupling constant, respectively.11

We find that the energy-weighted sum for a high mode (iso-scalar quadrupole resonance) decreases with increasing temperature and that all strength is concentrated in a low frequency mode. This means that the vibrational inertia of the slow motion becomes the one of irrotational flow. Thus we can get rid of the defect that we sometimes have a negative inertia at high temperature in the Markovian approximation.

** References

III-1-19. Dissociation Cross Sections of ^{11}Li

K. Soutome, S. Yamaji, and M. Sano

(dissociation of ^{11}Li, target-charge dependence, Glauber approximation.)

Recently, Kobayashi et al.\(^\text{1)}\) measured cross sections for the reaction $^{11}\text{Li} + T(A_T,Z_T) \rightarrow ^9\text{Li} + X$ where $T = \text{C, Cu, and Pb}$ and reported unusual target-charge dependence of the Coulomb dissociation cross section $\sigma_{\text{C}}^{\text{exp}}$. In extracting $\sigma_{\text{C}}^{\text{exp}}$ from experimental data σ^{exp}, they assumed that (i) the nuclear dissociation cross section $\sigma_{\text{N}}^{\text{exp}}$ takes the form $\sigma_{\text{N}}^{\text{exp}} = \gamma (R^{(11}\text{Li}) + R(T))$, where $R(A)$ is the "interaction radius"\(^\text{2)}\) of a nucleus A and (ii) Coulomb-nuclear interference can be neglected and hence $\sigma^{\text{exp}} = \sigma_{\text{C}}^{\text{exp}} + \sigma_{\text{N}}^{\text{exp}}$, and (iii) $\sigma_{\text{C}}^{\text{exp}} = 0$ for $T = \text{C}$. With these assumptions they first fixed γ using the value of σ^{exp} for $T = \text{C}$ and then calculated $\sigma_{\text{N}}^{\text{exp}}$ for $T = \text{Cu and Pb}$ from which $\sigma_{\text{C}}^{\text{exp}} = \sigma^{\text{exp}} - \sigma_{\text{N}}^{\text{exp}}$ can be estimated. In this way, they obtained the target-charge dependence $\sigma_{\text{C}}^{\text{exp}} \propto Z_T^{-1.41 \pm 0.22}$, which deviates largely from Z_T^{-2}.

Assuming that ^{11}Li consists of a ^9Li core and two valence neutrons and the core remains in its ground state after collision, we can calculate the dissociation cross section for the above process using Glauber’s formalism. Computational details are given in Ref. 3 and here we show only numerical results in Fig. 1. Our nuclear cross section σ_{N} (dotted curve) shows a qualitative agreement with $\sigma_{\text{N}}^{\text{exp}}$, while the total cross section σ (dashed curve) overestimates for a Pb target. This is due to the fact that the effect of Coulomb-nuclear interference is — as expected — small and hence $\sigma - \sigma_{\text{N}}$ is almost equal to the pure Coulomb cross section σ_{C}, which rises as Z_T^{-2}.

As discussed in detail in Ref. 4, however, the exponent of the Coulomb cross section σ_{C} is suppressed for a high-Z_T target if we take account of the bending of a trajectory. The solid curve in Fig. 1 includes this effect. In this case the Z_T dependence of the Coulomb cross section becomes $Z_T^{-1.75}$, closer to the experimental Z_T dependence. This shows the limits of the straight-line approximation, or the importance of the bending effect.

References

III-1-20. Induced Fission Studied with a Multi-Dimensional Langevin Equation

T. Wada, Y. Abe, and N. Carjan*

[Fission, multi-dimensional Langevin equation, kinetic energy distribution.]

Nuclear dissipative phenomena, such as deep inelastic collisions, have been treated as non-equilibrium statistical problems. Slow collective degrees of freedom with heavy masses are treated as Brownian particles and fast nucleon degrees of freedom as a heat bath. It is shown in Ref. 1) that recent developments in computers enabled us to practically solve a Langevin equation. As is well known, nuclear fission is a multi-dimensional collective motion. Some observable quantities are expected to reflect multi-dimensional dissipative dynamics. Thus it is very important to extend Langevin approach to multi-dimensional cases.

A multi-dimensional Langevin equation is given by

\[
\frac{d}{dt} p_i = -\frac{\partial V}{\partial q_i} - \frac{1}{2} \gamma_{ij} (m^{-1})_{jk} p_k + \gamma_{ij} (m^{-1})_{jk} p_k + \delta_{ij} R_j(t)
\]

\[
\frac{d}{dt} q_i = (m^{-1})_{ij} p_j
\]

where \(m_{ij} \) and \(\gamma_{ij} \) are the mass and friction tensor, respectively. The multi-dimensional random force \(R_j(t) \) is assumed to be a white noise and its strength \(g_{ij} \) is given by \(g_{ik} g_{jk} = T \gamma_{ij} \), where \(T \) is the temperature of a compound nucleus.

A characteristic aspect of the Brownian picture for nuclear fission is a fluctuation of the fissioning coordinate in the course of the descent from saddle to scission, which are expected to strongly affect observable quantities of fragments, such as kinetic energy distribution. The fragment kinetic energy is calculated as the sum of the pre-scission kinetic energy and the Coulomb energy between two fragments at scission. In one-dimensional treatment, the variance of the kinetic energy comes only from the fluctuation of the pre-scission kinetic energy, because the scission point is fixed. Calculated variance was found to be too small to explain experimental data. On the other hand, in a multi-dimensional treatment, the fluctuation of the scission point causes the fluctuation of the Coulomb energy. Several authors have already tried to explain the large variance by solving a multi-dimensional Fokker-Planck equation approximately and obtained rather satisfactory results.2) Here we directly solve the multi-dimensional Langevin equation (1) without any approximations. The potential \(V(q) \), the mass tensor \(m_{ij}(q) \), and the friction tensor \(\gamma_{ij}(q) \) are calculated with a liquid drop model.3) We adopt two-body dissipation mechanism in calculating \(\gamma_{ij}(q) \) with a viscosity coefficient \(\mu = 0.02 \), \(TP = 1.25 \times 10^{-21} \text{ MeV·s/fm}^3 \).

Fig. 1 shows the calculated average value of the fragment kinetic energy and its variance are compared with experiment for the symmetric fission of \(^{235}\text{U}\). Long dashed lines are for the pre-scission kinetic energy, short dashed lines are for the Coulomb energy, and solid lines are for the total kinetic energy. Experimental values are taken from Ref. 4).

References

* Centre d’Etudes Nucléaires, Bordeaux-Gradignan, France.
Approximate Ground State of the Lipkin Model Hamiltonian in Density-Matrix Formalism

M. Tohyama, P. Schuck,* and S.J. Wang**

(Density matrix theory, ground state calculation, Lipkin model.)

Recently realistic calculations based on an extended time-dependent Hartree-Fock theory, called the time-dependent density-matrix theory (TDDM), have been reported by one of the present authors for the damping of giant resonances and for low-energy heavy-ion collisions. The results of the numerical calculations are quite encouraging: TDDM reproduces the damping widths of isoscalar quadrupole resonances and gives much larger mass fluctuations in deep-inelastic heavy-ion collisions than TDHF does. These numerical calculations, however, contain an inconsistency in the treatment of the ground state: the HF ground state, which is not compatible with the equations of motion of TDDM, was used as an initial ground state. The aim of this paper is to show the possibility of finding a stationary solution of TDDM using the Lipkin model as a model hamiltonian.

In the case of a stationary problem the TDDM equations become the following equations for the occupation matrix $n_{\alpha\beta}$ and the two-body correlation matrix $C_{\alpha'\alpha\beta'\beta}$:

$$
(e_{\alpha'} - e_{\alpha})n_{\alpha\alpha'} = \sum_{\beta'\gamma} \{C_{\beta'\alpha'\beta\gamma} \langle \alpha|v|\beta\gamma \rangle - C_{\alpha'\beta'\gamma\alpha} \langle \beta|v|\alpha'\gamma \rangle \},
$$

$$
(e_{\alpha'} + e_{\beta'} - e_{\alpha} - e_{\beta})C_{\alpha'\beta'\alpha\beta} = B_{\alpha'\beta'\alpha\beta} + P_{\alpha'\beta'\alpha\beta} + H_{\alpha'\beta'\alpha\beta},
$$

where B, P, and H describe the Born, particle-particle and particle-hole interaction terms, respectively. It is important to note that the above equations of motion are not sufficient to determine all the matrix elements of $n_{\alpha\beta}$ and $C_{\alpha'\beta'\alpha\beta}$. We used additional conditions and constraints from eigenvalue-eigenstate problems and from the properties of reduced density matrices, which will be discussed elsewhere.

Our method was tested for the Lipkin model. In Fig. 1 the ground-state energy for an $N = 4$ system is compared with the exact value. The TDDM ground state is better that the HF one. However, a substantial part of the total energy is missing in the TDDM result as compared with the exact one. The difference between the TDDM result and the exact one may be attributed to the omission of a three-body correlation function $C_{\alpha'\beta'\alpha\beta}$.

References

III-1-22. Energy and Baryon Number Densities in Ultrarelativistic Heavy Ion Collisions

S. Daté

[multiple scattering model, event simulator, multiparticle production.]

Heavy ion collisions at incident energies of 10 GeV/nucleon and above offer an unique opportunity to study hadronic systems under extreme conditions. Lattice QCD simulations and effective theories show existence of color liberated and chiral symmetry restored phase in equilibrated hadronic systems at high energy density, ε, and at high baryon number density, ρ. The critical values of these densities have been estimated as $\varepsilon_c = (2 \pm 1)$ GeV/fm3 and $\rho_c = (5 \pm 2) \rho_0$, respectively, where ρ_0 is the normal nuclear density. ρ_0 Realization and detection of the new phase of matter, quark-gluon plasma, is one of the most stimulative subject in recent heavy ion studies.

It is however a highly nontrivial problem to define signatures of the new phase formation and relate ε and ρ with experimentally observable quantities. The nontriviality is mainly due to the fact that, regardless of the new phase formation, final state particles are coming out from the system only after suffering many interactions. We have no direct way of observing intermediate states of the system. Obviously, we need a concrete base to predict background samples and see through space-time evolution of the system.

To approach the problem mentioned above, we employ multichain model (MCM) as our base. This model is a most conservative one in a sense that nuclear collision process is described not in quark-string level but in nucleon level and that elementary nucleon-nucleon collision data are superposed as multiple scattering process proceeds inside colliding nuclei. The superposition is independent except for the energy momentum conservation and that inelasticity of leading nucleons is treated as a free parameter. The model has proved its validity for proton-nucleus collisions and its power to study space-time structure of the collision process.

In this report, we briefly discuss our calculations and results on ε and ρ achieved in heavy ion collisions. All calculations have been done with a simulator version of MCM. At very high energies above 100 GeV/nucleon, hadronic systems produced in the central region are mainly composed of secondary mesons and nucleons are far aside in the fragmentation regions. This is due to finite formation time for secondary particles. Under this decoupling of mesonic and baryonic contributions, the unique way of getting large values of ε is to increase incident energy above 10 TeV/nucleon, which corresponds to RHIC energies, so that the number of secondaries per each collisions becomes sufficiently large. In particular, we have shown that the densities achieved in 200 GeV/nucleon S + S collisions are not sufficient to be critical. At lower energies than 50 GeV/nucleon, a finite contribution of nucleons is expected and large values of ε and ρ may be achieved. Amount of the contribution depends, however, strongly on the space-time structure of hadronic scattering processes. In the most naive space-time picture within the framework of a multiple scattering model, colliding two nucleons complete momentum transfer immediately after they collide with each other. If it was the case, the maximum ε and ρ values exceed their critical values even in S + S collisions at 50 GeV/nucleon. Contrary to this picture, Regge field theory suggests that a time of order of incident energy is necessary to complete the momentum transfer. This reduces ε and ρ considerably. We take a picture with finite completion time for momentum transfers to make rather pessimistic estimation of the densities. In our picture, a nucleon completes its momentum transfer when the last secondary meson from the collision emerges into on-shell state after a finite formation time. As a result, we have obtained 90 events which achieve $\rho > 5\rho_0$ and satisfy $\rho > 5\rho_0/3$ during a time period of 3 fm among 1000Pb + Pb events at 50 GeV/nucleon. We have not observed such events in S + S collisions at the same energy. Values of ε in these events are found to be rather moderate around 1.5 GeV/fm3. In summary, it is hopeful to realize high density matter in heavy ion collisions at 50 GeV/nucleon. High energy density near to the critical value is also achievable. It is crucial to use quite heavy nuclei to realize the extreme conditions.

References
1) For reviews, see F. Karsch: CERN Report No. CERN-TH-5498/89; G. Baym: in Proc. 'Quark Matter Formation and Heavy Ion Collisions,' Bielefeld (1982).
III-2. Atomic and Solid-State Physics

1. Ionization of Helium Atoms by Proton Impact

H. Fukuda, I. Shimamura, L. Végh, and T. Watanabe*

The collision system of proton and helium is suitable for studying ionization in detail by comparing experiments with theories. Recent papers report proton (p) angular distribution for ionization of He$^+$ and coincidence measurements of the scattered protons and the recoil He$^+$ ions or ejected electrons.

We applied to p-He collisions an eikonal distorted-wave approximation (EDWA) that accounts for the distortion of the proton motion from the plane wave due to the collisions; the eikonal approximation is used for the distorted waves in the distorted-wave Born approximation.

![Fig. 1. Angular distribution of protons (E=300 keV). Salin: Ref. 7. •: experiments.](image1)

The proton angular distribution in the EDWA (denoted by EDW) is compared in Fig. 1 with that in the plane-wave Born approximation (PWBA, denoted by Born), experiments, and Salin’s theory. The EDWA reproduces the experiments best among all the theories. Calculations at 500 keV, 1 MeV, and 3 MeV also reproduce the experimental results remarkably well, the latter ranging over 3-4 orders of magnitude over a wide angular region.

A recent experiment of coincidence measurements of p and He$^+$ prompted us to compare the measured average recoil energy in the perpendicular direction and the results of the theories referred to above (Fig. 2). Classical-trajectory Monte-Carlo (CTMC) calculations are also included in Ref. 4. With the thermal motion of He taken into account, the CTMC method agrees well with experiments. However, the EDWA and PWBA give results far below the CTMC results at small angles where the former two should be accurate, even when compared at $T=0$ K. In fact, we were informed that the CTMC results of Ref. 4 were revised recently and now agree well with our results.

![Fig. 2. Average transverse energy $\langle E_{x,y} \rangle$ of He$^+$ as a function of the p scattering angle (E=500 keV). •: measurements at 30 K. CTMC: Ref. 4. EDW-30K and CTMC-30K: with the thermal motion of He at 30 K.](image2)

References

* Present address: Department of Physics, International Christian University.
III-2-2. Atomic Effects on Nuclear Beta Decay

M.R. Harston and N.C. Pyper*

In the beta decay process, a nucleus, of charge \(Z \) and mass number \(A \), decays to a daughter nucleus, of charge \(Z+1 \) and mass number \(A \), with the simultaneous creation of an electron and antineutrino:

\[
(Z, A) \rightarrow (Z+1, A) + e^- + \bar{\nu}
\]

(1)

For many high energy \(\beta^- \) decays, this process can be viewed to a very good approximation as a purely nuclear decay which takes place independently of the atomic electron cloud surrounding the nucleus. However, the ever-increasing accuracy achieved in measurements of \(\beta^- \)-particle spectra and \(\beta^- \)-decay half-lives has led to interest in the role of atomic electrons in the \(\beta^- \)-decay process, particularly for the case of low energy \(\beta^- \)-emitters.

These atomic electrons may affect the \(\beta^- \)-emission probability, for instance, through their screening effect on the \(\beta^- \)-particle wavefunction, through their effect on the decay energy and through exchange processes involving bound and continuum electrons.

The present work is concerned with the calculation of the exchange effects in the continuum \(\beta^- \)-decay. A final state arising from the \(\beta^- \)-decay process in which there is one continuum electron (\(\beta^- \)-particle) may be produced either by direct creation of the \(\beta^- \)-electron in the continuum orbital, or by creation of the \(\beta^- \)-electron in a bound orbital with an electron simultaneously exciting from a bound orbital to the continuum. The former process is known as the direct process whilst the latter process is called an exchange process.

The continuum decay constant, \(\lambda_c \), for allowed beta transitions, including exchange processes, is given approximately by

\[
\lambda_c = C \int_0^{E_0} \left\{ P_{E_s}^2(R) \left[1 - \sum_n \frac{E_s n_s n_{s'}}{P_{n_s} P_{n_{s'}}} \right] - Q_{E_p}^2(R) \left[1 - \sum_n \frac{E_p n_p n_{p'}}{P_{n_p} P_{n_{p'}}} \right] \right\} pW(E - E')dE
\]

(2)

where \(C \) is a constant and \(P_{E_s}(R) \) and \(Q_{E_p}(R) \) are the large and small components of the Dirac wave function for a continuum \(s \) or \(p \) electron of energy \(E \) evaluated at the nuclear radius \(R \). \(P_{n_s}(R) \) and \(Q_{n_p}(R) \) are the corresponding quantities for bound orbitals of principal quantum number \(n \). A prime superscript on an orbital label indicates that the wavefunction refers to an orbital of the final state atom. Orbital labels lacking primes refer to orbitals of the initial state atom. The kinetic energy of the continuum electron runs from zero to a maximum value \(E_0 \), the end-point energy, which is a known experimental parameter of the decay. The factor \(W \) is the electron energy including the rest mass contribution and \(p \) is the electron momentum. The summation over \(n \) runs over all \(s \) or \(p \) orbitals present in the initial state. The factors of unity in the square braces correspond to the direct terms whilst the terms in the summation over \(n \) correspond to exchange terms.

The aim of the work in progress is to obtain estimates of the magnitude of the exchange terms compared to the direct terms. A good approximation to the bound wavefunctions in Eq. 2 can be obtained using the multiconfiguration Dirac-Fock method. The continuum wavefunctions, evaluated at the nuclear radius, can be obtained from unscreened hydrogenic Dirac wave functions with suitable corrections for screening. Since the exchange effect arises because of the non-orthogonality of initial and final state wavefunctions, it is essential in evaluating overlap integrals of the kind \(\langle E_s n_s | n_{s'} \rangle \) or \(\langle E_p n_p | n_{p'} \rangle \), to use continuum wave functions which are orthogonal to bound final state wavefunctions. In the present work, these continuum wavefunctions are being calculated as solutions to the Hartree-Fock equations using a frozen core approximation for the bound orbitals.

References
III-2.3. Electron Screening in the dtμe Molecule

M.R. Harston, I. Shimamura, and M. Kamimura*

A key step in the muon-catalyzed fusion cycle in D₂/T₂ mixtures is the formation of the molecule (dtμ)₁₁ dee in which the three-body dtμ system is in the J=1, v=1 state (where J is the total angular momentum and v the vibrational quantum number) and effectively substitutes for a deuterium nucleus in the D₂ molecule.¹ This molecule is produced predominantly by collisions of tμ atoms and D₂ molecules in a resonant process:

\[tμ + D₂ → (dtμ)₁₁dee \] (1)

The calculated formation rate of the muonic molecule is very sensitive to the precise value of the molecular binding energy and an accuracy of about 1 meV in this energy is necessary in order to obtain reasonable theoretical estimates of the formation rate.² In this work, the effect of electron screening in the related molecule (dtμ)₁₁e is evaluated in order to obtain an estimate of the corresponding screening effect in the molecule (dtμ)₁₁dee.

The total Hamiltonian for the four-body dtμe system may be written in the form

\[H = H_{dtμ} + H_e + ΔV \] (2)

with

\[ΔV = V_{μe} + V_{de} + V_{te} - U \] (3)

where \(H_{dtμ} \) is the Hamiltonian of the isolated three-body dtμ system, \(H_e \) is the Hamiltonian for an electron moving in the potential \(U \) due to the spherically averaged charge distribution of the (dtμ₁₁) state and \(V_{μe} \), \(V_{de} \) and \(V_{te} \) are the electro-static potentials between the electron and \(μ \), \(d \) and \(t \) respectively. The origin of the coordinate system is chosen to be at the centre of mass of the dtμ system. With this splitting of the Hamiltonian, the energy of the dtμe system can be calculated conveniently by perturbation theory using the eigenfunctions of \(H_{dtμ} \) and \(H_e \) as zeroth order wavefunctions. For (dtμ₁₁)e with the electron in its ground state, this yields an energy

\[E_{(dtμ₁₁)e} = E_{(dtμ₁₁)1} + E₁s + ΔE^{(2)} \] (4)

where \(E_{(dtμ₁₁)1} \) and \(E₁s \) are the eigenenergies of \(H_{dtμ} \) and \(H_e \) corresponding to the (dtμ₁₁) and 1s states respectively and \(ΔE^{(2)} \) is the second order perturbation energy arising from the perturbing potential \(ΔV \). The first order perturbation energy vanishes by parity considerations.

<table>
<thead>
<tr>
<th>J</th>
<th>v</th>
<th>ΔE^{(2)}(J,v) (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-0.29</td>
</tr>
<tr>
<td>0</td>
<td>v>1</td>
<td>-5.04</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>v>0</td>
<td>-1.75</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-0.02</td>
</tr>
<tr>
<td>2</td>
<td>v>0</td>
<td>-10.10</td>
</tr>
<tr>
<td>3</td>
<td>v≥0</td>
<td>-0.20</td>
</tr>
<tr>
<td>Total ΔE^{(2)}</td>
<td></td>
<td>-17.41</td>
</tr>
</tbody>
</table>

The contributions to \(ΔE^{(2)} \) from different \(J, v \) states summed over all electron states are shown in Table 1. The value of \(ΔE^{(2)} \) obtained was -17.41 meV. Diagonalizing \(H_e \) using a Gaussian basis set yields \(E₁s = -13.58646 \) eV. If dtμ is treated as a point charge, then \(U = 1/r \) and the energy of the 1s state is -13.60425 eV. The shift of the 1s energy due to the finite extent of the (dtμ₁₁) state is then 17.78 meV. The shift in the total energy of (dtμ₁₁)e due to the finite size effect is then equal to -17.41+17.78=0.37 meV. The corresponding shift in the molecule (dtμ₁₁)dee can be estimated from this shift by multiplying by the ratio (1.45) of the electron density at the deuteron in the D₂ molecule and the D atom. The result is a shift of +0.54 meV. These results can be compared with a recent calculation based on a similar approach,³ but with the origin of the coordinate system located on the deuteron. In this latter calculation the shift in (dtμ₁₁)e was estimated to be +0.20 meV and that in (dtμ₁₁)dee +0.29 meV. However, this calculation omitted contributions to \(ΔE^{(2)} \) arising from quadrupole terms in the perturbation potential \(ΔV \) which have been included in the present calculation.

References

* Department of Physics, Kyushu University, Fukuoka.
III-2-4. Calculation for $(\mu^+\mu^-)$ Formation by Collision of μ^- on (μ^+e^-)

T. Watanabe,* A. Ohsaki,** and K. Ishida

The Production of exotic atom $(\mu^+\mu^-)$ is a pioneering subject in atomic physics using accelerators. Recently, the formation of thermal muonium is successfully produced at the muon production facilities (Booster Meson facility) attached to a proton synchrotron at the National Laboratory for High Energy Physics (KEK) in Japan. In connection with this success, it becomes probable to produce a $(\mu^+\mu^-)$ atom by using thermal muonium as target.

Using a classical trajectory Monte Carlo (CTMC) method, we are calculating the cross section for this process. Although the complete validity for the CTMC method has not yet been established, there are many examples which show good agreement with experimental results empirically. The CTMC method considers that all the particles participated in the process are regarded as classical particles. Initial states are selected in proportion to the statistical weight in a phase space obtained from quantum mechanical conditions. The motion of these particles is assumed to follow the Newtonian equation and is solved numerically by using the Hamilton's canonical equation. Figure 1 shows a preliminary calculation for the total cross section for the process of $(\mu^+e^-) + \mu^- \rightarrow (\mu^+\mu^-) + e^-$ as a function of the impact velocity in atomic unit.

References
Cross sections for positronium (Ps) formation by collision of e⁺ with rear gas atoms have been obtained theoretically and experimentally. Agreement between theory and experiment is reasonable for a He target, but for an Ar target there is considerable discrepancy. The cross section for Ps formation measured by Fornari is one order of magnitude larger than that calculated by Gillespie and Thompson using DWBA (distorted wave Born approximation). We have developed an expansion method in the Eikonal approximation for the treatment of a rearrangement process concerning many-electron atoms. Results obtained by this method for e⁺ + He and e⁺ + Ar are compared with the results by other theories and experiments.

The most important point in the present approach lies in the application of the Eikonal method to the electron capture process of a projectile particle from a "many-electron" target atom. The matrix element needs to estimated in the Jacobi coordinate description. The bound state wavefunctions of initial and final-states, a plane-wave operator and an eikonal phase-shift factor are expanded in terms of spherical harmonics in order to perform a multi-fold integration analytically. We have obtained a formula which can be applied to many-electron atoms. For a He target, we have obtained cross sections in reasonable agreement with experiments and other theoretical calculations in an impact energy region above 80 eV. Cross sections calculated for an Ar target are of the same order of experiments in an impact energy region of 60-80 eV. Figure 1 shows that results of calculation for e⁺ + He → Ps + He⁺ together with other calculation and experiments. In the present approach, we employed a Hartree-Fock type wavefunction as a target wavefunction.

Fig. 1. Results of calculation for e⁺ + He → Ps + He⁺ and comparison with other data. Experiments: •, Fornari et al. (1983); ○, Chariton et al. (1983); Theory: —, first Born approximation by Mandal et al. (1975); —, distorted wave approximation by Mandal et al. (1979); —, polarized orbital approximation by Khan and Ghosh (1983); —, present calculation using the Eikonal method. These reference are found in Ref. 1.

References
Recently some of present authors have made measurements on the azimuthal angle dependence of emitted X-rays coincidence with scattered ions into particular angles,\(^1\) using 10 and 26 MeV a Ne\(^{7+}\) ions and 22 MeV Al\(^{10+}\) ions on a neutral Ne gas target. An Impact velocity range is comparable to the velocity of the K-shell orbital of a Ne target, and the process can be considered to take place following a molecular orbital scheme. The electronic configurations of the projectile ion and of the target atom are assumed to be (1s\(^2\))(2s\(^2\)) and (1s\(^2\))(2s\(^2\))(2p\(^6\)). Many of the occupied electronic atomic orbitals of neutral Ne are far from the highest occupied atomic orbitals of the projectile ion and many unoccupied atomic orbitals of the ion exist below the occupied orbitals of the neutral when two species get close to each other. As a result of collision, a vacancy in the K-shell of the projectile is formed and an excited electron is in the 2p orbit of the ions due to either of a direct process (direct coulomb excitation) or electron promotion processes between the molecular orbital levels.

As the first step, we planned to obtain the correlation diagram of the Ne\(^{7+}\)-Ne system which is sufficiently reliable for the calculation of present specific excitation processes. And then we were going to calculate the radial as well as rotational matrix elements between these electronic levels. Finally we plan to estimate cross sections for respective excitation processes by solving the coupled-channel equations.

For a practical reason, we take one-electron energy scheme in a diatomic molecular system. We use a DV-X\(\alpha\) method,\(^2,3\) in which exchange integrals are replaced by the 1/3 power of simple density integrals,\(^4\) i.e. non-local interaction potentials are approximated by local interactions. Figure 1 shows the energy diagram of sigma states in a Ne\(^{7+}\)-Ne system, calculated by using the DV-X\(\alpha\) method as a function of the internuclear distance.

Fig. 1. Energy diagram of the sigma states in a Ne\(^{7+}\)-Ne system, calculated by using the DV-X\(\alpha\) method as a function of the internuclear distance.

References

III-2-7. Theoretical Study of High-Energy Ion-Atom Collisions

N. Toshima

(1) Relativistic collisions

We have analyzed several distorted-wave approximations\(^1\) that have been recently applied to relativistic ion-atom collisions and found that the symmetric treatment of distortions in initial and final channels does not necessarily represent an improvement over a description in which one of channels is left undistorted. The relativistic version of the symmetric eikonal approximation contains unphysically large contribution of spin-flip transitions, which makes the foundation of this theory unreliable.

The importance of Coulomb boundary conditions are widely recognized for perturbative treatments both in relativistic and nonrelativistic ion-atom collisions. On the other hand, it is known that a coupled-channel approach is free from this effect for nonrelativistic collisions since the correction factor arising from the asymptotic residual interaction can be completely absorbed into time-dependent expansion coefficients. However this is not true for relativistic collisions. As we have discovered recently in relativistic coupled-channel calculations, the long-range couplings of a monopole type exist even for neutral atom collisions and the leading term depends on electronic states. We treated this long-range interaction by using coupled equation formalism based on distorted-wave basis expansion and found that the results are strongly affected by this manipulation.\(^2\)

(2) Non-relativistic collisions

A Thomas double scattering mechanism has been studied by many theoreticians using a variety of methods over tens of years. However all the theories are based on perturbative treatments up to the second order and nobody has confirmed quantitatively the convergence of the perturbation series and the reliability of the second-order calculations. We have studied this mechanism by using two non-perturbative approaches, a classical trajectory Monte-Carlo (CTMC) method\(^3\) and a coupled-channel formalism based on pseudo-state expansion.\(^4\) These are the first non-perturbative studies of the Thomas mechanism.

CTMC has been widely used successfully for various charge transfer processes. Though CTMC is based on purely classical mechanics, it rigorously solves the equations of motion of a three-body system. Hence we can investigate three-body effects that are absent in perturbative treatments. It was shown that the trajectories are somewhat deformed from the idealized picture of double scattering, especially at small impact parameters. Two other types of captures, knock-on capture, and OBK-type capture also play important roles.

Since the Thomas mechanism occurs via a high-lying continuum state as an intermediate state, it is rather difficult to treat this process by the coupled-channel formalism. In addition an accurate calculation of coupling matrix elements also becomes difficult because of the rapid oscillation of the integrand caused by the electron translation factor. We have overcome these difficulty by using a GTO expansion technique and succeeded in obtaining a differential cross section that has a sharp Thomas peak around the critical angle in good agreement with experimental data.

We studied the orientation and alignment of the atomic states induced by collisions with negatively and positively charged projectiles by the CTMC method and investigated how well the classical theory works in comparison with quantum theoretical calculations.\(^5\)

References

3) N. Toshima: ibid., p.5739.
III-2-8. Investigation of a HD$^+$ Energy Level in Hyper-Radial Adiabatic Approximation

S. Hara, T. Ishihara,* N. Toshima, and H. Fukuda

The Schroedinger equation for a HD$^+$ system is given by (in units of $e = h = 1$)

$$[H(r, R) - E] \Psi(r, R) = 0 \quad (1)$$

where

$$H(r, R) = -(\frac{1}{2}m) \nabla_r^2 + (\frac{1}{2}m) \nabla_R^2 + V(r, R) \quad (2)$$

is the total Hamiltonian, E the total energy, and Ψ the total wave function; M and m are the reduced masses for a proton p and deuteron d system, and for a $(p + d)$ and electron e system, respectively, thus

$$1/M = 1/M_p + 1/M_d$$

and

$$1/m = 1/m_e + 1/(M_p + M_d)$$

In Eqs. 1 and 2, R represents the position vector of d relative to p, r that of electron e with respect to the centre of mass of $(p+d)$, and V the Coulomb interaction between the three particles

$$V(r, R) = -1/r_p - 1/r_d + 1/R$$

The hyper-radius X for the three-body system can be defined by

$$M_0 X^2 = MR^2 + mr^2$$

where M_0 is an arbitrary mass constant. We choose $M_0 = M$ in the following. In practical application of the hyper-radial approach, a set of five coordinates Ω other than the hyper-radius can be chosen in many ways. Matveenko1 proposed the hyperspherical coordinates for molecular type three-body problems. In this coordinates, the set of variables Ω is $(\xi, \eta, \varphi, \Theta, \Phi)$, where (ξ, η, φ) are the spherical coordinates for the electron, Θ and Φ, the polar and azimuthal angles for R measured from space-fixed coordinates. By using the hyperradius thus defined, the total Hamiltonian H reduces to the following form

$$H(\Omega, X, J) = -\frac{1}{2M} \frac{1}{X^5} \frac{\partial}{\partial X} X^5 \frac{\partial}{\partial X} + h(\Omega, X, J)$$

where h is the adiabatic Hamiltonian which includes X as a parameter and dependent on the total angular momentum J of the system.

The eigen function $\Phi_n(\Omega, X, J)$ and eigen values $\varepsilon_n(X, J)$ of the adiabatic Hamiltonian h are obtained by solving the following Schroedinger equation

$$[h(\Omega, X, J) - \varepsilon_n(X, J)] \Phi_n(\Omega, X, J) = 0$$

This equation has been solved variationally. The total wave function Ψ in the adiabatic approximation is then expressed by

$$\Psi = X^{-5/2} \Phi_n(\Omega, X) F_n(X)$$

The radial wave function $F_n(X)$ satisfies the following hyper-radial equation

$$\left[-\frac{1}{2M} \frac{d^2}{dX^2} + U_n(X) - \varepsilon_n \right] F_n(X) = 0 \quad (3)$$

where

$$U_n(X) = \varepsilon_n(X) + 15/(8MX^2) + W_n(X)$$

and

$$W_n(X) = -(1/2M) \langle \Phi_n \frac{\partial^2}{\partial X^2} \Phi_n \rangle$$

where the bracket denotes integration over coordinates Ω.

We have solved differential (eigenvalue) equation 3 numerically and obtained E_n. The results2 are presented in Table 1, the hyper-radial adiabatic approximation gives energies better (lower) than a conventional Born-Oppenheimer approximation.

Table 1. Dissociation energies E_n of HD$^+$ (in cm$^{-1}$) relative to the 1S state of the D atom.

<table>
<thead>
<tr>
<th>ν</th>
<th>$J = 0$</th>
<th>$J = 1$</th>
<th>$J = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21515.9</td>
<td>21472.1</td>
<td>21384.7</td>
</tr>
<tr>
<td>1</td>
<td>19602.8</td>
<td>19561.0</td>
<td>19477.6</td>
</tr>
<tr>
<td>2</td>
<td>17785.9</td>
<td>17746.0</td>
<td>17666.4</td>
</tr>
<tr>
<td>3</td>
<td>16062.2</td>
<td>16024.2</td>
<td>15948.4</td>
</tr>
</tbody>
</table>

References
III-2-9. Charge State Distribution Measurements of 77 MeV/u Ar Ions Which Have Passed through a Carbon Foil

Y. Kanai, T. Kambara, Y. Awaya, A. Hitachi, T. Niizeki, Y. Zou, and K. Shima

We measured the charge-state distributions of 77 MeV/u Ar ions which have passed through a carbon foil with varying the foil thickness (10 \(\mu\)g/cm\(^2\) - 4.27 \(\mu\)g/cm\(^2\)) and incident charge states (16+ - 18+). The study aims to get (1) the equilibrium mean charge distribution of Ar ions which have passed through a carbon foil and (2) the charge changing cross sections (capture and loss cross sections) of Ar ions which collide with carbon atoms. Projectiles of 77 MeV/u Ar\(^{16+}\) ions were obtained from RIKEN Ring Cyclotron. Projectiles of Ar\(^{17+}\) ions were produced by using Al foils and then selected by a magnet. The experiment was performed at the atomic physics beam line (E2B); the targets were placed in the general purpose experimental chamber on the E2B beam line. The charge states of the Ar ions which have passed through the target were analyzed with a charge analyzing magnet and a position-sensitive parallel-plate avalanche counter (PPAC).

When the target was thicker than about 1 mg/cm\(^2\), the charge-state distributions did not depend on the target thickness. We concluded therefore that the distribution is equilibrated as shown in Table 1. Shima proposed a semi-empirical formula for the equilibrium charge-state distribution of high energy ions (>10 MeV/u) after passing through the carbon foil. Our previous results for 26 MeV/u Ar ions are in good agreement with the values obtained from Shima's formula. However, the Ar\(^{17+}\) fraction of our present results is larger than the value obtained from Shima's formula. This difference may be due to the difference in a dominant process of the electron capture of the Ar ions between 26 MeV/u and 77 MeV/u.

Using the charge-state distributions for thin targets (10 - 38.5 \(\mu\)g/cm\(^2\)), we obtained the electron capture and loss cross sections of 77 MeV/u Ar ions which collide with carbon atoms. Preliminary results are shown in Table 2. Precise analysis is in progress.

Table 1. Equilibrium charge-state distributions of 77 MeV/u Ar ions after passing through carbon targets.

<table>
<thead>
<tr>
<th>Mean charge</th>
<th>16+</th>
<th>17+</th>
<th>18+</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.9994</td>
<td>5±5(-7)</td>
<td>5.6±0.1(-4)</td>
<td>9.994±0.001(-1)</td>
</tr>
</tbody>
</table>

Table 2. Preliminary charge changing (electron capture and loss) cross sections of 77 MeV/u Ar ions collide with carbon atoms. Numbers in parentheses stand for the power of ten.

<table>
<thead>
<tr>
<th>Initial charge state</th>
<th>Final charge state</th>
<th>Cross section (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>16+</td>
<td>17+</td>
<td>5.9±0.5 (-20)</td>
</tr>
<tr>
<td>17+</td>
<td>18+</td>
<td>2.9±0.5 (-20)</td>
</tr>
<tr>
<td>17+</td>
<td>16+</td>
<td>1.3±0.5 (-23)</td>
</tr>
<tr>
<td>18+</td>
<td>17+</td>
<td>3.0±1.0 (-23)</td>
</tr>
</tbody>
</table>

References
We measured the ratio of the radiative electron capture cross section (σ_{REC}) to the total electron capture cross section (σ_{total}) of 77 MeV/u Ar^{18+} ions in carbon foils (23 and 44 μg/cm²). Projectile Ar^{18+} ions were produced through an Al stripper foil at RIKEN Ring Cyclotron. Experiments were performed on the atomic-physics beam line (E2B). X rays emitted from the projectile Ar ions in the target were measured with a pure-Ge detector at 90° to the beam direction. The charge states of Ar ions after passing through the target were determined with a charge analyzing magnet and a position-sensitive parallel-plate avalanche counter (PPAC). An X-ray spectrum measured with the Ge detector is shown in Fig. 1a, in which a broad peak around 44 keV is due to the X-rays emitted by REC. A huge background due to the primary and secondary bremsstrahlung was reduced by using a coincidence technique. An X-ray spectrum in coincidence with Ar^{17+} ions is shown in Fig. 1b, in which almost all the background is vanished. We can find two peaks, K- and L-REC (radiative electron capture into projectile K- and L-shell), as indicated in Fig. 1b. The width of each peak is caused by the momentum distribution of target electrons captured by the projectile.

From this measurement, we obtained the ratio $\sigma_{\text{REC}}/\sigma_{\text{total}} = 58\%$ in both targets.

References
III-2-11. Multiple Inner-Shell Ionization of Target Atoms by 92 MeV/u Ar-Ion Impact

Y. Awaya, T. Kambara, Y. Kanai, and A. Hitachi

We have studied simultaneous single K- and multiple L-shell ionization of target atoms for high-velocity nearly symmetric ion-atom collisions by diffraction of Ka-satellite X rays. This is an extension of previous systematic studies to a higher collision velocity and near-symmetric collision systems.

Previously we made systematic studies of simultaneous single K- and multiple L-shell ionization of target atoms in asymmetric heavy ion-atom collisions, using 0.8-26 MeV/u He, C, N, and O ions from the cyclotron, the RILAC, and RIKEN Ring Cyclotron.1,2) The K-satellite X rays from various target elements (Al, Ar, Ti, Cr, Fe, Ni, Kr, and Y) were resolved with crystal spectrometers. From the intensity distribution among the satellites, we obtained the probability of L-shell ionization simultaneous to a K-shell ionization

\[P_L \]

assuming a binomial satellite distribution. The \(P_L \) values thus obtained for different collision systems and a wide range of collision velocity agree well with a universal scaling based on a binary-encounter approximation (BEA).3) except for low-velocity regions where the projectile velocity \(v_1 \) is nearly equal to the target electron orbital velocity \(v_n \).

Although applied mainly to asymmetric collisions, the BEA model is expected to be also valid for near-symmetric system if a collision velocity is very high. In order to check the validity, we carried out measurements with an Ar\(^{17+}\) beam at 92 MeV/u from RIKEN Ring Cyclotron incident on solid targets of Ti, V, Fe, Ni, and Cu at a collision velocity of about 0.41c or 56.8 atomic unit. The scaled velocity \(v_1/v_n \) range between 7 and 10.4 for the target L-shell electrons. The K-X rays from the targets were measured with a broad-range crystal spectrometer4) with a crystal of LiF(200) for the V and Ti and a LiF(220) for the other targets.

Figure 1 shows a spectrum of the Ti K-X rays, where K\(^m\)L\(^n\) shows a satellite component with \(m \) K- and \(n \) L vacancy configuration before K X-ray emission. We fitted the experimental K\(_\alpha\) satellite spectra by Gaussian curves and obtained the intensity distribution of the satellites, \(I(n) \).

The values of \(P_L \) are obtained from the K\(_\alpha\) satellites by assuming a binomial distribution, \(I(n) \propto (8/n!(8-n)! P_L^n(1-P_L)^{8-n}, \) and are plotted in

![Fig. 1. Spectrum of Ti K-X rays from a 92 MeV/u Ar-ion impact. A group of peaks around 4.5 keV correspond to the K\(_\alpha\) satellites, those around 4.7 keV to the K\(_\beta\) hypersatellites, and those around 5 keV to the K\(_\gamma\) satellites.](image)

Fig. 2. Scaled ionization probability \(4\mu_L P_L/Z_1^4 \) is plotted against a scaled velocity \(v_1/v_n \), where \(\mu_l \) is the binding energy of the target L electron in atomic unit and \(Z_1 \) is the atomic number of the projectile. The solid curve shows the universal BEA curve, and the dashed curve shows the curve multiplied by 0.84.

Fig. 2 according to the BEA scaling. The experimental \(P_L \) agrees well with the universal curve for the Ti and V targets and is smaller than that for the heavier targets. In the previous studies,1,2 we found that a universal curve multiplied by 0.84 better fits experimental results. If the same factor is multiplied to the universal curve, it better fits the present experimental results.

By combining the present results and the previ-
ous ones, we found that the values of P_L fit within 30% the universal curve multiplied by 0.84. We conclude that the simple BEA scaling can be applied to collision systems with a wide range of collision velocity when $v_i > v_n$, and that it can also be applied to near-symmetric systems at very high velocities.

References
III-2-12. A Trial of Doppler Beam-Foil Spectroscopy Using Relativistic Heavy (95 MeV/u Ar$^{17+}$) Ion Beams

Beam-foil spectroscopy has been used as a reliable and unique technique for the measurements of the energy levels and lifetimes of excited states of highly charged ions. Here we propose to measure decay curves of 2p → 1s transition of 95 MeV/u Ar$^{17+}$ using RIKEN Ring Cyclotron. Although the real lifetime of this transition is of the order of sub-pico seconds, an appearing decay time is often in the order of ~ns owing to the slow feeding of 2p states from highly excited high-l Rydberg states via an yrast line. In other words, information on the initial (n,l) distribution is obtainable by measuring the decay curve between deep bound states.

![Diagram](image-url)

Fig. 1. A schematic drawing of the experimental setup.

Figure 1 shows a schematic diagram of the experimental setup. A Si(Li) X-ray detector was installed to observe a part of the beam downstream from a target foil. As the velocity of the beam is ~0.4c, the X-ray energy of the 2p → 1s transition of Ar$^{17+}$ should show a strong Doppler shift depending on the position where the X ray is emitted. Since we know the velocity, the decay curve of the transition is obtained.

![Graph](image-url)

Fig. 2. An example of the "delayed" spectrum of Ar$^{17+}$ (1s ← 2p) transitions.

Figure 2 shows an example of preliminary results. Although a continuum background is very high, it is clearly seen that the transition line (Ar$^{17+}$ 2p → 1s) skews to the lower energy side, indicating the production of a considerable amount of delayed (~ns) X rays as expected.
We measured the angular correlation between K X-ray emission and scattered particles in Ne-Ne collisions to study the alignment in inner-shell excitation processes in heavy ion-atom collisions. In the experiments, a Ne-ion beam from RILAC was collimated and was incident on a Ne gas target. The scattered ions were charge-state analyzed and then counted with a two-dimensional position-sensitive particle detector (PPAD), in coincidence with the K-X rays measured at the target. We obtained the K X-ray emission probability as a function of the charge state of the scattered ions q, scattering angle θ, and the angle between the scattering plane and the X-ray emission direction ϕ. The experimental setup\(^1\) and the first measurements with 10 and 26 MeV Ne\(^7\)+ ions\(^2\) were reported previously.

We have made the following improvements on the measurement system: (1) We found that the measurement at 26 MeV reported before was contaminated by lower-energy particles scattered at the edges of the collimators. Therefore the slits of the beam collimation system was changed from knifeedge plates to mirror-polished round-shape bars to avoid the edge scattering. A remote-controlled pulse motor system was introduced for the driving system of the slits, which saved the time to adjust the collimators. (2) Since the position of the scattered particles was measured after the charge-state analysis, the stability of the field of the analyzer magnet is essential to the precision of the results. An NMR gaussmeter for the magnetic field measurement of the charge-state analyzing magnet after the target was connected to a CAMAC register, thus the field can be monitored continuously throughout a measurement.

Two new measurements were performed with Ne\(^{2+}\) ions (Li-like) of 10.5 and 20 MeV on a Ne target. The charge states of the scattered ions were analyzed from 4+ to 8+ at 10.5 MeV and from 5+ to 9+ at 20 MeV, and the coincidence with the K-X rays were measured for ions of 6+ and 7+ at 10.5 MeV and those from 6+ to 9+ at 20 MeV. The scattering angle θ ranged up to 2.6×10^{-3} rad with an angular resolution of 8×10^{-5} rad.

The ϕ-dependence of X-ray emission probabilities at different regions of impact parameter b was fitted to a function $A \sin^2 \phi + B$ and an anisotropy parameter $R = A/2B$ was calculated. The impact parameter b was calculated from θ with a screened Coulomb potential after correction for focusing with the charge-state analyzing magnet. In Fig. 1, an example of the b-dependence of R is shown. The obtained R is small and positive at incident energies of 20 MeV and 10.5 MeV, being consistent with previous measurements. A theoretical investigation of the alignment with a molecular-orbital model is reported by Dr. Fujima et al.\(^3\)

References
3) K. Fujima et al.: This Report, p. 38.

T. Papp, Y. Awaya, A. Hitachi, T. Kambara, Y. Kanai, and T. Mizogawa

In ion-solid foil interaction, the symmetry of the collision geometry is reflected in the angular and polarization distribution of collision-induced fluorescence. When the beam axis coincides with the axis of the normal to the foil, in beam-foil spectroscopy, the collision geometry has cylindrical symmetry. When the foil is tilted with respect to the beam axis, the collision geometry loses its axis of symmetry. This lower degree of symmetry is mirrored by a correspondingly lower degree of symmetry in the angular distribution of emitted radiation.\(^\text{1,2}\)

![Figure 1](image1)

Fig. 1. \(K_\alpha\)-satellite X-ray spectrum of Ar measured at 30°, relative to the incoming beam, when the foil was tilted by 45° with respect to the beam axis.

In the experiment, a 1 MeV/u Ar beam obtained from the RILAC was passed through a carbon foil target of 20 \(\mu\)g/cm\(^2\) in thickness. Angular distributions of Ar KL\(^\alpha\) X-ray lines were measured at two target angles, tilted at 90° and 45° relative to the beam direction. The spectra of Ar X rays were measured with a broad-range crystal spectrometer\(^\text{3}\) using a flat Ge (111) crystal with a Bragg angle at its center \(2\theta=76°\). The spectra were fitted by a quadratic background and an appropriate number of pseudo-Voigt peaks simultaneously, by using a computer code EWA.\(^\text{4}\) The spectra were analyzed by a Gaussian-peak shape too, and a better fitting was obtained when a pseudo-Voigt peak shape was used. From the analysis the intensity ratio of the well resolved peaks were determined as a function of the detection angle. At a 90° target angle, all the ratios were found to be isotropic within error limits. At a 45° target angle the \(3P_1/1P_1\) intensity ratio had a definite anisotropy.

![Figure 2](image2)

Fig. 2. Intensity ratio of the \(1P_1\) and \(3P_1\) transitions as a function of the detector angle. \(\bigcirc\), beam axis was perpendicular to the foil surface; \(\bullet\), angle of beam axis and foil was 45°. The line is drawn to guide the eyes.

References

II-2-15. High Resolution L X-Ray Angular Distribution Measurement on Terbium

T. Papp, Y. Awaya, A. Hitachi, T. Kambara, Y. Kanai, and T. Mizogawa

It was found, in the L\textsubscript{3}-subshell angular correlation1 and angular distribution2,3 studies, that the angular distribution of X rays reflects the effect of magnetic quadrupole (M\textsubscript{2}) mixing into the electric dipole (E\textsubscript{1}) transition. The M\textsubscript{2}/E\textsubscript{1} mixing ratios experimentally obtained deviate significantly from theory4 around Z\textasciitilde60. In these experiments semiconductor detectors were used to detect X rays. This type of detectors well resolve the L\textsubscript{1} and L\textsubscript{2} peak; however the tail of the intense L\textsubscript{3} peak lies under the L\textsubscript{1} peak, causing a systematic error in the evaluation of the mixing ratio. The large discrepancy between theory and experiments would be verified from an angular distribution measurement by a higher-resolution detection technique.

Thus we carried out such a measurement, detecting X rays with a crystal spectrometer in which a position-sensitive proportional counter was incorporated.5 N2+ ions of 0.553 MeV/amu obtained from the RILAC were allowed to impinge on a Tb target of 4 \(\mu \text{m} \) in thickness, tilted by 45° to an incoming beam, and the angular distribution was measured at eight different angles in the range of 95°–155°.

Usually, the L\textsubscript{\textit{p1,3}}-X ray emission is regarded as isotropic and is used for a normalization standard in angular distribution measurements. However, in heavy ion-atom collisions with a simultaneous multiple outer-shell ionization, the isotropic angular distribution of the L\textsubscript{\textit{p1,3}}-X ray has to be verified experimentally. Therefore the angular distribution measurement was performed in two steps: First the ratio of L\textsubscript{\textit{p1,3}} to L\textsubscript{\textit{s1,3}} transitions was studied using a LiF (220) crystal. Since the Bragg angle for the L\textsubscript{s} transition is 44° and the polarization sensitivity is very close to unity, the L\textsubscript{s} intensity measured has an isotropic angular distribution, and can be used for normalization. From the measurement, the ratio of L\textsubscript{\textit{p1,3}} to L\textsubscript{\textit{s1,3}} transitions and thus the L\textsubscript{\textit{p1,3}} transition were found to have an isotropic angular distribution. In the second step the angular distribution of the L-X rays was studied with a LiF(200) analyzer crystal. The intensity of the L\textsubscript{\textit{s}}-X rays were normalized to the L\textsubscript{\textit{p1,3}} transitions.

Figure 1 shows an example of the L X-ray spectra. The spectra were evaluated by assuming a Voigt peak shape.

A large anisotropy was observed for the L\textsubscript{\textit{s}}-X-ray lines. By assuming that the crystal was perfect, a value of \(-0.20 \pm 0.04\) was obtained for the anisotropy parameter for the L\textsubscript{s} transition normalized to the L\textsubscript{\textit{p1,3}}. The anisotropy was found two times larger for the L\textsubscript{\textit{p1,3}} transition than for the L\textsubscript{s}. The ratio of the anisotropy parameters of the normalized L\textsubscript{\textit{s}} and L\textsubscript{\textit{p1,3}} transitions was evaluated to be 2.76\(\pm \)1.5 and 3.25\(\pm \)1.9, assuming perfect and mosaic crystal structure respectively. These results verify the disagreement with the theory observed in the earlier measurement carried out with semiconductor detectors.

References
III-2-16. Atomic Bremsstrahlung in the MO Process

Adiabatic collisions of an incident heavy ion with a target atom form a united atom and produce molecular orbital (MO) X rays. It is expected that the production cross section of MO X rays becomes maximum when the atomic number of a projectile \(z_p \) is equal to that of target atom \(z_t \).\(^1\)

Up to the present, many workers have studied the MO process, but not enough on this effect.

On the other hand, secondary electron bremsstrahlung (SEB), quasi-free electron bremsstrahlung (QFEB), and atomic bremsstrahlung (AB) are expected in light-ion bombardments.\(^2\) Among these processes, a considerable contribution of AB in heavy ion collisions is theoretically expected,\(^3\) though not yet confirmed. In symmetric collision, the cross section of AB is almost zero because of a dipole transition process. In order to search such characteristics of MO and AB, we have measured continuous X rays produced from the targets of \(z_t = 6 \) to 29 by bombardment of Si\(^{3+}\) ions accelerated at 20 MeV and 40 MeV with the RIKEN RILAC.

Figure 1 shows the absolute cross sections of continuous X rays at the scaling parameter\(^4\) \(\frac{\omega a_0}{v_p(z_p + z_t)} = 1.73 \) (\(\omega \) is the frequency of X-ray, \(a_0 \) is the Bohr radius, and \(v_p \) is the projectile velocity) for Si\(^{3+}\) at 20 MeV and Si\(^{3+}\) at 40 MeV bombardments. For 20 MeV, the cross section forms a peak at symmetric collision, but that of 40 MeV shows a dip. This is the first confirmation for the above-described characteristics of MO and AB.

References

* Laboratory for Materials Science and Technology, Waseda University.
Multiplet structures in X-ray emission spectra of transition metal compounds are usually interpreted in terms of splittings due to the exchange interaction between unpaired 3d electrons (S=1 for Ni$^{2+}$) and X-ray hole in the initial and the final states of the X-ray emission. Thus, X-ray line profiles can be calculated by using multiplet wave functions in an LS or jj coupling scheme in a spherical symmetry field or in a crystal field.\(^1\) However the agreement between these theoretical calculations and experiment are unsatisfactory.\(^2\)

We have measured the Ni $\text{L}\alpha$ spectra of NiI$_2$ ($S=1$), Ni(salen) ($S=0$) and Ni(metal) with a Bragg spectrometer equipped with a RAP(100) crystal by fluorescent excitation (Rh-anode tube) and proton bombardment (1.6 MeV). The spectral line shape of the fluorescent excitation was identical to that of the proton excitation for the same compound within an experimental error. The spectra of fluorescent excitation are presented in Fig. 1. We found the existence of a structure on the high-energy shoulder of NiI$_2$ Ni$\text{L}\alpha$ line (Peak b in Fig. 1). The $\text{L}\alpha$ line width of Ni(salen) is narrow since it has no unpaired electrons ($S=0$). The width of the main line of NiI$_2$ (Peak a in Fig. 1) is not significantly broader than that of Ni(salen) in spite that NiI$_2$ has two unpaired electrons in the 3d orbital in the ground state ($S=1$). Comparing the present X-ray emission spectra with the X-ray photoelectron spectra of Zaanen et al.,\(^3\) we assigned that the $\text{L}\alpha$ main line of NiI$_2$ (Peak a) corresponds to the $2p^3d^{10}1L^2 \rightarrow 3d^8L^3(2P \rightarrow 2D)$ transition [transition between well-screened states, which are due to charge transfer (CT) from ligands], while the high-energy structure (Peak b) is assigned to the $2p^3d^{10}1L^{0,1} \rightarrow 3d^73^L^{0,1}$ transition (transition between poorly screened states). Here the underline denotes hole(s) and L denotes a linear combination of ligand orbitals. Therefore the spectrum of NiI$_2$ is not broadened corresponding to its spin state in the ground state.

To clarify the CT effect theoretically, we calculated the X-ray multiplet structure of NiI$_2$ by the LS coupling and CT effect (Fig. 2). The agreement between theory (Fig. 2) and experiment (NiI$_2$ in Fig. 1) is satisfactory after the inclusion of the CT mechanism.

In summary, though the doublet structures of peaks a and b were believed to originate from the splitting by the exchange interaction between the X-ray hole and 3d holes, the present result indicates that the splitting originates from the screening effect by the CT from ligands. The main line of NiI$_2$ (Peak a in Fig.1) is the CT peak and thus narrower than that expected from the spin state of the ground state. The multiplet structure in X-ray emission spectra of CT semiconductors\(^4\) could be interpreted in the same manner.\(^5\)

Thanks are due to Dr. K. Miyamura (Univ. Tokyo) for providing us with the Ni(salen) compound.

References

We have investigated the resonant transfer and excitation (RTE) processes in collisions between hydrogen-like Ge^{30+} ions and an H$_2$ target at collision energies between 12 and 19 MeV/u at the UNILAC facility of GSI in Darmstadt, Germany. Since the intermediate doubly-excited states of He-like Ge^{30+} ions produced by KLL RTE have two K-vacancies and emit two K-X ray photons, we utilized an X-ray/X-ray coincidence technique. The experimental setup and some of the results were reported previously.1

Among the different overlapping KLL-RTE resonances in He-like ions, there is one leading to the doubly-excited 2s2p 1P_1 state which decays promptly to the 1s2s 1S_0 state, and this can only decay via a two-photon decay (2E1) into the 1s2 1S_0 ground state. In the decay of the 2s2p 1P_1 state, three X rays are emitted: One K-X ray from the decay into the 1s2s 1S_0 state and two photons of continuous energy, where the sum of both is the binding energy difference between the 1s2s 1S_0 and the 1s2 1S_0 state.

The signature of the two-photon decay was clearly observed as a diagonal ridge with E$_1 + E_2$ \(\approx 10.3 \) keV in the X-ray/X-ray energy correlation diagram (Fig. 3 in Ref. 1). Integrating the intensity in the two-photon spectrum along the diagonal ridge, we obtained the total cross section for the two-photon emission, where the KLL resonance was clearly separated from higher-shell resonances KLn with \(n \geq 3 \) (Fig. 5 in Ref. 1).

Figure 1 shows a decay diagram for the relevant levels in the He-like Ge^{30+} restricted to levels accessible for KLL-RTE processes. The radiative decay rates given in Fig. 1 are calculated using a multiconfiguration Dirac-Fock program. According to the radiative decay rates and Auger rates relevant for the production of the intermediate states, one finds that for the KLL region the resonance leading to the doubly-excited 2s2p 1P_1 state is with 98% the dominant one populating the 1s2s 1S_0 level. Therefore the 2E1 decay of this state provides means to isolate the RTE resonance via the 2s2p 1P_1 level for heavy projectiles. For He-like Ge ions, the 2E1 decay is fast enough for detection near the reaction volume. It is estimated that the 1s2s 1S_0 state decays within the accessible time window of our experimental arrangement.

The energy spectrum of one of both the photons obtained from the diagonal ridge is shown in Fig. 2. Due to the uncertainties in coincidence detection efficiency, the spectrum is cut off in both sides, i.e. below 2 keV and beyond 8 keV; in between the spectrum is efficiency.

* GSI, D-6100 Darmstadt, Germany
* Inst. of Nuclear Physics, 31-342 Kraków, Poland
* Inst. of Physics, Jagiellonski University, 30-059 Kraków, Poland
* Strahlenzentrum, Universit"at Gießen, D-6300 Gießen, Germany
* Manne-Siegbahn Institute of Physics, S-10405 Stockholm, Sweden
* Physics Department, Kansas State University, Manhattan, KS 66506, USA
corrected. The spectrum should be symmetric around \((E_1 + E_2)/2 \approx 5.2\) keV which is fulfilled within the available low statistics. In Fig. 2, we plot also the energy spectrum expected for the two-photon decay for hydrogen as a simple test. However, in order to get a reliable comparison with theory, dedicated experiments with better statistics and with possibly heavier projectiles are needed.

It is demonstrated that the \(2E_1\) decay of the \(1s2s^1S_0\) state in heavy He-like ions can effectively be studied by means of an X-ray/X-ray coincidence technique and that RTE is the dominant production mechanism populating the state. Detailed studies of the shape of an X-ray continuous spectrum will yield information on relativistic and correlation effects in very heavy two-electron ions.

References
III-2-19. Multiply Charged Ions and Cluster Ions Produced from Frozen Targets under Energetic Heavy Ion Impact

H. Tawara, T. Tonuma, H. Kumagai, T. Matsuo, and H. Shibata

In the present work we have measured positive as well as negative ions produced under the impact of a few picoampere 60 MeV Ar\(^+\) (\(q=4, 12, 13\)) ions provided from RIKEN linear accelerator on frozen gas targets. The target (molecular) gases are frozen on thin foils cooled at the liquid nitrogen temperature. The gas pressure measured at a vacuum chamber wall is about \((5-7) \times 10^{-7}\) Torr, with a background pressure of \(1 \times 10^{-7}\) Torr.

A typical example of positive ion spectra from a frozen CO\(_2\) target is shown in Fig. 1. In addition to singly as well as multiply charged atomic ions and molecular ions, a variety of cluster ions are observed at fairly high intensities. These cluster ions are clearly formed from different core ions produced in preceding collisions with energetic heavy ions. In the present case, the following singly charged cluster ions are dominant: \([\text{CO}_2\ (\text{CO}_2\)_n]^+, \ [\text{CO}\ (\text{CO}_2\)_n]^+, \ [\text{O}_2\ (\text{CO}_2\)_n]^+, \ [\text{C}\ (\text{CO}_2\)_n]^+, \ [\text{O}\ (\text{CO}_2\)_n]^+.\] Surprisingly the most intense peak is found to be due to \(\text{O}_2^+\) ions, which have never been observed in gaseous targets, followed by the cluster ions with \(\text{O}_2^+\) ion core. In the frozen CO\(_2\) targets, the \(\text{O}_2^+\) ion is formed probably through recombination of \(\text{O}^+\) ion with another O atom, both being the dissociation products in the frozen target, during migration to the surface. It is also noted that the intensities of these cluster ions decrease smoothly with a little fluctuation as the number of molecules clustered around the core, \(n\), increases, but the “magic number” indicating cluster ions with special stabilities could be hardly observed. This is in contrast to cluster ion produced in expanding gas targets.\(^{1}\)

A similar sharp difference is also observed in the production of multiply charged ions: relatively intense peaks corresponding to \(\text{O}^{i+}\ (i=1-4)\) ions and even a trace of \(\text{O}^{i+}\) ions are seen in a spectrum, meanwhile only very weak \(\text{C}^{i+}\) and practically no \(\text{C}^{i+}\) ions are observed. On the other hand, in a previous gaseous target spectrum,\(^{2}\) multiply charged carbon ions are more intense by an order of magnitude than corresponding multiply charged oxygen ions.

A more dramatic difference is seen in negatively charged cluster ion spectra. In the present frozen target experiment, most intense peaks correspond to \(\text{O}^-\) and \([\text{O}\ (\text{CO}_2\)_n]^-\) cluster ions, whereas only a series of \([\text{CO}_2\ (\text{CO}_2\)_n]^-\) cluster ions are observed in expanding gas targets.\(^{3}\)

Similar measurements are under way for other frozen gas targets. Presently, the detailed production mechanisms and stabilities of ions involving cluster ions from frozen targets are not well understood, though the stabilities of the ions seem to be strongly influenced by the density of targets depending on gas or frozen phases.

It is concluded that the frozen targets can provide a variety of cluster ions as well as atomic and molecular ions, sharply different from those produced in gaseous targets, some of which have been observed only in space but not in laboratories.

References

The energy and angular distributions of "secondary" electrons emitted in 95 MeV/u Ar$^{17+}$ + C, Ni, Au collisions have been measured with RIKEN Ring Cyclotron. High energy electrons (\geq MeV) were observed with surprisingly high cross sections ($\sim 10^{-24}$ cm2).

High energy electrons were measured with a detector assembly consisting of four-fold surface barrier detectors (SSD), each having a depletion layer of ~ 500 μm. Comparison of partial energy deposition to each SSD with total energy deposition allows us to identify electrons from heavier energetic particles like fragment ions. The detector assembly can be rotated around the target from $\theta = 30^\circ$ to 150° with respect to the beam.

The appearance of the peak at ~ 45 keV independently of the ejection angle is specific to the electron loss to the continuum ($E_e = (m_e/M)E_p$), where E_e is the electron energy, E_p the projectile energy, m_e the electron mass, and M the projectile mass). On the other hand, the peak B appears at $E_e = 4(m_e/M)\cdot E_p\cos^2\theta$, indicating that knock-on collisions are responsible for the formation of the peak. Figure 2 shows higher energy part, the principal interest of this experiment, which was obtained by inserting an absorber foil (~ 1 mm Al sheet) in front of the detector assembly to discriminate huge number of low energy electrons. The observations are summarized as (i) electrons in \simMeV region are detected with surprisingly high cross section, (ii) the angular distribution of these electrons are almost isotropic, and (iii) the differential cross section either in its absolute value or in its shape depends very weakly on the target material. A further experiment is in progress to confirm these observations.

Fig. 1. Doubly differential cross sections $d^2N/dEd\Omega$ of electron production as a function of electron energy measured at 30°, 45°, and 60° with respect to the incident ion beam, 95 MeV/u Ar$^{17+}$, on a carbon foil ($\sim 4,000$ Å).

Figure 1 shows electron spectra in the region of a few hundreds keV for a carbon foil of $\sim 4,000$ Å at $\theta = 30^\circ$ to 60°. At $\theta = 45^\circ$ and 60°, two peaks (A and B of the figure) are clearly visible. The

Fig. 2. Higher energy part of the doubly differential cross section $d^2N/dEd\Omega$ at 45° on carbon, nickel, and gold foils.
In a previous report, it was shown that two kinds of convoy electrons were induced by glancing angle incident fast Xe\(^{2+}\) ion impact, that is, the one was a usual convoy electron with a velocity equal to that of inducing ions, and the other a convoy electron accelerated by a dynamic surface image potential induced by a projectile.\(^1\) It has not been elucidated whether the usual convoy electrons are produced by projectiles impinging into or those emerging from the surface. In the present report, it is shown that they are produced by emerging projectiles.

Figure 1 shows the energy spectra of electrons induced from Al by 0.98 MeV/amu Xe\(^{27+}\) ions. The incident angles are (a) 0.5° with respect to the target surface, (b) 0.8°, and (c) 1.0°. The detection angle is 1.5° with respect to the incident beam direction. Rather narrow peaks of usual convoy electrons as well as broad peaks of accelerated ones are seen. An important point is that most probable energy of these usual convoy electron peaks is decreased with increasing incident angle; 530 eV for 0.5°, 507 eV for 0.8°, and 460 eV for 1.0°. This means that the energy of projectiles inducing usual convoy electrons is also decreased with increasing incident angle. Energy loss of a projectile which penetrates the target and is scattered out of the surface becomes more prominent as the incident angle is increased. Therefore, it is concluded that these usual convoy electrons are produced by projectiles emerging from the surface after transportation inside a target. Quantitative deduction of energy loss of glancing angle incident ions is now in progress. Such usual convoy electrons are observed because of the presence of narrow steps on the target surface; they are not accelerated by an image force, because the time of the interaction between the image potential and the produced convoy electrons is too short.

References
III-2-22. Electron Spectra from Doubly Excited Boron Ions Produced by Double Electron Capture

We measured spectra of electrons ejected by the following double-electron transfer collisions at varying collision energies (37.5, 50, and 65 keV);

\[\text{Bi}^{++} + \text{He}(1s^2) \rightarrow \text{Bi}^{+}(2/3^1) + \text{He}^{2+} \]

\[\rightarrow \text{Bi}^{+}(1s) + e^- . \]

\(^{11}\text{Bi}^{++}\) ions were produced with the ECRIS (Electron Cyclotron Resonance Ion Source) constructed as an ion source for the RIKEN AVF cyclotron. Spectra of ejected electrons were measured by zero-degree electron spectroscopy.\(^1\)

Fig. 1. High resolution ejected electron spectra from the \(2/2^1\) configuration of \(\text{Bi}^{++}\). Each peak is tentatively identified as shown. Collision energy is (a) 65 keV; (b) 50 keV; and (c) 37.5 keV.

High resolution spectra of ejected electrons from \(2/2^1\) and \(2/3^1\) states are shown in Figs. 1 and 2, respectively. We tentatively identify each peak as denoted in the figures. The relative-intensity ratio of the peaks in \(2/2^1\) does not change with collision energy, but that of the peaks in \(2/3^1\) changes. Possible explanations for this phenomena are (1) the position of the reaction window changes with collision energy and (2) the magnetic sublevel distribution \(m_L\) of each angular momentum state \(L\) produced by double electron capture changes with collision energy.\(^1\)

Since the observed electron peaks are shifted by a post collision interaction (PCI) effect, so we cannot directly compare the observed peak energies with theoretical values. Precise analysis is in progress.

References

* National Institute for Fusion Science.
III-2-23. Beam-Foil Lifetime Measurements of the 2p\(^5\)3p and 2p\(^5\)3d Levels in Ti XIII

K. Ando, Y. Zou, S. Kohmoto, T. Kambara, Y. Awaya, T. Tonuma, T. Niizeki, and S. Tsurubuchi

Beam-foil decay curve measurements were performed at RILAC by using a 2.2 m grazing incidence spectrometer (McPherson 247) with a grating of 600 grooves/mm. Decay curves measured were analyzed by multiexponential fitting using a program DISCRETE.\(^1\) For the decays of 3p \(^1\)D\(_2\) and 3p \(^3\)P\(_2\), cascading from upper states were corrected by performing an ANDC (Arbitrary Normalized Decay Curve) analysis using a program CANDY.\(^1\) The results of the ANDC analysis and multiexponential fitting are displayed in Table 1 with other experiments\(^2\) and the theoretical calculation.\(^3\)-5\) All the decay curves of the 3d levels, with the exception of 3d \(^1\)F\(_4\), include a short lived cascade of lifetime of 11 - 24 ps. The level of 3p \(^3\)D\(_3\) is repopulated not only by long lived 3d cascades, but also by long lived 4d \(^3\)D\(_2\) and 4d \(^1\)F\(_3\) cascades. The lifetimes of 3d levels obtained by multiexponential fitting should be reliable since all direct cascades to 3d levels are very fast.

Table 1. Lifetimes (ns) of levels in Ti XIII.

<table>
<thead>
<tr>
<th>Upper level</th>
<th>Experiment</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2p(^5)d (^3)F(_4)</td>
<td>0.188±0.006 (0.015)*</td>
<td>0.115±0.010</td>
</tr>
<tr>
<td>2p(^5)d (^3)F(_3)</td>
<td>0.173±0.015 (0.019)*</td>
<td>0.112±0.010</td>
</tr>
<tr>
<td>2p(^5)d (^3)D(_3)</td>
<td>0.181±0.006a</td>
<td>0.115±0.012</td>
</tr>
<tr>
<td>2p(^5)d (^3)P(_2)</td>
<td>0.137±0.009b (0.011, 0.006, 2.25)a</td>
<td>0.111±0.010</td>
</tr>
<tr>
<td>2p(^5)d (^3)D(_2)</td>
<td>0.153±0.009 (0.013)a</td>
<td>0.105±0.010</td>
</tr>
<tr>
<td>2p(^5)d (^3)P(_2)</td>
<td>0.212±0.015 (0.024)a</td>
<td>0.115±0.010</td>
</tr>
<tr>
<td>2p(^3)p (^1)D(_2)</td>
<td>0.279±0.013a</td>
<td>0.215±0.020</td>
</tr>
<tr>
<td>2p(^3)p (^3)F(_2)</td>
<td>0.321±0.042 (0.055)a</td>
<td></td>
</tr>
<tr>
<td>2p(^3)p (^3)P(_2)</td>
<td>0.370±0.037a</td>
<td>0.218±0.020</td>
</tr>
<tr>
<td>2p(^3)p (^3)D(_2)</td>
<td>0.359±0.060 (0.146)a</td>
<td>0.240±0.030</td>
</tr>
</tbody>
</table>

a) Results of multiexponential fitting with cascade lifetimes are given in parentheses.
b) Results of ANDC analysis.
c) Results of Crance.\(^3\)
d) Results of Bureeva.\(^4\)
e) Results of MCDF.\(^5\)

References
Neutral Atomic Beam Source with a Pulsed Heater

T. Minowa, H. Komatsu,* H. Katsuragawa, and T. Inamura

In a previous report we described a novel method to produce neutral atomic beams of metal elements. This method is based on low-bias pulsed discharge; plasma generated heats up metal elements to be evaporated. We successfully carried out resonance ionization spectroscopy of Fe and Al by this method. Although the pulsed discharge method is simple, low-cost, and capable of making intense atomic beams of metal elements, several drawbacks were found. The most troublesome was an increase in background due to charged particles produced at pulsed discharge.

We have developed a pulsed heating method to produce neutral atomic beams for such a case as no intense atomic beam is needed but an extremely clean atomic flux is required. The experimental setup was the same as that described in Ref. 1 except for an atomic beam source. A Mo filament (diameter 30 μm, effective length 1 cm) was connected periodically to a charged capacitor (330 μF) with an electrical relay. An advantage of this pulsed heating method is in that no extra technique is required for cooling the filament and its support, and in that the lifetime of the filament is considerably prolonged.

We carried out resonance ionization spectroscopy of a Mo atomic beam produced by the pulsed heating method. In Fig. 1 a time-of-flight spectrum of Mo+ and a plot expanded around the Mo+ peak are shown. Here Mo+ isotope peaks are partly resolved. Mo-ion counts are plotted as a function of the wavelength of laser radiation in Fig. 2. The ionization peak corresponds to the $^2\text{P}_3^0-^2\text{S}_3$ transition in Mo atom.

The rate of Mo atoms evaporated from a unit surface is given by

$$\log m = 27.81 - 33.25 \times 10^3 / T + 5.50 \times 10^6 / T^2$$

(1)

where log denotes a general logaritithm, m is the evaporation rate in cm$^{-2}$s$^{-1}$, and T is the temperature of the Mo surface. Mo atoms flew away from the filament uniformly into the space in a vacuum chamber, so that, if evaporation is stationary, the density of Mo atoms at a distance r apart from the Mo source is given by

$$n(r) = mS/4\pi v r^2$$

(2)

where the Mo filament is assumed to be a point source, $n(r)$ is the density of Mo atoms, S is the surface area of the Mo filament, and v is the mean velocity of Mo atoms. The mean velocity of Mo atoms can be estimated at hundreds of meters per second. The ionization volume in this work was placed 10 cm apart from the Mo source; therefore evaporation was considered to

* Tokyo Gakugei University.
be stationary because firing of the laser was delayed by few milliseconds after the rise of evaporation and its fall time was 70 ms.

For Mo the saturation condition was easily fulfilled by a relatively low-power laser radiation, i.e., tens of microjoules per pulse. Under the saturation condition almost all the Mo atoms in the volume irradiated by the laser is ionized and the linear dependence of an ionization signal upon the laser power is obtained. We confirmed by this linear dependence that the saturation condition was fulfilled.

The pulse duration time of the laser was 10 ns. In this time scale Mo atoms can be considered to be at rest. The Mo⁺ counting rate was nearly unity per pulse at an application voltage of 15 V to the capacitor. Therefore following equation holds

\[mSV/\pi vr^2 = 1 \] (3)

where \(V \) is the volume where resonance ionization took place. We took the following formula for the mean velocity

\[v = \sqrt{3kT/M} \] (4)

where \(k \) is the Boltzmann constant and \(M \) is the mass of Mo. Combining Eq. (1), (3), and (4) and substituting the value \(10^{-4} \text{ cm}^3 \) into \(V \), we obtained values of \(6 \times 10^{13} \text{ cm}^2\text{s}^{-1} \) and 2,200 K for \(m \) and \(T \), respectively.

Upon the application of voltage pulses to the Mo filament, light emission occurs simultaneously with evaporation. We measured the light intensity with a photodiode (HAMAMATSU S1227-66BQ). The output current of the photodiode is proportional to radiated light intensity when the current is lower than 0.1 A. Using Planck’s radiation formula, the output current of the photodiode was approximately related to the evaporation rate of the Mo filament as follows

\[m = B \cdot I^{1.8} \] (5)

where \(B \) is the constant determined by experimental conditions and \(I \) is the output current in A. With the value \(m = 6 \times 10^{13} \) that of \(B \) is determined to be \(1 \times 10^{20} \). The temporal dependence of the output current was converted to that of the evaporation rate of the Mo filament and is plotted in Fig. 3. From this measurement it is found that the pulsed heating prolongs the lifetime of the Mo filament by one order of magnitude compared with continuous heating with a direct current.

![Fig. 3. Evaporation rates of a Mo filament plotted vs. time. The diameter and the effective length of the filament is 30 \(\mu \text{m} \) and 1 cm, respectively.](image)

References
III-2-25. Magnetic Property of BiPbSr$_2$FeO$_6$

T. Okada, K. Asai, and T. Yamada*

The physical properties of compounds Bi$_2$M$_{1+n}$Fe$_n$O$_y$ (M=Sr, Ca; n=1, 2, 3) are of great interest in view of their crystallographical isostucture with high-Tc superconductors Bi$_2$Sr$_2$Ca$_{n-1}$Cu$_n$O$_y$ for n=1, 2, 3.

A sample of BiPbSr$_2$FeO$_6$ (n=1) was prepared by heating starting materials Bi$_2$O$_3$, PbO, SrCO$_3$, and α-Fe$_2$O$_3$ in air at 815°C for five days. One of the Bi atoms of Bi$_2$M$_{1+n}$Fe$_n$O$_y$ for n=1 was replaced with a Pb atom so as to keep the charge balance. The resulting compound, isostructural with a one layer superconductor Bi$_2$Sr$_2$Cu$_2$O$_6$, is found to be orthorhombic (a = 5.42 Å, b = 5.49 Å, c = 23.20 Å).

The static magnetization of BiPbSr$_2$FeO$_6$ in the temperature range between 77 K and 298 K was measured using a vibrating sample magnetometer. The magnitude of the magnetization in an applied magnetic field of 1.6 T was very small (~10$^{-1}$ emu/g) at 77 K and monotonously decreased with increasing temperature.

The Mössbauer measurements of 57Fe were carried out at temperatures from 5 K to 295 K. Two typical Mössbauer spectra are shown in Fig. 1. The spectrum at 295 K [Fig. 1 (a)] was composed of a doublet arising from quadrupole splitting. The hyperfine magnetic field (H_{hf}) was observed in the spectrum at 80 K [Fig. 1 (b)]. The temperature dependence of H_{hf} is shown in Fig. 2. The value of H_{hf} decreased with increasing temperature, and reduced to zero at 210 K. Extrapolation suggests that the hyperfine magnetic field disappears at 190 K, indicating that the magnetic transition takes place at this temperature.

Fig. 1. 57Fe-Mössbauer spectra of BiPbSr$_2$FeO$_6$ at (a) 295 K and (b) 80 K.

Fig. 2. Temperature dependence of the hyperfine magnetic field at 57Fe obtained from Mössbauer spectra.

* Faculty of Literature and Science, Yokohama City University.
It has been demonstrated that heavy inert gas atoms (Ar, Kr, and Xe) implanted into metals at ambient temperature precipitate into a solid phase (often referred to as solid inert gas bubbles) at high implantation doses, and that they have an epitaxial face-centered cubic (fcc) structure in fcc matrices. The growth of such bubbles has been extensively studied mainly by transmission electron microscopy and by an X-ray diffraction method. Since these methods are sensitive to bubbles greater than a certain minimum size, usually after the interesting initial growth of bubbles has occurred, they are more effective to the study on bubble growth rather than that on nucleation. On the other hand, a channeling method is useful to study phenomena such as bubble nucleation, because it provides direct information on the lattice location of implanted atoms.

In the present study the implantation-dose dependence of lattice location of Kr atoms implanted in Al at room temperature has been investigated by the ion-channeling method with a 1 MeV He⁺ beam in more detail than in previous studies. From the channeling angular profiles we observed, as shown in Fig. 1, that, at an implantation dose lower than 2×10¹⁵/cm², Kr atoms are distributed over random (R), substitutional (S), tetrahedral (T) and octahedral (O) sites. At a dose higher than 2×10¹⁵/cm² a fraction of the Kr atoms come to be located at O*-sites displaced from O-sites by about 0.03 nm. The T- and O-site occupancies are considered to result from the multiple trapping of vacancies by Kr atoms, because large-sized impurity atoms tend to interact strongly with vacancies. The Kr atoms are displaced to the T- and O-sites by trapping 4 and 6 vacancies, respectively. On annealing the T- and O-site configurations (KrV₄ and KrV₆) became unstable between 380 and 470 K. The R-site occupancy can be ascribed to the Kr atoms associated with larger vacancy clusters (cavities) consisting of more than 6 vacancies. This interpretation is supported by the previously reported result that with increasing dose from 4×10¹⁴ to 1×10¹⁵/cm² the number density of the R-site occupancy increases and, correspondingly, cavities come to be observed. The O*-site occupancy is considered to be due to the clustering of the Kr atoms located at the O-sites. The Kr atoms are displaced slightly from the O-sites due to the mutual interaction.

From these results we proposed that for the Kr implantation at room temperature Kr-vacancy complexes such as KrV₄, KrV₆, and larger ones are formed in the early stage of implantation, and these complexes act as nucleation centers for the precipitation of Kr atoms.

References
A study has been made of the compositions of AlN\textsubscript{x} thin films on glassy carbon (G.C) substrates before and after Ar-implantation.

AlN\textsubscript{x} thin films of approximately 100 nm in thickness were deposited on G.C by means of an activated reactive evaporation in a nitrogen atmosphere.

Ar-implantation into AlN\textsubscript{x} thin films was performed to the doses ranging from 5\times10^{16} to 1\times10^{17} Ar+/cm2 at 150 keV near room temperature. The compositions of the films on G.C substrates before and after Ar-implantation were evaluated by He+ Rutherford backscattering spectroscopy (RBS) using a 1.5 MeV 4He+ beam. The dose of He+ was 2.4\times10^{15} He+/cm2 throughout the study.

Figure 1 shows the RBS spectra before and after Ar-implantation into the films on the G.C substrates. Figure 1 (c) shows the spectrum before Ar-implantation. The doses for Figs. 1 (b) and (a) were 5\times10^{16} and 1\times10^{17} Ar+/cm2, respectively. The surface edges of Al, N, O, and Ar are indicated by short lines; the position of G.C is also indicated.

The spectrum for an as-deposited specimen shows a uniform concentration of O atoms. The ratio of N/Al in the as-deposited film is estimated as 0.8, according to a surface energy approximation.

It was found from Figs. 1 (b) and (a) that Ar atoms were retained into the specimens. The depth position of the maximum concentration of Ar is located at the depth of about 80 nm from the surface. As the dose of Ar-implantation increases, the backscattering yield height from Ar atoms increases. It is estimated that the amount of the Ar atoms in the specimen (a) is twice as large as that in the specimen (b), in proportion to the dose of Ar-implantation.

It is also found in Figs. 1 (b) and (a) that O atoms invaded the surface layers of the films after Ar-implantation. The yields from the O atoms increases as the dose of Ar-implantation increases. The O atoms included in the residual gas (for example, gas of H\textsubscript{2}O and CO\textsubscript{2}) would invade the films by cascade mixing during Ar-implantation.

Thus, it is concluded that Ar atoms are retained in the films, in proportion to the dose of Ar-implantation. The O atoms invaded the films during Ar-implantation.
Energetic charged particles leave their latent tracks in a polymer, polycarbonate Makrofol, irradiated with them. Pierced pores can be observed in it after chemical etching. The phenomenon is applicable to the production of microfilters for industrial uses.

The etch phenomenon is considered geometrically as shown in Fig. 1. In this simplified case, the surface A before etch is corroded to go to the surface B at a bulk etching rate V_b after an etching time T. On the other hand, as etching goes on, an etch pit is formed along the latent track at a track etching rate V_t. Until docking, etch pits in both sides of the films proceed at the cone angle δ, for which we can get a relation of $\delta = \sin^{-1} \left(\frac{V_b}{V_t} \right)$.

It is desirable to get pores with δ as small as possible.

We have examined irradiating and etching conditions for thin polycarbonate Makrofol films. The present goals are to realize pores of less than 0.05 μm and to find the best conditions for polyimid films. Figure 2 shows an example of etched pores in a 10 μm film irradiated with 1 MeV/u 84Kr$^{8+}$. We have also tried to observe cross sections of etch pits.

Fig. 2. Scanning electron micrograph of etched pores in a 10 μm Makrofol irradiated by 1 MeV/u 84Kr$^{8+}$ ions. Magnification \times 10,000. Diameter is 0.2 μm.

References
Elastic recoil detection (ERD) is a powerful method for the prompt determination and profiling of atomic species, especially light elements such as hydrogen atoms, near the surface. We have measured the depth profiles of hydrogen and deuterium atoms in thin carbon films prepared by chemical vapor deposition by ERD using an Ar^{4+} beam from the RILAC, whose incidence angle and energy were 30° and 50 MeV, respectively.\(^1\) A decrease in hydrogen atoms in the films was found during measurement as the bombarding time proceeds. This decrease is attributed to the heating of the surface by the bombardment of high energy Ar^{4+} beams. It is well known from a thermal desorption spectrum that hydrogen atoms are desorbed from the surface and/or diffuse into substrate at about 300°C. Therefore, we observed a local-surface temperature during 50 MeV Ar^{4+} beam bombardment. Figure 1 shows the schematic arrangement of the experimental setup. The specification of a radiation thermometer used is as follows: the measurable temperature range, 200–600°C and the spot area measured, 1 mm2, where a beam-spot size bombarded is 2×2 mm2 to 4×7 mm2. Radiation ($\lambda = 1.8–2.5$ μm) from the heated surface was conducted to a PbS detector from a vacuum chamber through a lens ($\phi 6$) and an optical fiber. Figure 2 shows the surface temperatures of Si and stainless steel targets as a function of the Ar^{4+} beam current. The dimensions of the Si and the stainless steel are $12 \times 8.5 \times 0.4$ mm and $12 \times 9 \times 1$ mm, respectively. These targets and others (see Fig. 2) were mounted at a time on a holder of a large heat capacity. With increasing 50 MeV Ar^{4+} beam current, the target surface is heated and its temperature reaches near 200°C at a beam current of about 100 nA including secondary electrons. A further increase in beam current results in a linear increase in the surface temperature. Finally the surface temperature of Si reaches near 400°C at 200 nA after bombardments of other targets as shown in Fig. 2.

However, the beam current used in the present study is higher than that of a usual ERD measurement by a factor of about 10. The surface temperature is thought to be less than 200°C, although it could not be measured with this thermometer under the conditions of ERD measurement. It is deduced from Fig. 2 that the surface temperature lies below 150°C at practical ERD measurements.

References
III-3. Radiochemistry and Nuclear Chemistry

1. Mössbauer Emission Spectroscopy of 57Fe Arising from 57Mn in Chromium Metal and its Oxides

Mössbauer emission spectroscopy using the short-lived 57Mn produced by the 54Cr(α, p)57Mn reaction was continued. In this period, several improvements were achieved in experimental details. Among them are the use of a 57Fe-enriched absorber with a larger area than that of the former one, the temperature control of an actuator, and the calibration with 57Co embedded in iron.

The emission Mössbauer spectra of 57Fe arising from 57Mn in α-irradiated 54Cr metal, 54CrO$_3$, and 54Cr$_2$O$_3$ are shown in Fig. 1. The isomer shift is given relative to iron metal at room temperature.

As seen from Fig. 1(A), the emission spectrum of 57Mn in 54Cr-metal consists of a singlet. The isomer shift is in good agreement with that of 57Co doped in chromium. A clearly split doublet was observed for 57Fe arising from 57Mn in 54CrO$_3$ (Fig. 1(B)). The isomer shift indicates high-spin ferric ions coordinated with oxide ions. In the case of 54Cr$_2$O$_3$, the spectrum was decomposed into two sets of quadrupole doublets, as seen from Fig. 1(C). The doublet with a smaller isomer shift is assigned to high spin ferric species, while the other to high spin ferrous ones.

Detailed discussion on the observations will be given elsewhere.

Fig. 1. Emission Mössbauer spectra of 57Fe arising from 57Mn produced by the 54Cr(α, p)57Mn reaction in (A) 54Cr-metal, (B) 54CrO$_3$, and (C) 54Cr$_2$O$_3$. The temperature of measurement was about 30°C.

* Faculty of Science, Tokyo Metropolitan University.
** Faculty of Science, the University of Tokyo.
99Ru Mössbauer Spectroscopy on Adducts of Ruthenocene with Halogens

Y. Kobayashi, M. Watanabe, T. Okada, M. Katada, H. Sano, and F. Ambe

The physicochemical properties of ferrocene derivatives have extensively been studied by 57Fe Mössbauer spectroscopy. No 99Ru Mössbauer spectra of ruthenocene derivatives seem to have been published. In this period, we applied 99Ru Mössbauer spectroscopy to the study of the adducts of ruthenocene with halogens, expressed as \([\text{Ru(C}_5\text{H}_5\text{H}_2\text{X}]\text{Y}\) (X = Cl, Br, I; Y = PF\(_6\), BF\(_4\), I\(_3\)), using a source nuclide 99Rh produced by irradiating 97% enriched 99Ru metal with 12 MeV protons accelerated by the cyclotron.\(^1\)

The samples were prepared by the method described in the literature,\(^2\) and the results of their elemental analysis were in good agreement with calculation.

The Mössbauer spectra obtained at 5K of [Ru(C\(_5\)H\(_5\)I\(_2\))]PF\(_6\), [Ru(C\(_5\)H\(_5\)Br\(_2\))]PF\(_6\) and ruthenocene are shown in Fig. 1. The spectra were fitted well to a theoretical curve assuming an electric field gradient, while those of the adducts containing iodine were analyzed with two Lorentzian curves since the relative intensity of absorption was small. It was found that both the isomer shift and the electric quadrupole splitting of the adducts with halogens are large compared with those of ruthenocene. The results obtained in the present work lead us to the conclusion that ruthenocene gives halogen adducts containing direct chemical bonding between Ru and Cl (or Br, I) and that the Ru ion in each adducts is in a higher oxidation state, probably 4+ resulting from a two-electron process, than 2+ in ruthenocene. Such behavior described above has not been observed in ferrocene and its derivatives.

Fig. 1. 99Ru Mössbauer spectra at 5K of (a) ruthenocene-Cl adduct, (b) ruthenocene-Br adduct, and (c) ruthenocene (relative to ruthenium metal).

References
III-3-3. Measurements of Time-Differential γ-Ray Perturbed Angular Correlation (TDPAC) and Emission Mössbauer (EM) Effects for 99Ru in α-Fe$_2$O$_3$ Using 99Rh as a Source Nuclide

Y. Ohkubo, Y. Kobayashi, K. Asai, Y. Yanagida, M. Iwamoto, and F. Ambe

In this period, we finished measuring TDPAC and EM spectra for 99Ru in α-Fe$_2$O$_3$, using 99Rh ($t_{1/2}=15$ days) as its parent. The employed γ-Rays were 353–90 keV cascade ones through the intermediate level 3/2+ with $t_{1/2}=20.5$ ns for TDPAC and 90 keV (3/2+ → 5/2+) for EM spectroscopy. α-Fe$_2$O$_3$ has the corundum structure. Since the point symmetry of the Fe$^{3+}$ site is not cubic, there is an electric field gradient (EFG). α-Fe$_2$O$_3$ is antiferromagnetic below $T_N = 950$ K (the Néel point). Thus, below T_N, the nuclei of 99Ru ions replacing Fe$^{3+}$ experience a hyperfine magnetic field H_{hf} in addition to the EFG.

The preparation procedure for α-Fe$_2$O$_3(99)$Rh was described before. In this period, we prepared two α-Fe$_2$O$_3(99)$Rh samples by heating Fe$_2$O$_3$·nH$_2$O(99Rh) at 1,173 K or at 1,023 K. We used four BaF$_2$ (1.5 in ϕ × 1 in) detectors to set up a PAC spectrometer. Coincidence counts for detector combinations of 90 and 180 degrees were measured as a function of delay time between the emissions of 353 and 90 keV γ rays. In this measurement, four spectra (two for 90° and two for 180°) were taken simultaneously, though eight spectra could be taken in principle.

Measurements of TDPAC spectra were made in the temperature range from 10 K over T_N to 1,023 K. An EM spectrum was taken at 5 K. The measured TDPAC spectra were identical for the two samples heated at the two different temperatures. Figure 1 shows a part of the measured TDPAC spectra (left) and their Fourier transformed spectra (right). Figure 2 shows the measured EM spectrum (right) and the H_{hf} spectrum calculated from it (left). The saturated H_{hf} obtained from TDPAC was about 190 kOe, the value of which is consistent with that obtained from the EM spectrum of about 180 kOe. These values are preliminary; detailed analysis is in progress.

References
This year we measured TDPAC and EM spectra for 99Ru in Fe$_3$O$_4$, using 99Rh ($t_{1/2} = 15$ days) as its parent. Fe$_3$O$_4$ has the inverse spinel structure and is ferrimagnetic below $T_C = 858$ K.

Fe$_3$O$_4$(99Rh) was prepared by heating α-Fe$_2$O$_3$(99Rh), obtained by the method described before1,2, under a reduced pressure of about 3 Pa at 1,423 K for 2 h. We used the same PAC spectrometer as described in the previous report.2 Measurements of TDPAC spectra were made in the temperature range from 10 K over T_C to 873 K. An EM spectrum was taken at 5 K. With the method used by Asai3 et al. we confirmed that 99Rh ions are in the octahedral sites. Figure 1 shows a part of measured TDPAC spectra (left) and their Fourier transformed spectra (right).

Fig. 1. TDPAC spectra of 99Ru (3/2+) in Fe$_3$O$_4$ measured at 77 K, 293 K, and 673 K (left) and their Fourier transformed spectra (right).

TDPAC was about 160 kOe, the value of which is consistent with that obtained from the EM spectrum of about 140 kOe. Figure 3 shows the temperature dependence of H_{hf}. These results are preliminary; detailed analysis is in progress.

References
2) Y. Ohkubo, Y. Kobayashi, K. Asai, Y. Yanagida, M. Iwamoto, and F. Ambe: This Report, p.67.
III-3-5. Angular-Momentum Effect in Heavy Ion-Induced Fusion Reactions

H. Kusawake, T. Saito, N. Takahashi, A. Yokoyama, H. Baba, Y. Ohkubo, and A. Shinohara

According to a Bass model,\(^1\) the cross section for evaporation residue formation was predicted to be reciprocally proportional to the incident energy in the region higher than a specific energy.\(^2\) In order to confirm validity of the prediction, we aim to measure the cross sections directly both for evaporation residues and fission and their dependence on energy by a nuclear-chemical method.

We studied the reaction of a \(^{141}\)Pr target with 24.8- and 23.5-MeV/u \(^{40}\)Ar projectiles. Experimental details were described in previous reports.\(^3,4\)

The total chain yields of fission fragments were deduced from the cumulative and independent yields of gamma-emitting radioactive products on the assumption of a Gaussian charge dispersion with the width parameter \(\sigma = 1.5\). The cross sections of evaporation residues were deduced from the average of cumulative yields of isobaric products because primary products were very unstable. The results are shown in Fig. 1. If each emitted light particle carries off 12 MeV, the mass number of the resulting evaporation residue is estimated to be 125, which agrees with the peak position of measured evaporation residues.

The total cross sections deduced for evaporation residues and the values measured by Zank \(\text{et al.}\)\(^5\) are plotted versus \(1/E_{\text{CM}}\) in Fig. 2 as compared with the Bass model. The \(L_{ER}\) values deduced in this work were 69 and 67 at 24.8 and 23.5 MeV/u, respectively. They are larger than that predicted from a rotating finite range model.

This work is not yet sufficient to discuss the result. We will extend the cross section measurement of the same system to different energies.

References
4) H. Baba \(\text{et al.}\): ibid., 23, 76 (1989).
III-3-6. Heavy-Ion Reactions of Copper with 14N and 40Ar Ions of Intermediate Energies

We studied interactions of a given target with different types of projectile. Copper foils (25 μm thick) covered with aluminum catcher foils were irradiated with the 14N (0.49 and 1.89 GeV) and 40Ar (1.04 and 3.80 GeV) ions in the beam course E3. After irradiation, γ rays from the targets and catchers were measured. Recoil properties of the products were obtained by measuring the ratios of radioactivity in the target to those in the catchers.

Figure 1 shows a mass-yield distribution of products in 1.04-GeV 40Ar irradiation, obtained from the cross sections and charge dispersion. The dependence of mean recoil ranges on the mass number in two types of reactions is presented in Fig. 2. The results show that the ranges decrease with increasing bombarding energy. Reaction products heavier than the target have larger recoil ranges, indicating the contribution of fusion or dumped-collision types of interactions. The reaction mechanism will be obtained from detailed analysis of the experimental data.
III-3-7. Yields of Nuclear Reaction Products Induced by 95 MeV/u 40Ar Ions

Nuclear reactions induced by intermediate-energy heavy ions have intensively been studied. The results of the present study are compared with those of proton induced reactions to find relations among various reaction mechanisms such as fission, quasi-elastic transfer, deep inelastic transfer, fusion, and fragmentation.

We aim to measure formation cross sections of many nuclides with a radiochemical technique, in order to offer fundamental data of intermediate energy heavy-ion reactions and to obtain detailed information on the reaction systems.

We studied interactions of various target nuclides with a single projectile. Irradiations were performed with 3.80 GeV 40Ar ions on the E3 course of RIKEN Ring Cyclotron. Targets were natural foils of odd Z elements (V, Cu, Nb, Pr, Ho, Au, etc.) together with aluminum catcher foils. After irradiation, targets were submitted to gamma-ray spectrometry, and various gamma-ray emitting nuclides were assayed. Long-lived nuclides were measured at the Radioisotope Center of Nagoya University, where a low background gamma-ray spectrometer has been installed and a well-type germanium detector is easily accessible.

Figure 1 shows the distributions of formation cross sections for V and Nb targets obtained in this experiment. The results will be converted to mass yield curves by using information on charge dispersion, and comparison among different reaction systems will be performed to obtain detailed information on the reaction mechanism. Recoil ranges measured in this experiment are also helpful for a better understanding.
III-3-8. Dry Separation of Radioactive Nuclides from a Gold Target Irradiated with 135 MeV/u 14N Ions

M. Iwamoto, S. Ambe, S.Y. Chen, Y. Ohkubo, Y. Kobayashi, and F. Ambe

We started in this period a series of experiments on the preparation of multitracer solutions from targets irradiated with heavy ions accelerated with RIKEN Ring Cyclotron. 1) Solutions containing a large variety of radioactive nuclides are to be used in chemical, geochemical, and biochemical investigations. This report describes the separation of radioactive nuclides obtained from a gold target by heating under a reduced pressure.

A stack of gold foil was irradiated with a 135 MeV/u 14N-ion beam by using the falling ball irradiation system. 2) A piece of the gold foil was heated at 1,050°C (melting point of gold: 1,064°C) in a quartz tube under a pressure of about 1 Pa (Fig. 1). The nuclides evaporating from the foil were collected on a Pyrex cold finger cooled with water. The finger was successively immersed into (1:1) nitric acid and (1:1) hydrochloric acid solutions. The dissolved radioactive nuclides were identified by γ-ray spectrometry with a pure Ge detector. The spectrum of the hydrochloric acid solution is shown in Fig. 2.

γ-Ray spectra were analyzed by the computer program BOB developed by Baba et al. 3) The nuclides of following elements were found to have been dissolved in acid solutions:

- (1:1) Nitric acid: Zn, As, Te, Tb, Re
- (1:1) Hydrochloric acid: Zn, As, Br, Te, I, Re

A more quantitative experiment is now in progress.

References

1) S. Ambe, S.Y. Chen, Y. Ohkubo, Y. Kobayashi, M. Iwamoto, and F. Ambe: This Remort, p. 73.
3) H. Baba: JAERI-M, 7017.
III-3-9. Preparation of a Radioactive Multitracer Solution from Gold Foil Irradiated with 135 MeV/nucleon 14N Ions

S. Ambe, S.Y. Chen, Y. Ohkubo, Y. Kobayashi, M. Iwamoto, and F. Ambe

Simultaneous use of a number of radioactive tracers enables us not only to acquire data efficiently on various elements at once but also to determine the characteristic behavior of different elements precisely under identical experimental conditions. The advance in solid state detectors, counting circuits, and computers has made it possible to measure and analyze complex γ-ray spectra of samples containing many radioactive nuclides. We have established a separation procedure of a radioactive multitracer from a gold target.

A stack of gold foil (22 mm2) was irradiated with a 14N beam of 135 MeV/nucleon. The beam intensity was about 100 nA and the irradiation time was 150 min. The irradiated target was dissolved in aqua regia. The solution was evaporated to dryness under a reduced pressure of about 4 kPa in a closed vessel with a trap. The residue was dissolved in conc. hydrochloric acid. Gold ions in the solution were reduced to metal with hydrogen peroxide and filtered out. The evaporation, dissolution, reduction, and filtration were repeated several times to ensure complete removal of gold from the solution. Finally, the residue was dissolved in 6 mol dm$^{-3}$ hydrochloric acid to yield a carrier- and salt-free multitracer solution containing a large variety of radioactive nuclides produced from the gold target.

The γ-ray spectra of the solution and the precipitated gold metal were measured with a pure Ge-detector of 18% relative efficiency. The complicated spectra of the solution were analyzed by means of a program BOB13 on a FACOM M780 computer of the institute. Essentially no peaks assignable to radionuclides of elements other than gold were detected in the fraction of precipitated gold and no γ-rays due to radioactive nuclides of gold were found in the multitracer solution obtained. These observations prove the completeness of the separation carried out. The kind of elements traceable by the nuclides in the solution depends on time after irradiation, because the radionuclides of different half-lives are produced. The dominant peaks in the γ-ray spectrum of the tracer solution measured 4 days after irradiation are those due to 67Ga, 89Zr, 87Y, 99Mo, 103Ru, 111In, 131Ba, 145Eu, 146Gd, 147Gd, 149Gd, 152Tb, 153Tb, 155Tb, 167Tm, 169Lu, 171Lu, 170Hf, 172Hf, 181Re, 183Os, 195mHg, and so on.

It is noteworthy that a multitracer solution containing neither carriers nor salts is obtained by the present radiochemical procedure. This is a great advantage in applying it to a variety of chemical problem.22 Now, the application of this procedure to a model experiment on marine chemistry is in progress. We also plan to prepare multitracer solutions covering elements in different ranges of atomic number by using other heavy ions and target materials in combination with appropriate radiochemical procedures.

References
1) H. Baba: JAERI-M 7017.
2) S.Y. Chen, S. Ambe, Y. Ohkubo, M. Iwamoto, Y. Kobayashi, N. Takematsu, and F. Ambe: This Report, p. 74; p. 75.
Adsorption is one of the most important processes in geochemical behavior of metal elements. A multitracer technique using radioactive nuclides produced by heavy-ion irradiation is especially effective in studying the characteristic behavior of different elements simultaneously. This report describes a multitracer study on the adsorption of various metal elements on hydrated ferric oxide.

Carrier- and salt-free radioactive multitracer solutions were prepared from gold foil irradiated with a 14N beam of 135 MeV/nucleon as described elsewhere.\(^1\)

Eight milliliters of artificial seawater and 10 μl of a multitracer solution was put into a polyethylene bottle. After pH was adjusted to 7.5 with a 1 mol dm$^{-3}$ Na$_2$CO$_3$ solution, 0.5 ml of adsorbent suspension (2 mg/ml) was added to the solution. The volume of the suspension was then adjusted to 10 ml with artificial seawater, and its pH to 7.5. Shaken in an 8-shape mode with a shaker at 25°C, the suspension was found to attain the adsorption equilibrium within 60 min. After centrifugation, 5 ml of the solution was pipetted from the supernatant solution. The γ-ray spectrum of radioactive nuclides in the solution was measured with a Ge detector.

The distribution coefficients (K_d) of Y, Zr, Hf, Mo, Re, Ru, Rh, Cu, Hg, In, Eu, Gd, Tb, Tm, Yb, Sn, and Nb were determined from the activities of their radioactive isotopes. The results are shown in Table 1. The logarithmic plot of K_d against the electron binding energy E of M$^{2+}$ is given in Fig. 1. These data provide a basis for understanding the removal mechanism of metal elements from seawater.\(^2\)

Table 1. Distribution coefficients of metal elements for hydrated ferric oxide (ml·mg$^{-1}$).*

<table>
<thead>
<tr>
<th>Element</th>
<th>K_d (ml·mg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>2.63×10^5</td>
</tr>
<tr>
<td>Zr</td>
<td>9.12×10^4</td>
</tr>
<tr>
<td>Hf</td>
<td>1.07×10^5</td>
</tr>
<tr>
<td>Mo</td>
<td>6.46×10^3</td>
</tr>
<tr>
<td>Re</td>
<td>1.35×10^4</td>
</tr>
<tr>
<td>Ru</td>
<td>1.50×10^6</td>
</tr>
<tr>
<td>Rh</td>
<td>8.32×10^3</td>
</tr>
<tr>
<td>Cu</td>
<td>1.41×10^6</td>
</tr>
<tr>
<td>Hg</td>
<td>1.26×10^5</td>
</tr>
<tr>
<td>In</td>
<td>1.58×10^4</td>
</tr>
<tr>
<td>Eu</td>
<td>2.51×10^5</td>
</tr>
<tr>
<td>Gd</td>
<td>5.75×10^5</td>
</tr>
<tr>
<td>Tb</td>
<td>1.05×10^5</td>
</tr>
<tr>
<td>Tm</td>
<td>3.72×10^5</td>
</tr>
<tr>
<td>Lu</td>
<td>2.63×10^5</td>
</tr>
<tr>
<td>Yb</td>
<td>5.27×10^4</td>
</tr>
<tr>
<td>Sn</td>
<td>2.27×10^4</td>
</tr>
<tr>
<td>Nb</td>
<td>5.39×10^4</td>
</tr>
</tbody>
</table>

* The concentration of a sorbent is 0.1 mg·ml$^{-1}$.

Fig. 1. Logarithmic distribution coefficients K_d of metal elements are plotted against electron binding energies.

References

1) S. Ambe, S.Y. Chen, Y. Ohkubo, Y. Kobayashi, M. Iwamoto, and F. Ambe: This Report, p. 73.
III-3-11. A Multitracer Study of Adsorption of Metal Elements on Clay Minerals and Marine Sediments

S.Y. Chen,* S. Ambe, Y. Ohkubo, M. Iwamoto, Y. Kobayashi, N. Takematsu, and F. Ambe

A leading model for the removal mechanism of metal elements from the ocean is a surface complexation model. However, it is based not on stability constants of surface complexes of the elements, but on their hydrolysis constants or dissociation constants of acids they form in solution. It is assumed that the adsorption affinity of cationic elements is dependent on their hydrolysis constants, while that of oxyanionic elements is dependent on the dissociation constants of their acids. This is a point of the model criticized by its opponents. In order to clarify this essentially by important problem, we started an adsorption study of metal elements on various marine samples making use of a multitracer produced with RIKEN Ring Cyclotron.

The details of the experiment are referred to a preceding report describing a similar adsorption study on hydrated ferric oxide. The distribution coefficients \(K_d \) of Y, Zr, Hf, Mo, Ru, Rh, Cu, Ag, Hg, In, Eu, Gd, Tb, Tm, Lu, Yb, Sn, and Nb were calculated from \(\gamma \)-ray spectra. For the metal elements, the order of \(K_d \) for each adsorbent is summarized as follows: Hydrated ferric oxide > deep-sea sediment > montmorillonite > nearshore sediment > kaolinite. It is inferred from these observations that hydrated ferric oxide plays an important role in removing metal elements from seawater.

The logarithmic plot of adsorption coefficients \(K_d \) versus electron binding energy \(I_z \) for deep-sea and nearshore sediments is shown in Fig. 1. A correlation is seen similar to that observed for the concentration ratio of elements in oceanic pelagic clay sediments and seawater.

References

Fig. 1. Logarithmic plot of distribution coefficients \(K_d \) of metal elements for deep-sea and nearshore sediments as a function of the electron binding energies.

* South China Sea Institute of Oceanology, Academia Sinica.
In this study we have established a procedure of preparing no-carrier-added 105Ag (half-life: 41.3 d) and 106mAg (half-life: 8.46 d) (hereafter we refer to as Ag*) by using the cyclotron, that is, by the Pd(α, pXn)Ag* reactions.

Pd foils ($8 \mu m$) were irradiated with 40 MeV α particles accelerated in the cyclotron. The Pd foils were heated in a quartz tube with a cold finger under a reduced pressure (~10 Pa). Ag* deposited on the cold finger was dissolved in a hot 1:1 HNO$_3$ or 1:1 HCl solution, yielding no-carrier-added and salt-free Ag* solutions. The solutions thus obtained were used for adsorption and coprecipitation experiments.

Figure 1 shows that the sublimation of Ag* starts at around 900°C and is accelerated with temperature. We adopted 1,050°C as the temperature for routine sublimation. The Sublimation is an excellent separation method, because dissolution of Pd foils is not necessary and separation time can be greatly saved in comparison with wet separation methods.

The adsorption yield of Ag*(I) on α-Fe$_2$O$_3$ from 0.5 mol dm$^{-3}$ NaNO$_3$ increased with pH, while only a slight increase was observed for the adsorption from 0.5 mol dm$^{-3}$ NaCl at pH 3–12.

Figure 2 shows the coprecipitation of Ag*(I) and Cd*(II) with ferric hydroxide precipitated with NH$_4$OH.

Figure 2 shows the coprecipitation of Ag*(I) and Cd*(II) with ferric hydroxide precipitated with NH$_4$OH. Almost all the Cd*(II) ions were coprecipitated, while Ag*(I) was scarcely coprecipitated at pH 7.5–9. This result shows that Ag*(I) and Cd*(II) are separated by means of ferric hydroxide coprecipitation in the presence of NH$_4$OH.
III-3-13. Proton Irradiation-Induced Defects in LEC-GaAs
Studied by Positron Annihilation

Y. Itoh and T. Takahashi

Irradiation-induced defects in GaAs with electrons and protons have been investigated from their electrical or optical properties. Recently, the defects in GaAs have been studied by positron annihilation. We have performed positron Doppler broadening measurements to investigate fluence effects on the vacancy in undoped and Si-doped liquid encapsulated Czochralski (LEC)-GaAs.

Wafer samples of GaAs were irradiated with protons of 15 MeV and of about 0.5-0.8 μA for 60-1800 s in a helium atmosphere at room temperature. A 48V positron source produced in 1 μm Ti film was sandwiched with two wafers of 30 × 30 × 0.7 mm³. Doppler broadening spectra of 0.511 MeV positron annihilation were measured with a high-resolution pure Ge detector (1.05 keV at 106Ru 0.512 MeV). S parameters represent the ratio of the area of a sharp narrow energy peak range symmetrical around 511 keV to the sum of the areas of the "wings" of the peak. The narrower spectrum with the smaller "wing" gives the larger S parameter. The sharpness of the spectrum corresponds to the annihilation sites for the positrons, that is, the vacancy defects generation.

Figure 1 shows the temperature dependence of undoped and Si-doped LEC-GaAs irradiated with various proton fluences. For as-irradiated samples, the undoped one gives a smaller S-parameter than that of the Si-doped one. For the undoped samples, the S-parameters increases with proton fluence at three temperatures investigated, whereas the S-parameters of Si-doped samples show no significant change at low fluences except for 10¹⁵ proton cm⁻².

The annealing studies are in progress.

References
2) S. Dannefarer, P. Mascher and D. Kerr: ibid., 60, 1313 (1986).
Techniques of mono-energetic positron beams with variable energy have recently been developed.\(^1,2\) Positrons from a radioactive source (\(^{22}\)Na or \(^{58}\)Co) or from a high energy electron accelerator are injected into a single-crystal metal moderator. In the moderator the positrons are slowed down. A few of them thermalize in the region close to the moderator surface. They may then diffuse back to the surface before they annihilate having a certain probability of being re-emitted from the surface with an energy equal to the negative value of the work function of the positron in the metal. This is of the order of an electron-volt. Mono-energetic positrons from the moderator can then be accelerated to a desired energy and injected into a sample.

A mono-energetic, low energy positron beam can be also obtained by the \(^{11}\)B(p, n)\(^{11}\)C reaction which has a threshold energy of 3.0 MeV. The half-life of \(^{11}\)C is 20.3 min, and the maximum positron energy is 0.97 MeV. An advantage of this technique is the emission of low-energy positrons from an irradiated boron target itself with no additional moderating materials.

A 5 MeV proton beam from a 160 cm cyclotron was used to bombard a boron nitride target. The positron activity of the \(^{11}\)C source was determined with a 2 inch × 2 inch BGO (Bismuth Germanium Oxide) detector by detecting gamma rays produced by annihilation of positrons in a target chamber. A proton bombardment with a current of approximately 1 \(\mu\)A for 20 min produced a positron source having an activity which was approximately the same as the activity reported by Stein.\(^3\)

A low energy positron-beam apparatus, as shown in Fig. 1, is now under construction to study defects in the surface layers of semiconductor samples. The target is biased at some appropriate positive potential and an electrostatic lens system is used to extract and focus energy positrons from a boron nitride target into a beam. We are planning to test the apparatus with an electron source instead of a positron source by reversing all potentials applied to the lens assembly.

References

III-3-15. Positron Annihilation Study on Defects in LEC-GaAs Grown from Ga-rich Melt

Y. Itoh and T. Takahashi

A positron annihilation technique which is well established to investigate defect properties in metals\(^1\) has been applied to a study on the defects in liquid-encapsulated Czochralski (LEC)-GaAs grown from a Ga-rich melt. Recent several studies have revealed that positrons are trapped by grown-in vacancy defects in GaAs.\(^2\)-\(^4\)

Although the vacancy-related positron traps in GaAs are attributed to Ga vacancies, Ga vacancies-impurity complexes, As vacancies and \(V_{\text{As}}V_{\text{Ga}}\) divacancies, the microscopic properties of these vacancy defects are not clear.

An LEC-GaAs ingot was grown from a Ga rich melt and cut into wafers of \(30 \times 30 \times 0.7 \text{ mm}^3\) from the front, the middle and the tail portions. The wafers with a (100)-orientation were polished. A \(^4\text{He}\) positron source prepared by bombarding a 1 \(\mu\text{m}\) Ti foil was sandwiched with two wafers. Doppler broadening spectra of 0.511 MeV positron annihilation were measured with a high-resolution pure Ge detector. After annealing the front and the tail samples, at 850°C for 20 min in an arsenic atmosphere the Doppler broadening was re-measured. S parameter which is related to positron trapped defects\(^1\) was calculated from the spectrum.

The results are shown in Fig. 1. In as-annealed samples, the S parameter for the wafer taken from the tail portion gives a value higher than that of the front one. After annealing, the S parameter of the tail wafer decreased, whereas, the parameter of the front one slightly increased. These results are under further study.

References
Development of an Ion Beam Sputtering Method to Prepare Long-Lived Carbon Stripper Foils

I. Sugai, M. Oyaizu, M. Aratani, M. Minami, and M. Yanokura

Carbon stripper foils with long lifetimes are very important for accelerating cascade-type protons and heavy ions. We have developed various methods suited to prepare long-lived carbon stripper foils and improved them to give high reproducibility and creditability. A controlled AC and DC arc discharge (CADAD) method and an ion-beam sputtering (IBS) method were found to be useful compared with an electron-beam heating and an old DC arc discharge method as discussed previously. The foils made by the CADAD method are widely used at several institutes and universities in this country.

Hitherto, the IBS technique has not been popular, because of its low sputtering yield of carbon small-scale productivity. Previously we investigated the lifetimes of carbon stripper foils made by using various kinds of gas ions for sputtering carbon source materials, and suggested that a foil made by the IBS method may possibly a super long-lived carbon stripper foil. We have established highly reliable and reproducible conditions for the preparation of long-lived carbon foils by improving the IBS method.

The experimental apparatus for the measurement of lifetimes of carbon foils (about 15 μg/cm²) was almost the same as that described in Ref. 1. Experiments were performed in a high-vacuum chamber (10⁻⁴ Pa), using a 3.2 MeV Ne⁺ ion beam of 2-3 μA of 3.5 mm in diameter obtained by a Van de Graaff accelerator at the Tokyo Institute of Technology.

The lifetime of foil is conventionally defined as an integrated beam current of ions passing through it before it breaks. We investigated lifetimes of all the foils made by using various kinds of noble gas ions for sputtering carbon source materials. Commercially available (CM) foils showed only a short lifetime of 2.5 mC in average. As seen from Fig. 1, lifetime of carbon foils depends on the atomic mass of noble gas ions.

For a light atomic mass such as ⁴He, the lifetime is short, 1.2 mC, only half of the lifetime of the CM-foil (2.5 mC). For ¹³¹Xe, the heaviest atomic mass investigated in the present work, the lifetime is very long, 64 mC in average and 26 times longer than that of the CM-foil. From the dependence of the lifetime of the atomic mass of noble gas employed for sputtering during preparation, we found that foils made by Kr and Xe shows long lifetimes compared with foils made by light atomic mass ions such as Ne and Ar. A key point in producing long-lived foils with Kr or Xe is to make the amount of oxygen in a foil as low as possible.

References
III-3-17. Hydrogen Desorption from Diamond-like Carbon Film during Ion Beam Irradiation

M. Minami, M. Aratani, and M. Yanokura

In measuring hydrogen contents in diamond-like carbon (DLC) films by elastic recoil detection analysis, we observed a decrease in hydrogen contents with the irradiation time.

The DLC films (about 200 nm thick) were prepared from methane on silicon wafers by the electron cyclotron resonance (ECR) chemical vapor deposition (CVD) method. The size of each film was 20 mm × 10 mm.

The scattering chamber (100 cm in diameter, 2 × 10⁻⁶ Torr) located at the RILAC A-1 beam line was employed. At the center of the chamber, the DLC films were set up at 30° to a 50 MeV incident argon beam of 2 nA. Two surface barrier semiconductor detectors (SSD) were arranged at 35° (SSD-1) and at 50° (SSD-2) to the beam. In front of the SSD-1, an aluminium foil (10 μm thick) was set up to detect only hydrogen and carbon ions in the specimens.

Figure 1 shows the decrease in hydrogen content of the DLC film during ion-beam irradiation; no such a decrease was observed for hydrogenated amorphous silicon (a-Si:H) films. The preparation methods for the DLC and a-Si:H films are very similar in chemical forms of starting materials and decomposition processes. Starting gas was CH₄ for the DLC films and SiH₄ for the a-Si:H films.

The decrease in hydrogen content may be considered due to the temperature rise in the film resulting from energy deposited by heavy ions. Temperature measurements, however, suggested no desorption of hydrogen. Thus, it could be considered that hydrogen behaves in the DLC films very differently from that in the a-Si:H films. This interesting phenomenon is should be further investigated.

References
2) K. Yano, H. Oyama, M. Yanokura, M. Aratani, and M. Minami: This Report, p. 64.
Transition-metal nitrides and carbides have been used extensively as protective coating materials on cutting tools because of their extremely high hardness. In addition, such nitrides have been increasingly used as the diffusion barrier in integrated circuits. In the PVD (physical vapor deposition) process, the properties of the films produced such as composition, microstructures, and crystal structures are greatly influenced by process conditions. Therefore, it is important for practical applications to understand the film properties in relation to the deposition parameters.

Recent quantitative surface analyses, especially AES (Auger Electron Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy), have improved considerably. However, it is often difficult to obtain a reference sample with known composition, thus limiting the accuracy of quantification. Moreover, the emission lines of TiN, TiL₂, and NKα, are too close to be separated in AES and EPMA (Electron Probe Microanalysis). As a result, quantification of nitrogen in TiN films becomes somewhat difficult. Thus cross check of results from several analytical methods based on various principles is needed to provide an accurate analysis.

Results of preliminary compositional analyses of BN, TiN, CrN, and ZrN films by ERDA (Elastic Recoil Detection Analysis) are briefly described below.

TiN, CrN, and ZrN were deposited onto stainless steel plates by the HCD-ARE (Activated Reactive Evaporation using Hollow Cathode Discharge) method. BN was deposited on a Si wafer by the same technique. Details of the HCD-ARE method have been reported. The thicknesses of the films ranged from 0.5 to 0.9 μm.

Argon ions, Ar⁺⁺, accelerated up to 50 MeV with RILAC were used as a primary beam. The measurement apparatus used was described by H. Nagai et al. in detail. The beam current was 3 to 4 nA in this experiment. Energy spectra of recoil and forward scattered particles from film samples are shown in Figs. 1 and 2. θ₁ is an angle between the target plane and the scattering plane and θ₂ is a detector angle with respect to the incident beam.
In Fig. 1 arrows show the energy of the recoiled particles measured at $\theta_1 = 30^\circ$ and $\theta_2 = 45^\circ$. Heavy element impurities, mainly tantalum, were also detected. The tantalum may originate from a tantalum cathode used during the deposition. The nitrogen peaks apparently overlap with the metallic element and boron ones owing to the thicknesses of the present samples. Here it is difficult to quantify the nitrogen concentration.

The nitrogen peaks can be observed when aluminum foil was placed in front of the detector as an absorber (see Fig. 2a). The use of an aluminum absorber appears to provide better analytical results for the nitrogen in the films. Furthermore, separation of nitrogen and boron was improved when the target angle was changed from 30' to 25' (see Fig. 2b).

Further investigations are being carried out based on these results.

References

Recently, films of titanium nitride or oxide are widely used as coating and coloring materials. Contamination of impurities has an influence on brightness especially as coloring materials. So, characterization for impurities is required. We examined a thin TiN$_x$ film prepared by activated reactive evaporation using hollow cathode discharge (HCD-ARE) which was an entirely new preparation method. We paid attention to mainly heavy-element impurities using heavy ion Rutherford scattering (HIRS).1-4)

A sample was set at an angle of 15° to an incident beam and surface-barrier detectors were set at angle of 30°, 40°, and 60° to the incident beam. The sample was bombarded with a 50.77 MeV Ar beam from RILAC at an intensity of less than 5 nA. Forward scattering spectra for thin TiN$_x$ film and a tantalum standard are shown in Fig. 1. High energy end corresponding to the heaviest impurity in TiN$_x$ agreed with high energy end of tantalum. Thus, the main impurity is interpreted as tantalum. Total content of impurities heavier than titanium including tantalum in TiN$_x$ was calculated to be 0.07 at.%. These results are inconceivable from high melting point and low vapor pressure of tantalum in case of TiN$_x$ prepared by usual methods. The tantalum contaminant in the titanium nitride film prepared by HCD-ARE, however, may be attributed to the method itself. Namely contaminating tantalum may result from fabricating materials of hollow cathode. Titanium cathode should be tried for preparation of high-purity TiN$_x$.

Our next plan is determination of x and trace amount of oxygen in TiN$_x$.

References
III-3-20. Depth Profile of Hydrogen in the Volcanic Glass Studied by Heavy-Ion Rutherford Scattering

Kazue Tazaki, M. Aratani, M. Yanokura, and M. Minami

Electron microscopy, low-angle X-ray diffraction (XRD), differential thermal analysis (DTA) and heavy-ion Rutherford scattering (HIRS) play an important role in elucidating the crystal structure of glass materials, especially, of a hydrated phase in a matrix. Amorphous materials can usually be investigated with reasonable confidence from XRD, density measurements, and various chemical techniques. HIRS is a powerful technique for chemical and structural analysis of glassy materials, and their hydrated phase. Electron microscopy has a potential advantage of providing real lattice-fringe imings of about 3, 4, 5 Å separations in a small region.

Dacitic volcanic glass samples were collected from Daisen volcanic ash soil at Daisen-ike, Tottori, and Aira volcanic ash soil at Asahi tunnel, Kagoshima. The glass samples were examined by forward recoil measurement\(^2\) or HIRS\(^3\) using the RIKEN heavy-ion linear accelerator (RILAC). The energy spectra of hydrogen ions recoiled forward (35° to an incident Ar\(^{4+}\) ion beam) from the glass samples are shown in Fig. 1. The highest end in spectra corresponds to the surface position, where no significant peak is seen. This result indicates that hydrogen atoms in these samples are located at the structural sites, but not on the surface. The shape of the hydrogen peaks is attributed to the uniform distribution of hydrogen atoms in the glass fragments, which are microscopically small beads and incident Ar\(^{4+}\) ions hit a hemispherical surface of each bead. Daisen volcanic glass fragments (A) contain five times hydrogen compare with Aira volcanic glass fragments (B). The results suggest that the hydrogen content in a volcanic glass samples may provide a measure to distinguish between different volcanic sources.

References
III-3-21. Side Determination of Weathered Egg Shell by Heavy-Ion Rutherford Scattering

M. Aratani, M. Yuyatani, Kazue Tazaki, M. Minami, and M. Yanokura

When we perform nondestructive measurement of a small piece of so intensely weathered egg shell that we cannot tell which is outside or inside, how can we distinguish outside from inside? Before we examine the sample of the weathered egg shell of a dinosaur, preliminary measurements have been made by using egg shell of a hen. Hen egg shell was cut into pieces of a size of 19 mm × 9 mm, followed by soft pressing so as to get rid of curvature with or without boiling. As for an inside sample, two kinds of pieces were prepared. One is a piece as cut with a thin film attached to the inside and the other is a piece without a thin film by peeling from the inside. These three kinds of samples were examined by heavy-ion Rutherford scattering. A 62 MeV Cu⁴⁺ beam of tens of nanoamperes was employed as the incident. A target angle was 20° to the beam. Detector angles were 35°, 45°, and 120°. After the measurement of the egg shell of a hen, the intensely weathered egg shell was examined.

The main constituents of the egg shell of a hen were observed to be C, O, Si, Ca, Fe, and some other heavy elements, as shown in Figs. 1 to 3.

![Fig. 1. Outside of hen egg shell.](image1)

![Fig. 2. Inside of hen egg shell.](image2)

![Fig. 3. Inside with thin film of hen egg shell.](image3)

![Fig. 4. Light brown side of dinosaur egg shell.](image4)

![Fig. 5. Dark brown side of dinosaur egg shell.](image5)

The results obtained for dinosaur egg shell at a detector angle of 45° are shown in Figs. 4 and 5. In comparison with hen egg shell, three samples of a dinosaur reveal a significant difference between outside and inside. The inside contains many carbon atoms and some nitrogen atoms; this result may be attributed to protein contained in the thin film. The sample of the weathered egg shell of a dinosaur is light brown in one side and dark brown in another side. From the spectra for a hen egg and those for a dinosaur egg, the light brown side may be attributed to outside and the dark brown side to the inside. A difference was also seen in some heavy elements. These results may lead us to the relationship between original constituent of the egg shell and any other environmental-origin elements, and mechanism of weathering.
III-3-22. Heavy Ion Probe Rutherford Scattering Applied to Pathological Samples

Although some rare metals are considered to play an important role in the pathophysiological process in some intractable human diseases such as amyotrophic lateral sclerosis (ALS) and Duchenne muscular dystrophy (DMD), there are few analytical studies of rare heavy metals in these diseases because of technical difficulties.1) The heavy ion probe Rutherford scattering method2) is very useful to detect all rare elements in a thin material; however so far it has been applied only to metal and electronic materials. We report for the first time the application of this method to biological materials.

Frozen muscle tissues (−25°C) from mdx and scn mice, which are animal models of DMD and control, and paraffin blocks of the autopsied spinal cord from patients with ALS, and controls were used. These tissues were sliced into 6 μm sections, and nine slices were mounted on a ladder-type holder installed at the center of a scattering chamber at 30° angles to an incident beam. Detectors were located at forward angles (35° and 45°) for ions recoiled and scattered by 50 MeV Ar⁴⁺ and incident Cu⁴⁺ of about 60 MeV from RILAC. Figure 1 is an energy spectrum of ions scattered forward from a thin slice of an mdx-mouse. The incident ion is Ar. Heavier ions appear in the high energy side. Figure 2 is an energy spectrum of a diamond-like carbon (DLC) film of 300 nm in thickness.3) The carbon peak of muscle from the mdx-mouse (Fig. 1) is almost the same as that of the DLC film, indicating that the number of carbon atoms in a 6 μm muscle section is almost the same as that in the DLC film. We also used thin films of W, Pd, Zn, and Cd, as standard samples. We used acrylic resin as a phantom model for the mammalian tissue and drew the amount of rare heavy metals in these biological materials (for example: 0–200 at. ppm of Cd-Sn in an mdx mouse). Now we calculate and compare rare metals in mdx and scn mice and also ALS and control spinal cords.

References

* Department of Neurology, Tokyo Medical and Dental University.
III-4. Radiation Chemistry and Radiation Biology

1. High-Density Excitation by Heavy Ions: Track-Depth Resolved Luminescence of N-ions Injected-Helium Gas and Liquid

K. Kimura, J. Wada, and M. Arai

Ions of few MeV/amu show characteristic radiation effects such as charge exchange, wake field, and convoy electrons. Furthermore, in their tracks, electronic excited states are contained at an extremely high density. Our studies aim to find characteristic phenomena caused by above effects and elucidate them. For these purposes, space- and time-resolved luminescence measurements were done.

A space-resolved or track-depth resolved luminescence were measured using a following equipment named a track scope. The track scope was composed of a quartz imaging fiber and a position detective photon-counter. One end of the fiber was mounted in a cryostat and thereby temperature and pressure of sample helium were adjusted. The image projected from the other end, namely, luminescence intensities along the path of ion tracks, was digitized by a position-detective photon-counter. (See Ref. 1.) Also, depth-resolved luminescence spectra were measured by the change of a section of the full image which enters into a monochromator through a monochromator-slit.

Figure 1 shows helium-density dependent specific luminescence, dL/dx, as a function of track-depth. Luminescence spectra were changed scarcely except for their intensities; peaks were assigned to be due to the d-b, D-B, H-C, and J-C transitions between excimer states (Fig. 2). The most important finding is a splitting of Bragg-like curve of dL/dE vs. excitation density. Namely, the first peak positioned at the high energy side of the maximum stopping power and in addition to it the second peak was observed at the low energy side. The positions of the first peaks were invariant with variation in the helium density. These peaking were explained by the effect of excitation density. On the other hand, the positions of the second ones varied with variation in the helium density and excitation density, but they appeared at a given ionic velocity with variation of helium density as shown in Fig. 3. The second peaking may be attributable to charge exchanges or direct excitations.

![Fig. 1](image1.png)

Fig. 1. Specific luminescence, dL/dx, vs. the depth of N-ion tracks and its helium density dependence. All the curves are illustrated in equiheight.

![Fig. 2](image2.png)

Fig. 2. Depth-resolved and density-dependent luminescence spectra.

![Fig. 3](image3.png)

Fig. 3. Luminescence efficiency, dL/dE, vs. ionic velocity and its helium density dependence. All the curves are illustrated in equiheight.

References

III-4-2. Analytical Formula for the Dose around the Path of an Ion and Its Application

T. Takahashi, F. Yatagai, K. Nakano, and K. Izumo

In an earlier paper,\(^1\) we applied Butts and Katz's formula \((D_KZ)\) of the density of energy delivery \((\text{dose})\) as a function of the distance from the trajectory of an ion to the analysis of inactivation cross sections of \(B.\ subtilis\) spores, \(E.\ coli\) \(B_{S-}\), and \(E.\ coli\) \(Blf\). The formula \((D_KZ)\) is very useful, but is based on too simple an assumption that the range of secondary electrons \(x\) in a medium is given by \(x = kw\), where \(k\) is a constant and \(w\) is the electron energy. To get a more reliable dose, we used Tabata and Ito's energy deposition algorithm for electrons in water and succeeded in calculating the dose \(D_T\) around the path of an ion.\(^2\) However, the calculation is time consuming, and it is impossible to use the dose \(D_T\), e.g., for the least-squares analysis of the inactivation cross sections of bacteria. We tried to get a formula which gives the dose \(D_T\) for heavy ions of energy \(E\) between 1 MeV/u and 6 MeV/u. A preliminary formula which gives the dose with sufficient accuracy is as follows:

\[
D(r) = \frac{A(E)Z^*e^2}{\beta^2 r(r+\theta)} \left(1 - \frac{r+\theta}{R+\theta}\right)^{P(E)}.
\]

(1)

Here, \(A(E)\) and \(P(E)\) are the energy dependent parameters to be so determined as to reproduce the dose \(D_T\), and \(r\) is the distance from the path of an ion. \(R\) is the maximum range of \(\delta\)-electrons, \(Z^*\) is the effective charge of the ion, \(\beta\) is the speed of the ion relative to the light velocity, and \(\theta\) is a constant \((4.17 \times 10^{-8} \text{ g/cm}^2)\). A value of 1.43 was chosen as \(P(E)\) for ions of 1 MeV/u - 6 MeV/u. \(A(E)\) was obtained by interpolation so as to fulfill the following relation: the value of \(\ln(A(E)/\beta^2)\) is -11.52 at \(E = 1\), -12.06 at \(E = 1.6\), -12.627 at \(E = 2.5\), -13.095 at \(E = 4\), and -13.46 at \(E = 6\), where \(E\) is in MeV/u. The digits at every \(E\) are the best values of the quantity to reproduce the dose \(D_T\) at corresponding \(E\).

By using the dose distribution given by Eq. 1 the inactivation cross sections of \(E.\ coli\) K-12 \((rec^+,\ uvr^+)\) AB1157\(^3\) was analyzed. Line (1) in Fig. 1 shows a result of least squares analysis, which was made by the procedure essentially same as that for \(B.\ subtilis\) spores in Ref. 1. The radiosensitivity of the strain for nitrogen ion's core \(1/E_{in}\) was found to be \(3.3/E_{in}\), where \(E_{in}\) was assumed to be equal to \(D_{37}\) for gamma-rays (11.8 krad). This result means that the core of a nitrogen ion is about three times effective in inactivating the bacteria (AB1157) compared with that of \(\delta\)-electrons. Line (2) shows the result of analysis based on Katz's theory in its original form. Details will be discussed in Ref. 4.

References

4) T. Takahashi, F. Yatagai, and K. Izumo: Accepted for publication in Adv. Space Res.
III-4-3. Chromosome Fragmentation in Syrian Golden Hamster Embryo Cells Irradiated with Heavy Ions

M. Watanabe, M. Suzuki, K. Suzuki,* and K. Nakano

A conventional chromosome assay can not directly detect chromatin damage in interphase. On the other hand, a premature chromosome condensation (PCC) technique is very sensitive for detecting chromatin damages in interphase cells. Previous reports suggest that the contribution of interphase cell death to the biological effects of heavy ions is larger than in low LET radiations. Therefore, we undertook to detect chromosome aberrations as chromatin breaks in interphase cells using a PCC technique and compare with the data obtained by conventional methods.

We used primary Syrian golden hamster embryo (SHE) cells obtained by trypsinization of 13- to 14-old embryos and cultured as previously reported. The procedure for polyethylene glycol (PEG) mediated cell fusion and induction of PCC have been described in detail elsewhere. As far as irradiation with IPCR Cyclotron beam, dosimetry and irradiation procedures were carried out according to methods described elsewhere.

The induction rate of chromatin breaks with heavy ions in PCC was higher than that with 137Cs gamma rays (Fig. 1). The relative biological effectiveness (RBE) to 137Cs gamma rays was 2.4 for 14N ions (LET = 530 keV/μm), 1.8 for 4He ions with a 100-μm Al absorber (LET = 77 keV/μm), and 1.4 for 4He ions without an absorber (LET = 36 keV/μm). The rejoining kinetics of the PCC fragments with heavy ions clearly differs from that with gamma rays (Fig. 2). About 95% of the PCC fragments induced by gamma rays rejoined within 8 hours of post-irradiation incubation. For heavy ions, however, only 35 to 45% of fragments rejoined. These results suggest a qualitative difference in chromatin damage caused between heavy ions and gamma rays.

Fig. 1. Dose-response curves for the induction of PCC in SHE cells irradiated with 14N ions (LET = 530 keV/μm) (■), 4He ions with a 100-μm Al absorber (LET = 77 keV/μm) (○), 4He ions without an absorber (LET = 36 keV/μm) (□), and 137Cs gamma rays (△).

Fig. 2. Repair kinetics of PCC breaks as a function of post-irradiation incubation in SHE cells irradiated with 2 Gy of radiations. Symbols are the same as Fig. 1.

References

* Yokohama City University.
III-4-4. Studies on Induced Mutations by Ion Beams in Plants

H. Nakai, H. Watanabe, Y. Kobayashi, T. Asai,* and S. Kitayama

We have been engaged in studies on radiobiological effects of thermal neutrons on higher plants. We found that the relative biological effectiveness (RBE) of thermal neutrons relative to γ-rays is more than 10 and that the mutagenic effects of thermal neutrons on various agronomic traits in rice is significantly higher than that of low LET radiations, e.g. γ rays.1,2) Referring to the above results, this study was started to make clear the mechanism of mutations induced by ion beams and to evaluate the use of ion beams for mutation breeding of crop plants.

A preliminary investigation was conducted to find the ion-beam sensitivity of rice and the appropriate dosage of an ion beam for induction of mutations for practically useful traits. Dry seeds of rice, Oryza sativa L., a variety Harebare, were irradiated with an ion beam of O2+ of 135 MeV/n from the Ring Cyclotron to a dose of 0-100 Gy. Irradiated seeds were sown to be germinated in petri-dishes at room temperature. Two weeks later, the root length and seedling height were measured; the result is presented in Fig. 1. The dose-response curves for both root length and seedling height were of a typical one-hit type, which is generally seen for high LET radiations. The Degree of M1 (the first generation after mutagen treatment) damage in root length was found to be higher than that in seedling height. This result is explained on the basis that the damage for root length was caused mainly by chromosome aberration, whereas that for seedling height was caused mainly by some physiological event. All the seedlings were killed by irradiation to a dose exceeding 100 Gy. M1 plants survived were grown in an experimental rice field of the Shizuoka University and are currently analyzed of damage at their mature stage. Analysis of mutations on the M2 plants is conducted next year.

References

* Faculty of Agriculture, Shizuoka University.
1. Design of a Microbeamline for a Compact Cyclotron

N. Nakanishi and H. Y. Yoshida*

As extensions of the particle induced X-ray emission analysis (PIXE) and the Rutherford backscattering spectrometry (RBS), which have been extensively used as typical ion beam analysis methods, a micro PIXE and an RBS become more popular recently because of their high space resolution. The installation of microbeamlines have been required in many facilities.

A microbeamline was designed for 1.8 MeV protons and 7.2 MeV alpha particles from the compact cyclotron produced by JSW. The goal of the design was to obtain a beam intensity of 100 pA in a beam spot size of $10 \mu m \times 10 \mu m$ under constrains (1) the whole length of the system was less than about 3500 mm, and (2) the working space between the last element and the target was more than 200 mm.

So far, a number of microbeamlines have been constructed in many research laboratories; however few microbeamlines were constructed for cyclotron beams. It is mainly due to the difficulty for using poor quality beams from cyclotron relative to that from electrostatic accelerators.

Before the calculation we measured horizontal and vertical emittances of proton and alpha beams from the cyclotron to know the relation between the resultant beam emittance and the intensity included in phase ellipses. We then surveyed a magnet setting possibility to satisfy the present goal by first-order ion optics calculations. The ion optics computer code TRANS-PORT was used.

With a quadrupole doublet, the desirable demagnification factors could not obtained. Because of the poor emittance of the beams, resultant intensity was much lower than required. In order to realize the goal, we investigated systems composed of three quadrupole magnets. A large acceptance being indispensable for the system, it was difficult to get small 2nd-order intrinsic aberrations. In order to get the 1st-order aberration coefficients as small as possible, we used a triplet consisted of quadrupole magnets with a different effective length and a different field gradient. The field gradient of these quadrupole magnets was set to be less than 3 KG/cm in view of technical considerations. Calculated beam envelopes in horizontal and vertical planes are shown Fig. 1. The objective aperture is formed by two pairs of slits and beams are defined by subsidiary slits at 2.5 m

![Fig. 1. Beam envelopes in horizontal and vertical planes.](image)

Fig. 1. Beam envelopes in horizontal and vertical planes.

![Fig. 2. Expected beam intensity as a function of their vertical half width of beam spot at a target.](image)

Fig. 2. Expected beam intensity as a function of their vertical half width of beam spot at a target.

from the object point. Figure 2 shows the beam intensity as a function of the vertical half width of the beam spot at the target position. We obtain a result that the beam intensity is 100 pA in a beam spot of $8.5 \mu m(H) \times 9.2 \mu m(V)$. The whole length of the system and the image distance are 3550 mm and 220 mm, respectively. The specification of the beamline are summarized in Table 1, and the layout of the system is shown in Fig. 3. The beamline will be completed by the end of 1990.

* Japan Steel Work Ltd. (JSW).
Table 1. Specification of the microbeamline.

<table>
<thead>
<tr>
<th>Beam characteristics</th>
<th></th>
<th>Microbeamline characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator</td>
<td>cyclotron</td>
<td>Beam width</td>
</tr>
<tr>
<td>Ion</td>
<td>1.8 MeV p</td>
<td>8.5 μm(H)</td>
</tr>
<tr>
<td>Ion</td>
<td>7.2 MeV alpha</td>
<td>9.2 μm(V)</td>
</tr>
<tr>
<td>Acceptance</td>
<td>0.12 mm mrad(H)</td>
<td>Beam intensity</td>
</tr>
<tr>
<td>Momentum spread</td>
<td>0.1%</td>
<td>100 pA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q-magnet length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 mm(Q1), 70 mm(Q2), 60 mm(Q3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Field gradient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.46 Kg/cm(Q1), 2.90 Kg/cm(Q2), 2.97 Kg/cm(Q3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Object distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3100 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Image distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220 mm</td>
</tr>
<tr>
<td>Whole length</td>
<td></td>
<td>Whole length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3550 mm</td>
</tr>
</tbody>
</table>

References
III-5-2. Design of a Decay Muon Channel Using an Axially Symmetric Magnetic Field for a Pion Injector

K. Ishida, T. Matsuzaki, and K. Nagamine

A beam transportation system with an axially symmetric magnetic field may be used for achieving one order larger solid angle than conventional systems using magnetic dipoles and quadrupoles. We have designed a powerful decay muon channel which uses superconducting coils producing this type of symmetric field as a pion injector and a superconducting solenoid as a \(\pi \mu \) decay section. One example of the design calculation is shown in Fig. 1. The pion momentum was set to be 150 MeV/c. The pion source distribution (square of 2 cm \(\times \) 2 cm), the pion emission angle (10–45 degree), and the time and the angle of \(\pi \mu \) decay were Monte-Carlo generated. The number of transmitted muons originating from pions with a large emission angle in the range of 10–45 degrees ("large solid angle injection") was compared with that from pions with a small emission angle of 0–10 degree ("small angle injection"). The latter case was intended to simulate a small divergence injection with conventional systems. Figure 2 shows the calculated muon intensity at the exit of the solenoid decay section as a function of the muon emission angle for both cases. We can conclude that the large solid angle system can be used for generating nearly one order more muons than conventional ones. More detailed design work aiming at reducing stray field on a pion production target and reducing neutron background is now in progress.

Fig. 1. An example of the design calculation of a high acceptance pion injector for decay muon channel. The field distribution is shown on the lower side. Trajectories of pions (emission angle 10–45 degrees) surviving as muons are shown on the upper side.

Fig. 2. Angular distribution of muons at the exit of the solenoid decay section. Vertical axis shows the number of muons divided by the pion intensity at the source. The solid line is the case for the muons originating from pions with an emission angle in the range of 10–45 degree. The broken line is for those from pions in the range of 0–10 degree.
An induction accelerator was constructed and employed at a heavy-ion storage ring (Test Storage Ring; TSR) in the Max Planck Institute for Nuclear Physics, Heidelberg, as a universal device for energy tuning of stored ions, beam diagnostics, and storage-ring optimization. The accelerator was designed to vary the energy of ions within the acceptance of the TSR. The induction accelerator is especially suitable for experiments with cooled ion beams because its quasistationary accelerating field does not change the energy distribution during acceleration.

The energy gain is given by

\[dE = qe \int_0^T f \frac{d\phi}{dt} \, dt = qe \times (\phi_2 - \phi_1) \]

The energy gain is independent of the specific way that the flux \(\phi \) is changed. The maximum relative energy change \(dE/E \) is between \(5 \times 10^{-2} \) and \(5 \times 10^{-3} \) in the present case.

The induction accelerator consists of an iron core, a power supply, and a feedback system. The core is made of isolated and glued 1 mm-thick iron sheets with an octagonal shape with a hole with the same shape. The outer radius is about 0.64 m, the hole radius is about 0.15 m, and the length along the beam line is 0.3 m. This gives an estimate of the total flux change of about 0.4Vs if the magnetic flux density is swung between saturations at \(\pm 1.5 \) T. The beam tube of the TSR passes through the hole of the core, interrupted by a ceramic gap in order to isolate the two sides of the beam tube from each other. The primary coil is wound around two opposite sides of the core, with the number of winding between 10 and 100 and is connected to a remote-controllable regulated power supply.

In many applications, it is important to induce a constant acceleration voltage for a given period of time. Since the magnetic flux is a strongly nonlinear function of the primary current, it is necessary to regulate the current to induce a constant voltage. We fabricated a feedback system which compares an induced voltage picked up by a secondary winding to a reference voltage and controls the power supply.

The first test of the induction accelerator showed that it offers a simple way to tune the energy of a stored ion beam within a moderate time and without a change of the velocity distribution.

The induction accelerator has been used successfully in the laser-cooling experiments of Li+ and Be+, and in the measurement of the cooling force of an electron cooler.
We have completed a radioactive beam facility names RIPS (RIKEN Projectile-fragment Separator)\(^1,2\) in order to facilitate experimental studies on and using radioactive nuclei.

RIPS has been designed to be an achromatic beam line so that it can analyze and transport secondary radioactive beams. The projectile fragmentation mechanism is used to convert a primary beam into radioactive beams, because it has various useful features such as large cross sections and good kinematical properties. In addition to magnetic analysis, a technique called momentum loss achromat\(^3\) is used to separate radioactive beams, a technique which allows separation by the combination of magnetic analysis and energy loss.

Figure 1 schematically shows the layout of the beam line, whose configuration can be abbreviated as Q-Q-Q-SX-D-SX-Q-Q-SX-D-SX-Q-Q-Q-Q, where Q, D, and SX represent quadrupole, dipole, and sextupole magnets, respectively. The beam line can be divided into three sections by intervening focuses. The first analyzing section, consisting of Q-Q-SX-D-SX-Q-Q-Q-Q, serves as a dispersion compensating section and gives doubly achromatic focusing at F2. The use of an energy degrader at F1 provides an additional separation scheme according to the energy loss difference depending on \(A^{2.0/2.5}\) of radioactive nuclei. The property of the momentum loss achromat is achieved by using an achromatic energy degrader.\(^3\) The quadrupole triplet Q-Q-Q at the final section gives the third focus (F3) at an open space of downstream, where experimental devices can be easily accommodated under better shielding conditions. The sextupole magnets at the entrance and exit of each dipole magnet correct optical aberrations to optimize isotopic separation power and beam size.

The basic characteristics of RIPS are summarized in Table 1. In comparison with the existing facilities,\(^4\) RIPS has two improved features so as to enlarge the capability of radioactive beams. The first feature is the capability of producing a strong beam intensity, which is achieved by adopting wide acceptances and large magnetic rigidity \(B_{p}\). The acceptances in angle and momentum are taken to be 80 mr (circle) and 6%, respectively, corresponding to more than half of spreading widths of typical projectile fragments. The maximum \(B_{p}\) is taken to be about 165% compared with that of RIKEN Ring Cyclotron. This large \(B_{p}\) allows us to use the maximum incident energy even for extremely neutron-rich nuclei, so that we can take an advantage of the thickest possible targets and better kinematical conditions. The second characteristic feature of RIPS is the possibility to produce spin-polarized radioactive beams by means of the reac-

Table 1. Basic characteristics of RIPS.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Q-Q-Q-SX-D-SX-Q (first stage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-Q-Q-SX-D-SX-Q-Q (second stage)</td>
<td></td>
</tr>
<tr>
<td>Q-Q-Q (third stage)</td>
<td></td>
</tr>
<tr>
<td>Angular acceptance</td>
<td>80 mr, circle</td>
</tr>
<tr>
<td>Solid angle</td>
<td>5 mr</td>
</tr>
<tr>
<td>Momentum acceptance</td>
<td>6%, for full angular acceptance</td>
</tr>
<tr>
<td>Max. magnetic rigidity</td>
<td>5.76 Tm, 65% larger than that of the cyclotron</td>
</tr>
<tr>
<td>Foci</td>
<td>F1, dispersive, 2.4cm/n, end of first stage</td>
</tr>
<tr>
<td>F2, double achromatic, end of second stage</td>
<td></td>
</tr>
<tr>
<td>F3, double achromatic, end of third stage</td>
<td></td>
</tr>
<tr>
<td>Flight path length</td>
<td>10.4 m to F1, 21.3 m to F2, 27.5m to F3</td>
</tr>
<tr>
<td>from production target</td>
<td></td>
</tr>
<tr>
<td>Isotopic separation</td>
<td>(A/Z) and energy loss</td>
</tr>
<tr>
<td>Goal of mass resolution (F2)</td>
<td>(A/\Delta A > 100), for achromatic energy degrader</td>
</tr>
<tr>
<td>Beam swinger max.</td>
<td>15 degrees</td>
</tr>
</tbody>
</table>
tion process itself. For this purpose, a beam swinger has been installed ahead of a production target, enabling us the collection at finite angles.

The construction of RIPS was completed in the summer of 1989. After test experiments to confirm the basic performance, it started to provide radioactive beams for a variety of experiments in the beginning of 1990.

Two characteristic features of RIPS have been already confirmed. The intensity of radioactive beams was found to be more than 100 times stronger than that of the existing facilities. We expect the intensity of the order of 10^4 pps even for neutron dripline nuclei such as ^{11}Li. Such intense beam will certainly enable a new regime of experiments such as secondary reaction studies on radioactive nuclei. The production of spin-polarized radioactive beams through the reaction process has also been found to be possible and universal at intermediate energies. The observed spin-polarization is fairly large, reaching about 5–20%. This feature of RIPS, together with a strong beam intensity, will open up new fields using spin-polarized radioactive nuclei.

More detailed reports on RIPS are given in this volume.

References
Magnets in the radioactive beam line RIPS are composed of 2 dipole magnets, 12 quadrupole magnets, and 4 sextupole magnets. The magnetic system is designed to bend and focus charged particles with a magnetic rigidity up to 5.76 T·m. Specifications of the magnets are determined to satisfy required optics and acceptances (angular acceptance: 5 msr., momentum acceptance: 6%).

The dipole magnets are identical H-type magnets except for a tilted angle at the exit. Their specifications are shown in Table 1. In order to minimize the change in the effective boundaries of the magnets due to excitation characteristics, the pole edges of the magnets are cut according to Rogowski’s curve. The effective boundary of each dipole is made equal to its real boundary by adjusting field clamps.

The specifications of the quadrupole magnets are shown in Table 2. The pole shapes are determined to avoid saturation effects in iron caused by high magnetic fields to attain a strong focus.

The specifications of the sextupole magnets are shown in Table 3; the magnets are geometrically identical to each other.

The excitation characteristics and the effective lengths of all the magnets are obtained by measurements using a hall probe calibrated by

Table 1. Characteristics of dipole magnets in RIPS.

<table>
<thead>
<tr>
<th>Pole gap</th>
<th>Central trajectory radius (cm)</th>
<th>Bending angle (degree)</th>
<th>Pole tilted angle (degree)</th>
<th>Max. field (kG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>14.0</td>
<td>3.6</td>
<td>45.0</td>
<td>0.0</td>
</tr>
<tr>
<td>D2</td>
<td>14.0</td>
<td>3.6</td>
<td>45.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 2. Characteristics of quadrupole magnets in RIPS.

<table>
<thead>
<tr>
<th>Magnet</th>
<th>Bore radius (mm)</th>
<th>Real length (mm)</th>
<th>Effective length (mm)</th>
<th>Max. field gradient (G/cm)</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>62.0</td>
<td>500</td>
<td>542</td>
<td>1.41</td>
<td>B</td>
</tr>
<tr>
<td>Q2</td>
<td>85.0</td>
<td>800</td>
<td>857</td>
<td>1.05</td>
<td>V</td>
</tr>
<tr>
<td>Q3</td>
<td>86.0</td>
<td>400</td>
<td>459</td>
<td>0.98</td>
<td>B</td>
</tr>
<tr>
<td>Q4</td>
<td>120.0</td>
<td>600</td>
<td>673</td>
<td>0.55</td>
<td>B</td>
</tr>
<tr>
<td>Q5</td>
<td>120.0</td>
<td>700</td>
<td>769</td>
<td>0.64</td>
<td>V</td>
</tr>
<tr>
<td>Q6</td>
<td>120.0</td>
<td>600</td>
<td>673</td>
<td>0.55</td>
<td>B</td>
</tr>
<tr>
<td>Q7</td>
<td>86.0</td>
<td>400</td>
<td>459</td>
<td>0.94</td>
<td>V</td>
</tr>
<tr>
<td>Q8</td>
<td>86.0</td>
<td>700</td>
<td>755</td>
<td>0.94</td>
<td>H</td>
</tr>
<tr>
<td>Q9</td>
<td>62.0</td>
<td>500</td>
<td>542</td>
<td>1.21</td>
<td>V</td>
</tr>
<tr>
<td>Q10</td>
<td>86.0</td>
<td>700</td>
<td>764</td>
<td>0.94</td>
<td>V</td>
</tr>
<tr>
<td>Q11</td>
<td>120.0</td>
<td>1100</td>
<td>1108</td>
<td>0.60</td>
<td>H</td>
</tr>
<tr>
<td>Q12</td>
<td>86.0</td>
<td>700</td>
<td>764</td>
<td>0.94</td>
<td>V</td>
</tr>
</tbody>
</table>

Fig. 1. Excitation curve for D1 magnet (the upstream dipole magnet).

Fig. 2. Field distribution at the center of Q1.
an NMR probe. Designed specifications are found to be satisfied for all the magnets. Figures 1 and 2 show some results from the measurements. Figure 1 shows the excitation curve for the D1 magnet, indicating that the maximum field reaches 1.7 T which is higher than the designed value (1.6 T). Figure 2 shows the field distribution of the Q1 magnet. In an operational region which is less than 70mm in the x coordinate, linearity is guaranteed. These parameters are used for optics calculation and for initial setting of currents in the magnets.

References
1) T. Kubo et al.: This Report, p. 96.

III-5-6. Control System of RIPS

N. Inabe, T. Kubo, I. Tanihata, and M. Ishihara

The computer control system of the radioactive beam line RIPS\(^1\) has been developed. By

![Block diagram of computer control system of RIPS](image)

Fig. 1. Block diagram of computer control system of RIPS.

![HyperCard interface](image)

Fig. 2. An example of a HyperCard, which controls all magnets of RIPS. After input a magnetic rigidity and pushing a button “set”, clicking a button “go set” currents of all magnets are set. Every card gives information on the positions of devices to be controlled graphically.

The system, we control all devices of RIPS summarized in Table 1.

Target chamber	a profile monitor for a primary beam (single-wire type)
F1 chamber	a collimator for defining momentum acceptance
F2 chamber	a silicon detector for \(\Delta E\) measurement
others magnets	a primary beam stopper in D1 magnet
	2 dipole magnets
	12 quadrupole magnets
	beam swinger

![Table 1. Devices under control](image)

Table 1. Devices under control.

Figure 1 is the flow chart of the control system. To control the devices we use an Unix-Melcom60-CIM-DIM system, the same as the control system for RIKEN Ring Cyclotron.\(^2\) For easy control we have developed a man-machine interface, using a Macintosh. For communication between the Unix system and the Macintosh through an RS232C port, we use a HyperCard with a hypertalk (Macintosh application) on the Macintosh. Using the HyperCard, we can also see the location of every device as a picture on Macintosh screen. Figure 2 shows an example of the man-machine interface part.

References

III-5-7. Yield Study of Radioactive Beams of RIPS

N. Inabe, T. Kubo, T. Nakamura, H. Okuno, S. Shimoura, K. Asahi
K. Yoshida, H. Kumagai, I. Tanihata, and M. Ishihara

The yield of radioactive beams in radioactive beam line, RIPS, have been measured on the achromatic second focal plane of RIPS for 180 (100 MeV/u), 15N (112 MeV/u) + 9Be (1.1 g/cm²) reactions. Target thickness was selected to give an optimal yield.

A beam was identified from the energy loss in SSD and time-of-flight (TOF) between a parallel plate avalanche counter (PPAC) and RF of the Ring Cyclotron. Figure 1 shows an example of a ΔE-TOF plot for particle identification, magnet rigidity being set at 3.73 Tm, that is, match to that of 14B in the reaction 180 + 9Be. This figure shows good separation of each beam. To get the yield of every radioactive beam, the efficiency of PPAC and the dead time of a computer should have been corrected.

Table 1 summarizes the yield of each radioactive beam per 1 pnA and the ratios of each radioactive beam to a primary beam, comparing with those of obtained at LISE in GANIL. The yields of neutron rich nuclei radioactive beams of RIPS are more than 100 times of that of LISE at GANIL. One reason is that RIPS has a large angular and momentum acceptance ($\Delta \Omega = 5$ msr, $\Delta p/p = \pm 3\%$), the other is that RIPS has a large maximum rigidity (5.76 Tm-this value is corresponding to the rigidity of about 100 MeV/u 14Li) to collect neutron rich radioactive beams even in the ~100 MeV/u region where kinematical focusing is better in projectile fragmentation and a production target is thicker.

Because the usual intensity of the primary beam from RRC is 100 pnA, we expect that we get about 270 kcps for 8He, 35 kcps for 11Li and 7.5 kcps for 14Be from these yield measurements. From this result, we confirm the possibility to study neutron drip-line nuclei through secondary reactions.

References
To study the performance of isotopic separation in a radioactive beam line, RIPS,1 we have carried out an experiment on the production of radioactive fragments \(^{14}\text{B}\) and \(^{16}\text{C}\), using 100 MeV/u \(^{18}\text{O}\) beams from RIKEN Ring Cyclotron. The target used was a 277 mg/cm \(^2\) beryllium plate.

Fragments \(^{14}\text{B}\) and \(^{16}\text{C}\) were selected according to the condition shown in Table 1. Particle identification for these isotopes was performed by measuring the energy loss in a 400-\textmu m silicon detector at the achromatic focal plane (F2) and a time of flight between a PPAC (parallel plate avalanche counter) located at F2 and RF signals of RIKEN Ring Cyclotron. The left focusing image corresponds to \(^{14}\text{B}\) and the right one \(^{16}\text{C}\). The displacement and the size of images (FWHM) of two images are also shown in Fig. 2. The displacement is consistent with the designed value of dispersion in the second stage in RIPS (described as \(D_2\)), which is 375 cm. The value of \(D_2\) is used for determining mass dispersion \(D_A\) by

\[
D_A = D_2 \frac{d_0/R_0}{1 - d_0/R_0} \frac{1 - \lambda}{\lambda} \tag{1}
\]

Fig. 1. 2-Dimensional profile of F2 detected by PPAC, tuned for \(^{14}\text{B}\) (left) and \(^{16}\text{C}\) (right).

Fig. 2. Horizontal projection of the profile of F2 (Fig. 1), tuned for \(^{14}\text{B}\) (left) and \(^{16}\text{C}\) (right).

The mass resolving power is thus obtained as

\[
\frac{|A|}{\Delta A} = 1.1 \times 10^2 \tag{2}
\]

We may conclude that resolving power \(|A/\Delta A| \geq 100\) is achieved without any second order correction.

References

1) T. Kubo \textit{et al.}: This Report p. 96.
We constructed an isotope separator on-line (ISOL) at the E1 experimental hall of the RIKEN Ring Cyclotron (RRC) facility. Since the ISOL consists of a gas-filled recoil isotope separator (GARIS) and an ion-guide type isotope separator on-line (IGISOL), we call the system as GARIS/IGISOL. The GARIS/IGISOL will provide us with short-lived isotopes which will be produced by nuclear reactions with high-energy heavy-ion beams from RRC for the study of spectroscopic features of these isotopes. The construction and the general specifications of the system were reported in Ref. 1.

The GARIS consists of three magnets of a D-Q-Q configuration. The shape of the pole piece of a D-magnet and the geometrical setup of magnets are shown in Fig. 1 together with a beam trajectory obtained by first order calculation. The characteristics of the system as a magnetic spectrograph are listed in Table 1. Solid angular acceptances were measured with use of 241Am α-source, and their values are listed also in Table 1.

The efficiency of GARIS was measured by comparing the activity yields on a catcher detector at the focal plane of the GARIS with those on catcher foils at about 5 cm behind targets. Absolute efficiencies (in the entire energy-range of the reaction products) were found to be $15 \pm 1\%$ for the 169Tm (40Ar, xn) ($E(^{40}$Ar) = 5 MeV/u) reaction (fusion reaction), $5.3 \pm 0.4\%$ for the 181Ta (40Ar, αxn) ($E(^{40}$Ar) = 6 MeV/u) reaction, and $0.5 \pm 0.1\%$ for the 86W(14N, X)169Hf ($E(^{14}$N) = 35 MeV/u) reaction (target fragmentation). The efficiencies strongly depend not only on the angular distributions of the reactions but also the energy distributions of the recoiled products. The efficiencies of GARIS for recoiled products of more than 18 MeV were found to be $30 \pm 3\%$ for the fusion reaction, and $12 \pm 2\%$ for the (HI, αxn) reaction.

The parameters of the ion optics of IGISOL were tuned with an 40Ar$^{+}$ ion beam and $^{128-136}$Xe$^{+}$ ions produced by discharge between needles set inside a thermalization chamber which contains helium added with a small amount of argon or xenon gas. The mass resolving power ($A/\alpha A$) obtained by these tuning were found to be about 120 for Ar-ion and about 250 for Xe-ions when the helium gas pressure was 100 mbar.

The efficiency of IGISOL was measured by 141Pr(40Ar, xn)$^{181-189}$Ir reactions under various experimental conditions. Recoiled Ir isotopes were collected with GARIS, then injected into the thermalization chamber of IGISOL, and then stopped there. The isotopes passed through the exit hole of the chamber with a helium gas-flow and were separated from helium atoms with a skimmer, ions were then accelerated to 30 keV with an electrostatic field. The accelerated ions were then collected on the surface of a silicon surface barrier detector set inside a beam tube just before an analyzer magnet of IGISOL. β-Rays and α-particles emitted from the Ir isotopes were detected with the detector, and the effi-
Fig. 2. Extraction yields versus helium gas pressure in the thermalization chamber.

The efficiency of IGISOL was measured. About 1% of isotopes injected into IGISOL were extracted when pressure was 900 mbar. The dependence of the extracted yield on helium gas pressure is shown in Fig. 2. The extracted yield increases almost linearly with the increase in the gas pressure below 900 mbar.

References

III-5-10. Velocity Distribution of IGISOL Ion Beams

GARIS/IGISOL at RIKEN consists of an ion-guide isotope separator on-line (RIKEN IGISOL) constructed in tandem with a gas-filled recoil isotope separator (GARIS). The design of this system was described in a previous report. This system is potentially powerful in separating refractory elements as well as short-lived species because the separation time is of the order of one millisecond, and equal separation efficiency is obtained for isotopes of any chemical elements. Therefore, we are interested in making collinear laser spectroscopy for isotopes of a wide range of elements using this system. It has been estimated from mass resolution measurements that the energy spread of IGISOL ion beams is 100 eV or more, which corresponds to about a 1-GHz resolution at fwhm for 40Ar$^{+}$. The resolution is not sufficient enough for doing laser spectroscopy; about 500 MHz or less is desirable.

Since the energy spread has so far been estimated indirectly from mass resolution, it is desirable to carry out a direct measurement of the velocity distribution of IGISOL ion beams. We have measured the Doppler broadening of a resonance linewidth in a metastable atomic state of 40Ar$^{+}$ (611.6 nm (3d2G$_{9/2}$→4p2F$_{7/2}$) transition) to observe the velocity distribution of ion beams. A schematical setup is shown in Fig. 1. The energy of ions were 30 keV, and the pressure in a helium gas cell was 20 mbar. A resonance spectrum measured with 150° incidence is shown in Fig. 2. The fwhm is 0.68 GHz, which corresponds to an energy spread of 44 eV. The fwhm of laser induced fluorescence (LIF) spectra systematically measured at three incident angles ($30°$, $90°$ and $180°$) are plotted as a function of the skimmer voltage in Fig. 3. The divergence of the ion beam is deduced from the measurement at $90°$, and the velocity distribution from that at $180°$. The fwhm measured at $30°$ has both contributions. The broadening caused by beam divergence increases with increasing skimmer potential. Although the broadening caused by velocity distribution also increases with an increase in the skimmer potential, it is smaller than that by beam divergence. A typical value of the Doppler broadening caused by only velocity distribution (collinear (180°) at a skimmer potential of 500 V and a pressure of 20 mbar) was 1.25 GHz in fwhm, which corresponds to an energy spread of 120 eV. Since the gas pressure is too low to stop most of the recoil products, a series of measurements are now in progress at higher pressures.

We conclude that the linewidth in the LIF spectrum is narrower at lower skimmer potential. One way to reduce the velocity spread of ion beams in order to get a better resolution in LIF measurements is to select a part of the total velocity distribution by using slits set behind a magnetic analyzer. The spectrum in Fig. 2 was measured in this way. By this method, however, we lose a certain amount of ions for the measurements. The other possibility to reduce the veloc-
Fig. 3. Skimmer potential dependence of the fwhm of an LIF spectrum at three incident angles of a laser beam to an ion beam: 30', 90', and 180'. The dashed line shows fwhm at 30' calculated from 90' and 180' measurements.

ity spread without losing ion intensity is to apply an electrostatic lens system Squeezer between an exit hole of the thermalization chamber of IGISOL and a skimmer. Installation of the Squeezer to our system is now in progress.

References
2) J. Årje: Research Report No. 3/86, Department of Physics, University of Jyväskylä (1986).
4) N. Schmidt: Private communication.
The knowledge of spins, electromagnetic moments, and radii of nuclei far from stability is important in understanding cold nuclear matter. A great variety of nuclides far from stability can be produced by heavy-ion-induced reactions. A very powerful tool to study the above-mentioned basic properties of these nuclei is laser spectroscopy: The various techniques, including ultrahigh resolution collinear laser spectroscopy, were recently reviewed by Otten. However, since these methods require intensities larger than 10^4 W, their potential use for studies of heavy-ion-induced reaction products with very weak intensities is somewhat limited. (A photon-ion coincidence techniques may be an alternative way to overcome this problem.) We therefore propose to use a new laser spectroscopic method, which is based on very sensitive laser resonance ionization spectroscopy in an optical buffer gas cell in combination with the detection of resonantly ionized radioactive atoms using IGISOL. In the following we shortly describe the principle of this method.

The beams of radioactive nuclides, which are collected and guided with GARIS, are stopped in a buffer gas cell that is filled with helium of a few hundred millibars. It is expected that more than 20% of the incoming ions come to rest as neutral atoms and are available for resonance ionization spectroscopy (RIS). The remainder of the ions is transported in a suitable auxiliary electrostatic field to the walls of the cell where they are absorbed. At the end of an accelerator burst the auxiliary electrostatic field is switched off, and two or three tunable dye lasers are fired to resonantly ionize the neutral atoms in the buffer gas cell. The dye lasers may be pumped with an excimer laser (pulse width 20 ns, repetition rate 500 Hz) or a copper vapor laser (pulse width 20 ns, repetition rate 6000 Hz). The created ions are transported to the exit hole by a gas flow and guided to the section of skimmer and extraction electrodes; the acceleration potential of the IGISOL system will be varied from several kV to 80 kV. The mass separated ions are detected at the focal plane with a position sensitive microchannel plate detector. (See Ref. 5 for details.)

The use of the IGISOL system as a detector for RIS has the advantage that it serves as a highly sensitive isotope identifier for even long-lived isotopes to which the radioactive decay detected resonance ionization spectroscopy (RADRIS) cannot be applied. This offers the unique possibility of disentangling complex overlapping hyperfine structures of neighboring isotopes.

The resolution is limited by the laser bandwidth which is typically 1.2 GHz with a Lambda Physik dye laser (with an intra-cavity etalon), the Doppler broadening of about 1 GHz at room temperature and the broadening due to the pressure in the gas cell that will amount to a few hundred megahertz. The expected resolution of about 1.5 GHz is not so good as the collinear laser spectroscopy. This is, unfortunately, the price to be paid for the ultrahigh sensitivity of RIS in the buffer gas. It should be mentioned, however, that cooling the gas cell and the use of an external narrow band laser oscillator may reduce the linewidth significantly.

References

A swinger and a magnetic analyzer with rotators and twistors (SMART) have been installed in the experimental area E4 and are currently tested with beams from RRC.

The magnetic analyzer consists of three quadrupoles and two dipoles (PQ1-PQ2-PD1-PQ3-PD2), as described in previous reports,\(^1\) and the swinger has two dipoles and two quadrupoles (WD1-WQ1-WQ2-WD2). Results of the field measurements of these magnets, carried out in February and March this year, are described in a separate report.\(^2\)

A target chamber and other vacuum chambers were installed in May. The entrance window of the target chamber has sliding membrane which moves together with the beam swinger when the incident beam direction is changed. Three sets of defining slits of the spectrometer can be inserted behind the target chamber. The vacuum chambers are designed in such a way as to facilitate small angle (including 0°) measurements. Several beam-stoppers are prepared for this purpose, one attached to the target chamber, one between PQ1 and PQ2, two inside the PD1 vacuum chamber, and one at the exit of PD1. After wiring control cables, they have been tested for vacuum and mechanical movements.

The first beam was led through the twister and the swinger onto a target in June 24, 1990. A 135 MeV \(^{14}\)N beam was successfully transported giving a spot size of about 3 mm in diameter on a target.

Further tests of the system were carried out in July and August using a 140 MeV deuteron beam. Achromatic mode of the beam transport was used, and the alignment of the beam axis was checked using several beam-profile monitors along the beam line and two scintillator units, one at the target position and the other at the 0° exit of the PD1 vacuum chamber. The beam spot was found to remain unchanged, as expected from optics calculations, when the swinger was rotated along with the twister.

After beam alignment, a faint beam was brought down to the first and the second focal planes to test the performance of the focal plane detectors. Scattered deuterons were also observed with the focal plane detectors. Figure 1 shows a reproduction of rays traced with single-wire proportional counters in the second focal plane. A thick bundle of rays represents deuterons elastically scattered from a 20 \(\mu\)m thick gold target. The overall energy resolution was about 1/1,000 after correcting for aberrations, almost equal to the energy resolution of the beam in the achromatic mode. In addition, neutron time-of-flight spectra were taken with a 8.6-m flight path as reported elsewhere.\(^3\) Further tests of the system are under way.

References
3) M. Orihara et al.: This Report, p. 121.

Fig. 1. Rays of deuterons reproduced from raw data obtained with SWPC in the second focal plane. A thick bundle of rays corresponds to deuterons elastically scattered from a 20 \(\mu\)m thick gold target.
III-5-13. Field Measurements of the SMART Magnets

The magnets of the SMART (a swinger and a magnetic analyzer with rotators and twisters) system were installed in the experimental area E4 in December 1989, and wiring and piping were completed by the end of January 1990.

The magnetic analyzer consists of three quadrupoles and two dipoles (PQ1-PQ2-PD1-PQ3-PD2), and the swinger has two dipoles and two quadrupoles (WD1-WQ1-WQ2-WD2). In addition, there is a twister consisting of seven quadrupoles.

Field measurements of these magnets were carried out in February and March this year. A photograph of the field measurement device is shown in Fig. 1. Its movement was controlled by a PC9801 computer, and the data were stored on magnetic disks. A hole probe used in the measurements was calibrated against an NMR probe at the central region of the dipole magnets to obtain absolute values of magnetic field strength.

Figure 2 shows sample field distributions of the first dipole of the spectrometer PD1 at different excitations. The maximum fields of the dipole magnets are found about 10% higher than the designed values, indicating iron material used for these magnets are of better quality than originally intended. The effective boundary of the PD1 magnet is about 3 cm inside the physical boundary at the maximum field, coming closer at lower fields. That for the PD2 magnet is about 1 cm outside.

The three-dimensional display of the field distribution of the first quadrupole magnet of the spectrometer PQ1 is shown in Fig. 3. Good quadrupole fields are realized over a large volume, although the present quadrupole magnets do not have a four-fold symmetry around the axis.

References
III-5-14. Test for Dispersive-Mode Beam Transport to the SMART Spectrograph

The spectrograph SMART was installed in the spring of 1990 in the E4 experiment room in the RIKEN Accelerator Research Facility. After the installation we started systematic diagnosis and development using a beam from the Ring Cyclotron. Figure 1 shows the schematic diagram of the spectrograph SMART. We have so far succeeded in obtaining some test spectra of light-ion and heavy ion direct reactions with proper particle identifications using a deuteron beam of 70 MeV/A and a 15N beam of 70 MeV/A.

One of the most important requirements in operating the SMART spectrograph with high resolution is the dispersion matching of a beam transport system and a spectrograph analyzer system. The momentum resolving power of the SMART spectrograph is anticipated to be $p/\Delta p=13,000$, while the momentum resolution of the beam extracted from the Ring cyclotron is expected to be 0.1% ($p/\Delta p=1,000$). Without dispersion matching, we can expect the momentum resolution of SMART spectrograph of about $p/\Delta p=1,000$ owing to a finite momentum spread of a beam itself. In order to get more high resolution, we need to

1. achieve dispersion matching with the beam transport system and/or
2. cut a part of beam by the slit in the beam transport system.

In principle, dispersion matching is archived by setting a beam matrix at the counter position in the spectrograph to "achromatic"; thus the
deviation of the momentum of the primary beam is canceled at the counter position. The condition for the dispersion matching is given by
\[M_{11}R_{18}(\Delta p/p) + M_{18}(\Delta p_i/p_i) = 0 \]
where M and R are matrices of the Spectrograph and the beam transport system, and \(p \) and \(p_i \) are the momentum of the beam transport system. The first order matrix of the SMART spectrograph is as follows. (in unit of program "transport")

\[
\begin{pmatrix}
0.53456 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & -7.61619 \\
18.56271 & 1.87056 & 0.00000 & 0.00000 & 0.00000 & -38.84659 \\
0.00000 & 0.00000 & 1.41005 & -0.04861 & 0.00000 & 0.00000 \\
0.00000 & 0.00000 & 19.76055 & 0.02797 & 0.00000 & 0.00000 \\
-12.06111 & -1.42467 & 0.00000 & 0.00000 & 1.00000 & 9.05130 \\
0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 1.00000
\end{pmatrix}
\]

For a typical experiment of elastic scattering and charge exchange reactions at forward angles, a beam matrix \(R_{18} \) required at the target position is
\[R_{18} = -M_{18}/M_{11} = 14.2 \text{ m} \]
Therefore we need a dispersion of beam (\(R_{18} \)) of about +14.2 m at the target position in order to archive dispersion matching.

In order to achieve this dispersion at the target position, we calculated beam transport matrixes from the accelerator to the target. In order to implement the calculation to the actual beam transport system, careful turning for Q-magnets was carried out. The turning was repeated by inserting and removing thin foils in the first focal point (A01) of an extracted beam to change the momentum dispersion of the beam and measuring the horizontal displacement of the beam position at each beam profile monitor comparing to the transport calculation. The beam transport calculation is usually started at A01, which is the first focal plain after extraction from the accelerator. We also estimated the dispersion of the beam at the focal point A01, assuming the dispersion of a beam in the Ring Cyclotron during acceleration to be \(R_{18} = -2.0 \text{ m} \) at A01.

As a result, we obtained a beam spot at the target with this dispersive mode transport. The size of the beam spot at the target was 1.5 mm (vertical) \(\times \) 20 mm (horizontal). The large horizontal size is mainly due to the large dispersion of the beam (14 m) and finite momentum distributions of the beam (0.1%).

We have adjustable slits at the focal point (A11b) in the beam transport system just after the first 90 degree bending magnet (DAA1, DMD1). In this dispersive-mode transport, since the dispersion of the beam at this slit is relatively large (5.7 m), we can reduce the momentum width of the beam by this slit. Table 1 shows the spot size of the beam observed at the target position in contrast to the slit width at the A11b position. We have also mentioned the calculated momentum and energy width of the beam in the table. We can obtain a proper beam spot size and the width of the momentum by adjusting the beam spot.

<table>
<thead>
<tr>
<th>A11b SLIT (H)</th>
<th>spot size on target(H)</th>
<th>(\Delta P)</th>
<th>(\Delta E) (at 1.05GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full open</td>
<td>20mm</td>
<td>0.15%</td>
<td>3.2MeV</td>
</tr>
<tr>
<td>+ -6.5mm</td>
<td>15mm</td>
<td>0.12%</td>
<td>2.4MeV</td>
</tr>
<tr>
<td>+ -3.5mm</td>
<td>10mm</td>
<td>0.08%</td>
<td>1.6MeV</td>
</tr>
<tr>
<td>+ -1.0mm</td>
<td>4mm</td>
<td>0.03%</td>
<td>0.6MeV</td>
</tr>
</tbody>
</table>

Finally we got a beam spot size of 3 mm FWHM in the horizontal direction at the focal plane counter (a single wire drift chamber which has a 10 cm \(\times \) 50 cm effective area) of the spectrograph when the A11b slits were set at \(\pm 6.5 \text{ mm} \) and beam spot size at the target was 15 mm in this transport. Therefore the dispersion matching is almost archived in this case, while there is a little error in the turning of desperation.

We are now developing a method of further fine turning of beam desperation, utilizing counters in the spectrograph to archive the ultimate resolution of this spectrograph. Systematical and intensive diagnosis for the optics of this spectrograph is also required to enable the tracing back of ray. The development of a Cathode Readout Drift Changer (CRDC) is also in progress as a high resolution focal plain counter.
The radioactive beam line RIPS\(^1\) is expected to open a way of the study of unstable nuclei through secondary nuclear reactions. One of our interests is the observation of a soft giant dipole resonance of light neutron-rich nuclei such as \(^{11}\text{Li}\) or \(^{11}\text{Be}\).\(^2\) Another interest is the study of a variety of excited states of exotic nuclei by using inverse reactions of (d,p) or (n,p) as secondary reactions. To study the excited states of unstable nuclei, invariant mass spectroscopy provides a powerful and direct method because the excited states of these nuclei are often particle unbound and the resolution of excitation energies does not suffer from the energy broadening of radioactive nuclear beams. A detector system including an analyzing magnet is now being designed and will be constructed at the end of the beam line RIPS to facilitate the experiments by the invariant-mass-reconstruction method. Here we summarize the outline of the system.

Figure 1 shows a schematic view of the system, which consists of an analyzing magnet, MWPC's (PBT1, PBT2, PAT1 and PAT2), a plastic scintillator (SBT), a drift chamber (DC), a hodoscope for charged particles (HAT), and a hodoscope for neutrons (NEUT).

The analyzing magnet is of a C-type with a gap of 250 mm; its poles are determined to be 850 mm in length and 700 mm in width. The maximum bending power \(B \cdot L\) is 1.3 T·m, where \(B\) denotes the maximum magnetic field and \(L\) the effective length of the magnet. Under the condition, one can bend 100-A-MeV \(^{10}\text{Be}\) up to 20 degrees. The angular acceptance for charged particles is determined to be 200 mrad in the horizontal direction and 150 mrad in the vertical direction.

PBT1 and PBT2 are 2-dimensional readout type MWPC's with a 1 mm wire spacing. They are used for determining reaction points by measuring the positions and angles of incident radioactive nuclear beams. SBT is used to define incident radioactive beams and as a TOF counter. PAT1 and PAT2 are 1-dimensional (horizontal) readout type MWPC's with a 1.5 mm wire spacing. They are located at the exit of the magnet and the exit of DC for excluding beam events from trigger events.

DC is used as a tracking chamber of the analyzing magnet and has 5 planes for determining the horizontal position and 4 planes for determining the vertical position.

HAT is used as the start counter for DC and for measuring the time of flights of charged particles.

NEUT is composed of 5 walls of 940×980 mm\(^2\) sensitive areas, each of which includes 16 plastic scintillators (BC-408) (see Fig. 2). It observes energies of neutrons by a TOF method and observes the tracks as well. The resolution of position detection is expected to be less than 6 cm (FWHM), which corresponds to the angular resolution of 10 mrad.

We estimated the resolution of the excitation energy. As an example, for 80-A-MeV \(^{11}\text{Be}\) with excitation energy of 5.5 MeV decaying into \(^{10}\text{Be}\) and a neutron, the resolution of the excitation energy is estimated as less than 700 keV.

References
1) T. Kubo \textit{et al.}: This Report p. 96.
For the identification of the mass and atomic number of heavy particles emitted in heavy-ion reactions, a simple formula$^{1)}$ has been successfully used for the measurements with counter telescopes. In medium-energy heavy-ion reactions, however, fragments with high atomic numbers are often emitted; accordingly the energy loss in a ΔE counter becomes large and the formula gives wrong results. Thus, using a computer code for the energy loss calculation in the ΔE counter for various ions, we have developed a new formula with a wider dynamic range both in energy ($4 \leq E/A \leq 100$ MeV/u) and atomic number ($Z \leq 40$). The particle identification (PI) is approximated by

$$\text{PI} \propto (E + \Delta E)^n - E$$

$$n = a + b \log(E/(E + \Delta E)).$$

The values of the PI are found to be nearly proportional to $M^{0.724}Z^2$, where M and Z are the mass and atomic number of a fragment.

We applied this formula to the measurement of intermediate-mass fragments produced in the reaction $^{84}\text{Kr} + ^{27}\text{Al}$ at 10.6 MeV/u performed at RIKEN Ring Cyclotron. Intermediate-mass fragments are detected with telescopes, consisting of $\Delta E(30 \, \mu\text{m}) - E(1 \, \text{mm})$ surface-barrier detectors. A particle identification spectrum displayed in Fig. 1 is obtained by using the above formula with $a = 1.745$ and $b = 0.0635$. The discrimination of fragments in the atomic number is achieved up to $Z = 40$.

The present formula is simple enough to use in an on-line monitoring in the measurement of intermediate-mass fragments.

References

In a previous report,1) we proposed a simple formula to determine the position for two-dimensional position-sensitive silicon detectors (PSD). The formula converts four charge signals Q_i ($i=1,2,3,4$) from the electrodes located at four corners, $(x,y) = (1,1), (-1,1), (-1,-1),$ and $(1,-1)$, into the incident position (X,Y).

We performed a further test for other two PSD's manufactured by Hamamatsu Photonics Co. and by Intertechnique. The PSD's have an active area of $37 \times 37 \text{ mm}^2$. The structure of the electrodes of the two PSD's was similar to the previous one.1) Their thicknesses were about 400 and 490 μm, and their surface resistances were about 700 and 900 $\Omega\cdot\text{cm}$, respectively. The test was carried out by using collimated light pulses from a LED shooting 82 positions of the PSD.

Conversion was done successfully with an improved formula:

$$
X = \frac{A + B}{1 + \sqrt{1 - A^2 - B^2}}
$$

$$
Y = \frac{B - A}{1 + \sqrt{1 - A^2 - B^2}}
$$

$$
A = \frac{S_2 - S_4}{S_2 + S_4}
$$

$$
B = \frac{S_3 - S_1}{S_3 + S_1}
$$

$$
S_n = Q_n \frac{x}{s}
$$

where n is a dimensionless parameter. This formula gives better position resolution than the previous one. The parameter n which gives the best position linearity was 0.59 and 1.50 for Hamamatsu and Intertechnique PSD's, respectively. An overall good position linearity was obtained except for the edge regions of the Intertechnique PSD.

References

III-5-18. Energy Loss Straggling of High Energy Heavy Ions in a Silicon Detector

Energy loss distributions are measured of an 80 MeV/u \(^{40}\)Ar beam in a Si (Li) detector of 2.8 mm in thickness and 15 cm in diameter. The width of the energy loss distributions is narrowest when the particle incident angle is 10° to the silicon detector.

The width of the energy loss distribution is determined by the gaussian width, electronics noise, detector thickness nonuniformity, and channeling effect. The electronics noise is negligible in a heavy ion energy loss measurement, because of the energy loss is enormously large relative to an electronics noise level. In a preliminary experiment, performed at the RIKEN Ring cyclotron to measure the particle channeling effect in a silicon detector, we observed the energy loss distributions of particle incident angle 0°, 10°, and 20° to the horizontal axis (X-axis) of the detector. Figure 1 shows the experimental energy loss distributions of 80 MeV/u \(^{40}\)Ar ions in a 2.8 mm thick silicon detector. The theoretical gaussian FWHM and experimental FWHM are shown in Table 1.

<table>
<thead>
<tr>
<th>Incident Angle</th>
<th>Exp. FWHM (%)</th>
<th>Theor. FWHM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 0°</td>
<td>4.46</td>
<td>0.445</td>
</tr>
<tr>
<td>b) 10°</td>
<td>1.53</td>
<td>0.434</td>
</tr>
<tr>
<td>c) 20°</td>
<td>1.73</td>
<td>0.397</td>
</tr>
</tbody>
</table>

The distribution width is narrowest at an incident angle of 10°. The absorber materials between the beam exit and the detector are Mylar of 0.20 mm, air of 300 mm, and Al of 0.04 mm. The beam energy spreads caused by these materials are approximately 0.2%. If the energy loss resolutions are limited by the thickness nonuniformity of the detector, the thickness nonuniformity is estimated as \(\pm 1.47\%\) (\(\pm 0.041\) mm). If we tilt the detector 10° to the beam not only horizontally but also vertically, the FWHM observed will agree with the calculation.

* Ehime University.
** Waseda University.
Position sensitive detectors (PSD) play an important role in the high-resolution observation of cosmic-ray heavy ions in space. We are preparing a cosmic-ray heavy ion telescope having a very large geometric-factor. The telescope will be put into a geosynchronous orbit on board the Engineering Test Satellite (ETS-VI) in 1993.\(^1\) The objectives of our observation are elemental and isotopic abundance of galactic cosmic rays (GCR) and solar energetic particles (SEP) up to Fe nuclides. The position information entering the telescope is used to determine the pathlength in a \(\Delta E\) detector, which is very important value in a \(\Delta E \times E\) method for particle identification.

The two-dimensional charge division type PSD has an effective area of 62 mm x 62 mm. Although some performances of the PSD for low energy heavy ions (stopping in the detector) from 160 cm

Fig. 1. Detector array for the experiment. An Al film of 0.2 mm in thickness is used for a light shield. Behind three PSDs there are even PIN type energy detectors of 0.5 mm in thickness. This assembly is a front part of the flight model telescope.

Fig. 2. Block diagram of the telescope system of the flight model. The micro processor part was simulated with a personal computer.
cyclotron have already been reported,2,3 we need to measure characteristics using penetrated higher energy beam which can be partly simulated to cosmic rays. We here report performances of the PSDs for penetrated heavy ions, using RIKEN Ring Cyclotron. The detector array shown in Fig. 1 was irradiated with an Ar-beam of 95 MeV/u. This detector array basically simulates the flight model assembly, but has small number of signals because of the limits of the number of hybrid-IC. Different from flight models, four signals from the third PSD are connected to one signal to get energy information only. We used no vacuum chamber to set the telescope, but lead a beam to the atmosphere through a 250 micron thick mylar window from the vacuum system. The distance from the window to the telescope was about 30 cm.

The signal processing system including analog and digital circuits is shown in Fig. 2 for the flight model. The pulse shaping time of the main amplifier is 10 μs. In this experiment, we simulated the digital processing part after the ADCs (telemetry part of the satellite system) by another circuit. These digital circuits have essentially no important role for the resolution of the telescope. We used two 50-m long glass fiber cables to transmit and receive signals from the beam point to the control room located just under the E-1 beam site. We used a personal computer with magneto-optical-disk to control the telescope and to take data in the control room.

In front of the first PSD, we placed a 3-mm thick brass collimator with 1-mm φ holes on the 13 × 13 lattice points at 5 mm intervals. Since the range of the Ar-beam in brass is much less than 3 mm, only ions passing through the holes can hit PSDs.

In Fig. 3 we show an example of the positions observed corresponding to each hole of the collimator. The positions were calculated by a simple equation shown in Ref. 2. Apparent non-uniformity of the total counts in each hole upon the whole area of PSD depends on the beam profiles during the data taking time period of about 5 hours. In Fig. 4 we illustrate the differences between the calculated position (curve fitted center of each hole) and the real position (center of the 1 mm φ hole) of the collimator with vectors. At the lattice points where there are no vector counts were too low to be detected owing to beam profiles.

Figure 4 indicates a general shrink of positions toward the center of the detector. In order to 'de-modulate' the observed position data in space to correct values, we should carry out similar measurements with various beams.

References
III-5-20. Test of Si Photodiodes for Scintillation of Liquid Xe by Heavy Ions

Liquid xenon (LXe) is a good scintillator for radiation detection and is now considered to be used in nuclear and particle physics. A scilicon photodiode (Si-PD) is suitable for the detection of the scintillation light (170 nm) from LXe because it has fast response and high detection efficiency for the light and works at low temperature and in a magnetic field. We have measured the response of a Si-PD for large energy deposition in LXe by using heavy ions from RIKEN Ring Cyclotron.

The apparatus is a double vacuum chamber, the inner is a container of LXe and the outer is for thermal insulation. The beam windows are a 200-micron SUS foil and a 40-micron Havar foil. The incident ions entered and stopped in LXe after passing through a Ti window of the beam line, 10 cm air, and then the chamber windows. A thin (100 microns) plastic scintillator was sometimes used to obtain a beam trigger. The ions used were 135 MeV/n N, 80 MeV/n Ar, and 100 MeV/n Al.

Xe gas was purified by passing through an Oxisorb purifier with a flow rate of 5 l/min and then liquefied in the chamber. The LXe temperature was kept at −75°C with dry ice. The photon detector is a surface-barrier Si-PD made at Waseda University. A mesh-type gold electrode is used to ensure a good transparency of the surface for 170 nm photons. Charge signals from the diode were processed with a preamplifier (fast or slow), a shaper, and an ADC. The waveforms of the signals were also observed with an oscilloscope.

Table 1 shows the energy deposited in LXe, the number of photons incident to the diode surface, the charge collected in PD, a practical quantum efficiency for the LXe scintillation, and the energy resolution, obtained for various ions. The peaking times of signals are also listed. The collected charge was calibrated by a known capacitor and voltages of standard pulses. In the measurement with Ar ions, the capacitor was not calibrated, so that the collected charge (in parentheses) may be incorrect. In other cases, the practical efficiencies, defined as the number of the collected electrons divided by the number of incident photons, were about 0.25. With a peaking time of 20–45 ns, the resolution got better by improving the apparatus and electronics. In conclusion, an energy resolution better than 0.5% r.m.s. was obtained for the energy deposition of 2.5 GeV.

<table>
<thead>
<tr>
<th>Incident ion</th>
<th>Energy in LXe</th>
<th>Incident photon</th>
<th>Collected electron</th>
<th>Practical efficiency</th>
<th>Resolution r.m.s.</th>
<th>Peaking time</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1.64 GeV</td>
<td>2.6x10^7</td>
<td>6.7x10^6</td>
<td>0.26</td>
<td>0.60%</td>
<td>1 µs</td>
</tr>
<tr>
<td>N</td>
<td>1.64 GeV</td>
<td>2.6x10^7</td>
<td>6.1x10^6</td>
<td>0.23</td>
<td>1.2%</td>
<td>45 ns</td>
</tr>
<tr>
<td>Ar</td>
<td>2.65 GeV</td>
<td>5.2x10^7</td>
<td>(2.9x10^7)</td>
<td>(0.56)</td>
<td>(0.69%)</td>
<td>20 ns</td>
</tr>
<tr>
<td>Al</td>
<td>2.47 GeV</td>
<td>6.1x10^7</td>
<td>1.4x10^7</td>
<td>0.22</td>
<td>0.48%</td>
<td>20 ns</td>
</tr>
</tbody>
</table>

* Massachusetts Institute of Technology.
III-5-21. Response of a CsI(Tl) Scintillator to Charged Particles of Energies around 80 MeV/u

The response of a CsI(Tl) scintillator to charged particles (p, α, 11B, 12C, 13N, and 14O) of energies around 80 MeV/u was studied. The experiment was carried out using secondary beams from the RIPS facility of the RIKEN Ring Cyclotron. A 4×4×10 cm³ crystal was coupled to a photomultiplier tube (PMT). Anode pulses from PMT were sent to two charge sensitive ADCs, because the light output has two time components (fast and slow). One ADC is gated from 0 to 0.4 μs to pick up the fast component of the scintillation light (S1) and the other ADC is gated from 1.7 to 5.7 μs to pick up the slow component (S2).

Figure 1 shows the relation between the particle energies and the light output S1 and S2, respectively. In general, the light output of a heavier particle is smaller than that of a lighter particle. This phenomenon is known as “quenching” for various scintillators. We found one exception in the response to protons as shown in Fig. 1(a). The light output of the proton is smaller than that of α particle. This is due to the low probability of recombination of electrons and holes induced by such high energy protons.1)

References
III-5-22. Identification of Charged Particles using Phoswich Detector

As a part of a 4π experiment project, we have been developing a Phoswich detector system which consists of BaF$_2$ + Plastic Scintillator Phoswich detectors. Here we report the results of the detector's response to charged particles. In the case of BaF$_2$, particle identification can be achieved by using a pulse shape discrimination technique because the integration of the fast decay component of a light pulse due to scintillation in the BaF$_2$ crystal depends on incident particles. In our Phoswich detector (Fig. 1), a piece of a plastic scintillator is added in front of the BaF$_2$ crystal. As a result, the identification of charged particles with the two-dimensional plot of the fast component of a total light output pulse versus the total light output would be improved because of a good energy loss measurement of the incident particles by the contribution to the fast component from the plastic scintillator. The detector was tested with 11B (32–66 MeV), 12C (35–80 MeV), 16O (40–99 MeV), 28Si (72–121 MeV), and 35Cl (100–126 MeV) beams produced by the 12 MV UD Tandem Accelerator of Tsukuba University. The detector was placed at an angle of 20° to the beam direction and was exposed to particles scattered by a gold foil. The output signal from the PMT anode was observed to consist of a fast component (plastic's light output and BaF$_2$'s fast component) superimposed on a slow component from BaF$_2$. By putting a fast gate (50 ns) and a total gate (1.5μs) on the signal the two components were integrated respectively to give the two light outputs L_{fast} and L_{total}. Several plastic scintillators of different thicknesses were tested. The data are under analysis. Figure 2 shows the FWHM of the fast and total light outputs. The FWHM of the total light output is almost constant, but that of the fast light output increases as the atomic number (Z) of the incident particle becomes large.

Fig. 1. Schematic view of the BaF$_2$ + Plastic Scintillator Phoswich detector.

Fig. 2. FWHM[%] of the light output, $L.Z$ is the Atomic Number of the incident particle elastically scattered by a gold target. FWHM[%] is $\text{FWHM} \text{[ch]} = \text{fwhm}[\text{ch}] / \text{L}[\text{ch}]$. The value in the parenthesis is the thickness of the plastic scintillator.

References

* SANYO electric, Ltd.
III-5-23. A Test for SMART Neutron Detectors

The SMART system,1) with its beam swinger magnets, allows neutron angular distribution measurements at the maximum flight path of 22 m. A test neutron time-of-flight (TOF) measurement was carried out during a SMART diagnostic run in July-August, 1990, using a 140 MeV deuteron beam and a 1 mm thick Al target. A cylindrical NE213 liquid scintillator detector, 20 cm in diameter and 5 cm in thickness, was placed at 8.6 m from the target. Stop signals were taken from the RF of the injector AVF cyclotron.

Figures 1(a) and (b) show a raw TOF spectrum and a TOF spectrum gated by neutron events, respectively. Neutron-gamma discrimination was made with a pulse-shape discriminator. The raw spectrum shows a sharp peak due to gamma flash, and a broad neutron peak due to deuteron breakup.

Pulse-height spectra corresponding to various slices of flight times are shown in Fig. 2. One can identify a plateau extending to the highest pulse-height region due to the H(n,p) events, a bump due to the 12C(n,p) events, and a steep rise toward the low pulse-height region due to the 12C(n,α) and 12C(n,$n'\alpha$) events.

The threshold for the neutron detection was set at about 35 MeV during the test run. The dynamic range was limited by the natural burst of the beam, which was 12.5 MHz. A beam chopper is necessary to obtain a wider dynamic range and a higher efficiency with the maximum flight path of 22 m.

Fig. 1. Time-of-flight spectra (a) without and (b) with the neutron gate.
The full range corresponds to 80 ns. A sharp peak is due to gamma flash.
The energy of the center of the broad peak is about 70 MeV, indicating this peak is due to breakup neutrons.
Fig. 2. Pulse height spectra gated by neutron events. Each spectra corresponds to the TOF gate indicated.

References

III-5-24. Data Acquisition System at the RIKEN Ring Cyclotron

T. Ichihara, T. Inamura, and M. Ishihara

The general description of the data Acquisition System at the RIKEN Ring Cyclotron is described in a previous progress report \(^1\) and IEEE transaction. \(^2\) In this report, we will describe the update status of the system. Figure 1 shows overview.

Fig. 1. Overview of the data acquisition system at the RIKEN ring cyclotron.

(1) On-Line Data acquisition System
Currently, five Micro VAX's are used for the on-line experiments of the Ring Cyclotron. The node names are:

RIKMV1:: Micro VAX II (IF counting room)

RIKMV2:: Micro VAX II (IF counting room)

RIKMV3:: Micro VAX II (Liniac Counting room)

RIKMV4:: Micro VAX II (B2F RIPS Counting room)

RIKMV5:: VAX Station 3520 (B2F SMART Counting room)

We can perform independent measurements and counter tests without interference. Now a new version of the data-taking program supports multi-crate parallel-readout using multi J11's (Starbursts). The throughput of the data taking is increased by using this parallel readout features. Currently there is a problem in DMA transfer of VAX Station 3520, resulting from the incompleteness of Q22 bus of the VAX-Station 3520. This will be fixed soon. In order to increase the security, these on-line VAX's are connected to the RIKEN internal network and cannot access directly outside from RIKEN.

(2) Off-Line Data Processing System-1 (VAX/VMS)
The following VAX's are available in off-line data analysis.

RIKEN:: (virtual node name of the cluster)

RIK835:: VAX-8350 (Internet: rik835. riken. go. jp)

RIKV30:: VAX STATION 3520 (Internet: rik835. riken. go. jp)

RIKV30:: VAX STATION 3520 (Internet: rik835. riken. go. jp)

These computers are connected by LAVAC (Local Area VAX Clusters) using Ethernet. They are also connected to HEPNET (DECnet) and TISN (DECnet/IP) Internet and reachable from all over the word. (see Session 6 for detail)

(3) Off-line data processing system-2 (FACOM MSP)
Following FACOM MSP Main Frames are available at the RIKEN Accelerator Facility.

FACOM M-380 (RIKEN Accelerator Research Facility)

FACOM M-780/20 (RIKEN Computational Center)

These two FACOM's are connected by NJE using DSLINK on the Ethernet. These two FACOM's are also connected to DECnet/SNA Gateway and, and therefore 3270 full-screen terminal emulations and file transfer using RJE (Remote Job Entry) are available from VAX. Now we can login to FACOM M-380 and M-780 from any terminals for VAX and FACOM's. In addition, recently FACOM MSP supports TCP/IP on MSP, and now telnet clients and ftp clients are available on FACOM MSP. CLS (Cartilage Library System) on FACOM M-380 is now used to store large size Histograming data and also raw data. MTL (Magnetic Tape Library) is also
available at FACOM M-780 to store large data.

(4) RISC work Stations
The following RISC (Reduced Instruction Set Computer) work Stations are installed at the facility.

- Fujitsu SPARC Station 1
- IBM Power station 530 (RS/6000)

SPARC Station 1 is used as a primary name server of the RIKEN domain in the TCP/IP connections. DECnet is also implemented to the SPARC Station. IBM Power station 530 is a very fast (13 MFLOPS, 35 MIPS) workstations for various purpose calculations for the accelerator.

(5) Apple Talk
Recently three Fast Path 4 and two Turbo net Star Couplers are installed in the Accelerator facility for interconnections of Macintoshes, Apple laser writes, VAX’s. For the local connection, we use PhoneNet. Alisa Talk Software on VAX-8350 enables printing to any Apple laser writer from VAX and is very convenient. Currently there are about 10 Apple talk zones in RIKEN.

(6) Wide Area Network
Our Facility is connected to the world-wide network of HEPNET (High Energy Physics Network) / SPAN (Space Physics Analysis network) as Area 40, which is a part of DECnet Internet, and TISN internet (Tokyo University International Science Network) which is a part of “The Internet” (NSFnet, DARPA, MILnet etc.).

In order to support a wide area network connection, we are now supporting following 6 leased lines at the accelerator facility.

- 64 k bps (DECnet/IP) to the University of Tokyo, Faculty of Science
- 9600 bps (DECnet) to KEK (National High Energy Physics Laboratory)
- 9600 bps (DECnet/IP) to RIKEN Life Science Tsukuba Center
- 9600 bps (DECnet) to RIKEN Komagome bunsho (SOR group)
- 9600 bps (DECnet) to Tokyo Institute of Technology, Faculty of Science
- 9600 bps (DDX-80) to NTT DDX. (Dial in from the telephone).

In order to connect to the TISN internet, we use Proteon P4200 Router which supports the DECnet packet and IP packet routing simultaneously and Fujitsu-Sparc Station 1 as a primary name server. Modems, DSU’s and Routers are connected to a non-stopping CVCF Power supply with a battery and a generator backup to minimize the down time of the network. We are now using DECnet Phase IV and it will be changed to phase V soon. BITNET has also been connected to the FACOM M-780 (JPNRKNC) at the RIKEN Computational Center and FACOM M-380 (JPNRKNARF) at the RIKEN accelerator research facility recently via Rikkyo-University. Junet has also been changed from the public telephone line to the TISN line and now the most traffics of Junet use a high speed (64 kbps) digital leased line between RIKEN and the University of Tokyo.

The address of the electric mail of the general users of the RIKEN Ring Cyclotron VAX-8350 is as follows.

(HEPnet/SPAN) RIKEN::USERID (or 41910::USERID)
(Internet/BITnet) USERID @ RIK 835 . RI KEN . GO. JP

References
Personal computers are used in various fields of experiments such as CAD, network terminals or local data collection systems of measurements. It is often necessary to transfer real time data at a high speed to remote systems. The high-speed data transfer can be realized by a conventional parallel wire method, but requires many wires. This problem can be solved by using serial data transfer, but the bit rate must be increased by a factor equal to the number of bits per data fields. For example, an 8-bits parallel system operating at 10 MHz needs a serial data transmission capability of more than 80 Mbps (8 MBytes/s). Serial data link, which consists of Am7968 transmitter and Am7969 receiver chips, possesses data throughput of more than 100 Mbps (about 10 Mbytes/s). A data link interface board, using these chips and optical fiber components, is made for a personal computer PC-9801 and tested.

![A high speed data link interface board](image)

Fig. 1. A high speed data link interface board.

The block diagram of the test circuit is shown in Fig. 1. An optical fiber part of the data link surrounded by a broken line is constructed on a small separate board outside the interface board. The fiber ports are composed of an LED HFBR-1402, a light to voltage converter HFBR-2406, and their related circuits. Fast ECL signals between the data link chips and the fiber circuits are linked with four short RG-174/U cables.

The Am7968 transmitter has two operating modes of local and cascade. The local mode consists of a single transmitter communicating with a single receiver over serial mediums. The cascade mode consists of two or more daisy-chained (cascade) transmitters driving a equal number of receivers over a single serial medium. Two Am7968 transmitters are cascaded to send a two-byte word over a single serial line. In the cascade operation two bytes of data are loaded in parallel through the computer data bus simultaneously. The transmitter connected to the serial medium is referred to as the primary, and is operated in a local mode. The daisy-chained transmitter which supplies serial data to the primary is referred to as the upstream, and is operated in a cascade mode. Word data are written by a processor into transmitting FiFo memories of 512 bytes in size before transfer. Data transfer is began by address-ing a certain memory location. Once transmitting starts, the stocked quantity of data is continuously sent through the cascade over the serial medium without intervention of the processor in the manner of DMA operation until an empty flag of the FiFo memory locks the automatic cycle. The flag status is also sensed by the processor so that next data can be preset into the FiFo regardless of state of the serial medium. Idle time between transmitting data bytes is filled with SYNC bytes.

An Am7969 receiver monitors the serial link, selects only data bytes out of a serial pattern, and writes it into the receiving FiFo memory of 512 bytes in size, the contents of which are read by the processor through DATA L or lower 8 bits on the 16 bits data bus. As the cascade mode is not yet supported in the Am7969 receiver unlike the Am7968 transmitter, each data byte must be stored into the single FiFo memory in turn immediately after receipt. The access time of the receiving FiFo is 25 ns, half of that of the transmitting FiFo of 50 ns.

The FiFo memories and data link control logic are allocated at even addresses from c0000H to c000aH in hexadecimal the locations of which are unused part of user’s ROM area in the computer.

The serial data throughput of about 9 MBytes/s is obtained in a self-back test done by mutually tying fiber input and output ports with a single optical fiber cable of 5 m long. This value is limited by an internal logic of the chained transmitters; however the test shows that the interface can serve sufficiently as a high-speed serial data link between remote computer systems.
PIXE (particle induced X-ray emission) method is capable of analyzing multiple elements in a small area in an arbitrary atmosphere, under vacuum or even non-vacuum, without destructing target materials. The method is, therefore, being extensively used in the fields of art, archaeology, and materials science, where the objects should be kept unimpaired during analysis.

For quantitative analysis by X-ray spectrometers, exact values of the incident angle of emerging beams (θ) and the take-off angle of emitted X rays (φ) are required for correcting matrix effects such as self-absorption. In general, the surfaces of objects are flattened prior to analysis and the angles, θ and φ, are regularized for that purpose. Such a treatment, however, cannot be applied to the objects in the above-mentioned fields. Therefore, we have developed a simple, convenient technique to measure the surface angle (and hence, θ and φ) of a non-flat target by utilizing the yield ratio of L X rays and K X rays originated from one and the same element. The technique is based on the fact that the self-absorption factors for L and K X rays are quite different from each other. We examined the utility of this technique, choosing a bronze block of a known bulk composition (Cu : Sn : Pb = 7 : 2 : 1 by weight) as a typical model target.

Figure 1 shows representative PIXE spectra obtained from the bronze target placed at different surface angles with respect to the incident beam direction. The target was excited, in air of 1 atm, with a beam of 1.16 MeV protons regulated to a 0.7 mm x 2.0 mm rectangle spot. X rays emitted from the target were detected with a Si(Li) detector through a composite absorber made of 0.5 mm-thick polyethylene and 8 μm-thick Co films. The detector was located at a fixed angle of 135° with respect to the incident beam direction.

As shown in Fig. 1, the L/K X-ray yield ratio for Pb varied drastically with the surface angle of the target. The relationship between the surface angle and the L/K X-ray yield ratio shows no appreciable changes even when the composition of the target changes considerably, as seen from Fig. 2. Thus, rough values of θ and φ may be obtained from the observed L/K X-ray yield ratio in the absence of exact data on the composition of a target. Using these values as a first approximation, we are able to determine the exact values of θ and φ and the composition of the target after a few iterations.

Although we report here only the case of bronze, the technique is applicable to any target if the following requirements are fulfilled: (1) two kinds of X rays originated from one element are simultaneously detectable; (2) they are absorbed quite differently by the target itself, e.g., Kα and Kβ of Zn from brass.

![Fig. 1](image1.png)

Fig. 1. PIXE spectra obtained from a bronze target (bulk composition Cu : Sn : Pb = 7 : 2 : 1 by weight).

![Fig. 2](image2.png)

Fig. 2. Sn Lα/Kα X-ray yield ratio.
III-6-2. PIXE Analysis under Non-Vacuum Operation

Y. Sasa, K. Maeda, and M. Uda

(1) Improvement of Apparatus

A distinctive feature of a particle induced X-ray emission (PIXE) method is the attainability of trace element analysis on a small area (\(-\text{mm}^2\)) in any arbitrary environments (external PIXE). This period, the existing PIXE apparatus was improved to be compatible with the operations under non-vacuum conditions. The modified part is schematically shown in Fig. 1. At the down stream end of an ion beam line, an Al exit pipe (3 mm I.D. \(\times 150\) mm length) was set and its top was sealed with a 6 \(\mu\)m thick Al foil. An ion beam from a vacuum chamber is transported into a non-vacuum room through the foil. The distance between the Al exit foil and a target is set to be 10.0 mm. When operation is carried out in the ordinary atmosphere, the maximum energy of a \(\text{H}^+\) ion beam obtainable in this alignment is 1.16 MeV, in contrast with the maximum 1.6 MeV in vacuum operation. The modified machine was successfully used for the determination of trace elements in the materials which are highly sensitive to the change of environments and the substances having size beyond the vacuum chamber.

Fig. 1. Schematic view of modified part of PIXE machine compatible with non-vacuum operations.

(2) Applications of External PIXE

We can observe the differences in the clearness of characters printed on the sutras dedicated in the 11th and 14th centuries, which were found in the cell of Koyasan temple. We inspected trace element contents on these characters by the external PIXE method, but detected no meaningful difference in the concentration of elements of \(Z > 13\). This suggests the clearness difference may be attributed to light elements, mainly organic substances. On some sutra, red letters or spots were marked, and from these marks we detected high contents (\(-100\) ppm) of Hg and S. Thus the red patterns were judged to contain cinnabar (\(\text{HgS}_2\)).

The characters on the sutras kept in bronze cases excavated in Seburi-mura, Saga-Prefecture, in 1986, are written with dark red-brownish chinese ink. Sutra researchers conjectured the coexistence of cinnabar or Bengara (\(\text{Fe}_2\text{O}_3\)) in the ink, accordingly. However, no sign of Hg species in the detection limit (\(-\text{ppm}\)) and no difference in a Fe content, compared to references, were recognized by PIXE analysis.\(^1\)

The chemical compositions (in weight) of traces (\(-5\) mg) of rust collected from a bell-shaped bronze (doutaku) excavated from Hosoe-cho, Shizuoka-Prefecture, in Feb. 1990, were estimated by the PIXE method as 1.00: 0.92: 0.52: 0.11: 0.13 for Cu, Sn, Pb, As, and Sb, respectively. These results suggest that the selective dissolution of Cu and Sn in the bronze had been proceeded under ground by rain waters.

Trace element analysis on the coloring matters of wood block patterns (ukiyo) printed in the latter Edo period is now in process. Reproduction and reappearance of original colored pictures are subjects of great interest.

References

The Nuclear Data Group has continued its activities on the following four items.

1. Compilation of charged-particle induced reaction cross section data. We are concerned with the reactions of which products are used for mediobiological applications. The cross sections of the reactions producing the following isotopes were compiled in the EXFOR file: \(^{11}\text{C} \), \(^{13}\text{N} \), \(^{18}\text{O} \), \(^{18}\text{F} \), \(^{28}\text{Mg} \), \(^{52}\text{Cr} \), \(^{67}\text{Ga} \), \(^{68}\text{Ge} \), \(^{74}\text{As} \), \(^{77}\text{Br} \), \(^{82}\text{Br} \), \(^{77}\text{Kr} \), \(^{81}\text{Rb} \), \(^{82}\text{Rb} \), \(^{111}\text{In} \), \(^{123}\text{Xe} \), \(^{123}\text{Cs} \), \(^{127}\text{Xe} \), \(^{123}\text{I} \), \(^{124}\text{I} \), and \(^{125}\text{I} \) nuclei. In producing these isotopes, impurities are produced by competing reactions. We also compiled the reaction cross sections for various combinations of incident particles and target nuclei to produce these impurities.

An effort was made to complete the collection of the data on the production of \(^{82}\text{Sr} \), \(^{68}\text{Ge} \), \(^{68}\text{Ga} \), and \(^{111}\text{In} \) nuclides. We almost have completed a set of data files of the cross sections of the reactions producing these nuclides. A collection of data and a review on the cross sections on \(^{123}\text{I} \), \(^{123}\text{Xe} \), \(^{123}\text{Cs} \) were completed. The results were published from IAEA (International Atomic Energy Agency). For further publication, we are trying to make graphs for all cross sections we concern.

Using a computer code for least squares fittings developed last year, experimental excitation functions which produce \(^{67}\text{Ga} \) and \(^{85}\text{Rb} \) were fitted. Besides linear polynomial and exponent functions, a function representing level densities has been tried for these fittings.

The compilation of the integrated and differential reaction cross-section data originated in Japan in the EXFOR files is continued.

2. We continue to evaluate the details of collected cross-section data on the \(^{12}\text{C}(p, \text{pn})^{11}\text{C} \), \(^{27}\text{Al}(p, 3\text{pn})^{24}\text{Na} \), \(^{68}\text{Cu}(p, 2n)^{67}\text{Zn} \), and \(^{68}\text{Cu}(p, n)^{69}\text{Zn} \) reactions to propose standard cross sections for monitor reactions.

3. For the mass chain evaluation of nuclear structure data, the evaluation of the nuclear structure data on the \(A=177 \) mass chain is in progress. The deadline of this evaluation is the end of this year.

4. The references of annual reports and quarterly reports published in Japan during 1989 were compiled in the form of Nuclear Structure References Coding. This work is connected to a consignment research from Japan Atomic Energy and the compilation of recent reference files at Brookhaven National Laboratory (BNL). We have responsibility for the compilation of references published in Japan and all references published in 1987 and 1988 were sent to the BNL Data Center. All compiled references are published periodically as ‘recent references’ in Nuclear Data Sheets.

References
3) K. Kitao, A. Hashizume, Y. Tendow, and Y. Ohkubo: This Report, p. 130.
IV-2. Cross Section Data for 68Ge Production

Y. Tendow, A. Hashizume, Y. Ohkubo, and K. Kitao

The nuclide 68Ge($T_{1/2} = 270.8$ d) decays to 68Ga($T_{1/2} = 67.629$ m) by electron capture, and 68Ga decays by 89% positron emission and 11% electron capture and emits weak γ-rays (3%). Thus, a 68Ge-68Ga system provides a useful generator of positron emitters which could be applied to medical diagnosis with positron computer tomograph for the localization of malignant human tumors. The short-lived positron emitter 68Ga is separated from 68Ge by milking at any time when a diagnosis is required in hospitals having no cyclotron facilities.

Only a few cross sections measured for 68Ge production are found in the literature. The reaction types, incident energy ranges, and maximum cross sections for the excitation functions measured up to the present are summarized in Table 1.

Table 1. Cross Sections for 68Ge Production.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Energy (MeV)</th>
<th>σ_{max} (mb at MeV)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>68Ga (p, 2n)</td>
<td>13 - 56</td>
<td>465 (at 20)</td>
<td>1)</td>
</tr>
<tr>
<td>71Ga (p, 4n)</td>
<td>36 - 56</td>
<td>137 (at 43)</td>
<td>1)</td>
</tr>
<tr>
<td>70Ge (p, p2n)</td>
<td>24 - 64</td>
<td>100 (at 37)</td>
<td>2)</td>
</tr>
<tr>
<td>64Zn (n, y)</td>
<td>9.4 - 15.6</td>
<td>0.771 (at 11.3)</td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>10.5 - 16.5</td>
<td>0.9 (at 16.5)</td>
<td>4)</td>
</tr>
<tr>
<td>66Zn (n, 2n)</td>
<td>17 - 26</td>
<td>180 (at 26)</td>
<td>3)</td>
</tr>
<tr>
<td></td>
<td>19 - 37</td>
<td>154 (at 31)</td>
<td>5)</td>
</tr>
<tr>
<td>58Ni (n, 2p)</td>
<td>50 - 70</td>
<td>204 (at 70)</td>
<td>6)</td>
</tr>
<tr>
<td>Y (p, spall)</td>
<td>593</td>
<td>6.75</td>
<td>7)</td>
</tr>
<tr>
<td>Rb (p, spall)</td>
<td>593</td>
<td>7.80</td>
<td>7)</td>
</tr>
<tr>
<td>Br (p, spall)</td>
<td>593</td>
<td>11.1</td>
<td>7)</td>
</tr>
<tr>
<td>As (p, spall)</td>
<td>593</td>
<td>10.7</td>
<td>7)</td>
</tr>
<tr>
<td>Rb+Br (p, spall)</td>
<td>800</td>
<td>19</td>
<td>8)</td>
</tr>
</tbody>
</table>

As for the proton-reaction cross section, Porile et al. 1) measured for 69Ga(p, 2n), 71Ga(p, 4n) reactions and Horiguchi et al. 2) for 70Ge(p, p2n) reaction (Fig. 1). The cross section for (p, xn) reaction, in contrast to the (p, xpn), falls rapidly from the maximum as the proton energy increases. Therefore, in order to obtain large thick target yields, the (p, xpn) reaction would be advanta-geous over the (p, xn) reaction when higher energy proton beams are available.

Nagame et al. 5) measured cross sections for the 66Zn(α, 2n) reaction using natural zinc targets. Ruddy et al. 3) also measured cross sections for the same reaction in a lower energy part of excitation.

Grüttner 7) measured spallation cross sections on As, Br, Rb, and Y targets at a proton energy of 593 MeV.

References
We have reviewed the status of production of strontium-82, as the parent of \(^{82}\text{Rb}\), by charged-particle induced reaction. \(^{82}\text{Rb}\) is an important positron emitting nuclide used to study on the blood flow through heart, brain, etc.\(^1\) The half-life of \(^{82}\text{Rb}\) is short (1.27 m), but that of its parent \(^{82}\text{Sr}\) is moderately long (25.0d). Thus, \(^{82}\text{Rb}\) can be separated from \(^{82}\text{Sr}\) by milking.

For production of \(^{82}\text{Sr}\), \(\text{natKr}(\alpha, xn)\), \(\text{natKr}(\text{He}, xn)\), \(^{85}\text{Rb}(p, 4n)\), and \(\text{natMo}(p, spall)\)\(^2\) reactions have been suggested to be practical production methods, although heavy-ion induced reactions, such as \(\text{Ge}(^{12}\text{C}, xn)\), are used in the field of nuclear physics. In these reactions, Tarkanyi \textit{et al.}\(^3\) pointed out that at present the most effective method is the spallations. Tarkanyi \textit{et al.}\(^4\) carried out experimental investigations, using high energy \text{He} and \(\alpha\)-particle induced reactions on natural krypton gas.

Recently, some commercial radiopharmaceutic suppliers have used highly enriched \(^{124}\text{Xe}\) gas as the target for production of \(^{123}\text{I}\). As compared with the purchasing cost of this gas, that of enriched \(^{80}\text{Kr}\) gas is very low.

Table 1. List of measured \(^{82}\text{Sr}\) production cross sections.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Particle energy (MeV)</th>
<th>Ref.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{85}\text{Rb}(p, 4n))</td>
<td>32-70</td>
<td>5</td>
<td>99.78%en. (^{85}\text{RbCl})</td>
</tr>
<tr>
<td>(^{90}\text{Zr}(p, 3p6n))</td>
<td>80-86</td>
<td>6</td>
<td>97.7%en. (^{90}\text{ZrO}_{2}, \text{CY})</td>
</tr>
<tr>
<td>(\text{Rb}(p, spall))</td>
<td>800</td>
<td>7</td>
<td>(^{82}\text{Br}, \text{CY})</td>
</tr>
<tr>
<td>(\text{Kr}(\text{He}, xn))</td>
<td>11-33</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-90</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(\text{Kr}(\alpha, xn))</td>
<td>11-33</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-120</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(^{80}\text{Kr}(\text{He}, n))</td>
<td>25.4</td>
<td>8</td>
<td>70.1%en. (^{82}\text{Kr})</td>
</tr>
<tr>
<td>(^{80}\text{Kr}(\text{He}, 3n))</td>
<td>12-34</td>
<td>9</td>
<td>72.9%en. (^{82}\text{Kr})</td>
</tr>
<tr>
<td>(^{80}\text{Kr}(\text{He}, 4n))</td>
<td>12-34</td>
<td>9</td>
<td>73.1%en. (^{82}\text{Kr})</td>
</tr>
</tbody>
</table>

\(\text{CY} = \text{cumulative yield}\)

Thus, we recommend the use of enriched \(^{80}\text{Kr}\) and the \((\alpha, 2n)\) reaction for the production of \(^{82}\text{Sr}\). This method is most advantageous in considering the size of cyclotron and the radiation protection for workers engaged in the production of radiopharmaceuticals.

No experimental examination has been made of the cross sections of the \(^{80}\text{Kr}(\alpha, 2n)\) reaction. We calculated these cross sections by using a code ALICE/Livermore 82 (see Fig. 1). From these calculations, we expect that the reaction gives a reasonable large yield for \(^{82}\text{Sr}\) production and small one for \(^{83}\text{Sr}\), a main impurity.

![Fig. 1. Calculated excitation functions \(^{80}\text{Kr}(\alpha, 2n)\), \(^{82}\text{Sr}\) and \(^{82}\text{Kr}(\alpha, n)\), \(^{83}\text{Sr}\).](image)

References
IV-4. Nuclear Reaction Data for the Production of 111In

A. Hashizume, Y. Tendow, K. Kitao, and Y. Ohkubo

Because of the decay characteristics ($t_{1/2} = 2.83$ d, EC, $E_Y = 171$ keV (90%) and 245 keV (94%)), 111In is suitable in studying slow in vivo process. This radionuclide is very useful for locating and imaging certain tumours, visualization of the lymphatic system. Among many kinds of combinations of targets and incident particles, the common reactions utilized so far for the production of 111In are tabulated in Table 1. In the column 3, the maximum cross sections were shown and in the column 4 incident particle energies which give the maximum cross sections.

111Cd(p, n)111In reaction: Five authors reported on the cross sections of the 111Cd(p, n)111In reaction. As shown in Fig. 1, from the threshold to 7 MeV incident energy, there is an agreement between Blaser's results and with Otozai's. However, a discrepancy is found between the results obtained by Blaser and by Otozai and those by Wing and by Skakun. A precaution for beam contamination was reported by Wing, but not by others. It is difficult therefore to judge which correct is. By using an Alice code, calculation was made by changing initial exciton numbers. As shown in Fig. 1, 2n+2p excitons give the best agreement on cross sections above 18MeV of incident proton energies.

109Ag(α, 2n)111In reaction: This reaction was studied by Bleuler. There are reasonable agreement between the cross sections measured by Fukushima and by Chaubey in the incident energy region of 10 to about 20 MeV. However, in the 21 to 24 MeV region, Chaubey's data are about 25% lower than Fukushima's. Bleuler's results obtained from 14 to 18 MeV agree with those of Fukushima. Chaubey reported that a preequilibrium studied by geometry-dependent hybrid model with 2n + 2p + Oh gives a good fit to the experimental data.

Other reactions: Yields obtained by the 110Cd(d, n)111In, 111Cd(d, 2n)111In and 109Ag(3He, n)111In reactions were reported. However, we have found so far no cross section measurements on these reactions.

References

Table 1. Cross sections for 111In production.

<table>
<thead>
<tr>
<th>Type of reaction</th>
<th>Q value (MeV)</th>
<th>Maximum Energy (MeV)</th>
<th>Energy range studied (MeV)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>111Cd(p, n)111In</td>
<td>1.62</td>
<td>700</td>
<td>12</td>
<td>3-21</td>
</tr>
<tr>
<td>111Cd(p, 2n)111In</td>
<td>11.02</td>
<td>1,000</td>
<td>21</td>
<td>9-37</td>
</tr>
<tr>
<td>109Ag(3He, n)111In</td>
<td>14.03</td>
<td>1,000</td>
<td>25</td>
<td>14-38</td>
</tr>
</tbody>
</table>
IV-5. Cross Sections Calculated by an ALICE Code in the $A=50-60$ Region

A. Hashizume, Y. Tendow, and K. Kitao

In order to know the applicability of a hybrid model to the calculations of cross sections induced by charged particle reactions, an Alice Livermore code was tested in the mass region $A=50-67$, and the results were compared with experiment. The purposes of these calculations are to obtain the best combination of parameters to reproduce experimental results and to know the limit of its reproducibilities. Calculations were performed with a FACOM M780 computer. In this mass region, several attempts have been made to analyze excitation functions; however, it was sometimes difficult to fit calculated results to experiment.

In this study, p, d, 3He, and α-particles were chosen as incident ions. The calculations of cross sections were made for 41 targets in the energy region up to 100MeV of incident particles. Experimental data were collected from the literature. When data were given only by figures, we got numerical data from the figures with an aid of a digitizer.

In the reactions which follow complete compound reactions, absolute peak values and peak widths can reproduce the experimental results fairly well for p or α-particle incident. However, in the energy region where a pre-compound process is dominant, the results of calculation depend sensitively on the number of excitons, and can hardly reproduce the absolute value and slope of curves of experimental results. It should be pointed out that the energy spectra of emission particles are needed to decide the number of initial excitons. In Fig. 1, the results of calculations on the 60Cu(p, n)60Zn reactions are shown. Experimental data are taken from Ref. 1. The results of 54Fe(p, p2n)52Fe and 65Cu(α, 2n)67Ga are shown in Fig. 2 and 3, respectively.

For d- and 3He-induced reactions, it is difficult to deduce general conclusion because less experimental results have been reported than those for p or α-particle induced reactions. In addition, large discrepancies between calculation and experiment were observed in some reactions. Calculations for parameter search are still performing for these reactions.

References

V. DEVELOPMENT OF ACCELERATOR FACILITIES

1. Ion Accelerator Development

1. Test-Bench Performance of ECR Ion Source (NEOMAFIOS)

An ECR (Electron Cyclotron Resonance) ion source NEOMAFIOS developed by the ion source development group of C.E.N.-G. (Centre d'Etudes Nucleaires de Grenoble) in France has the features of a small size and low power consumption owing to the permanent magnets (FeNdB) used for both the hexapole field and mirror field. We purchased a set of NEOMAFIOS to replace the PIG source presently used in RILAC because the narrow space of RILAC and the limited power supply capacity of the ion source site. Figure 1 shows the schematic drawing of the source and Table 1 shows its main parameters.

The performance test of NEOMAFIOS was carried out from March to July 1990 on a test bench capable of analyzing charge-states. Operations with 8 gaseous and 25 solid elements were tried and optimum operational parameters were searched for several ion species. In a usual operation, an RF power of less than 400 W is enough and the operating pressure is $3 \times 10^{-7} - 1 \times 10^{-6}$ Torr at the extraction electrode. Ion charge-state spectra were measured with one to several sets of operational parameters for each element. Figure 2 shows a typical spectrum obtained with Pb.

Table 1. Main parameters of the source.

<table>
<thead>
<tr>
<th>Magnetic parameters</th>
<th>Microwave parameters</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material of permanent magnet</td>
<td>RF frequency</td>
<td>Chamber diameter</td>
</tr>
<tr>
<td>Magnetic field on axis</td>
<td>RF power injection</td>
<td>66 mm</td>
</tr>
<tr>
<td>Electric power</td>
<td>RF power</td>
<td>Chamber length</td>
</tr>
<tr>
<td></td>
<td>0 kW</td>
<td>148 mm</td>
</tr>
<tr>
<td></td>
<td>1.7 kW max</td>
<td>Ion outlet bore</td>
</tr>
<tr>
<td></td>
<td>Final tube (Klystron)</td>
<td>10 mm</td>
</tr>
<tr>
<td></td>
<td>Electric power consumption</td>
<td>Extraction electrode bore</td>
</tr>
<tr>
<td></td>
<td>5 kVA</td>
<td>16 mm</td>
</tr>
<tr>
<td></td>
<td>Vacuum window</td>
<td>Extraction gap</td>
</tr>
<tr>
<td></td>
<td>Al$_2$O$_3$</td>
<td>45 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extraction voltage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 kV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyzing magnet current (A)</th>
<th>Source output (μA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Pb</td>
</tr>
</tbody>
</table>

Fig. 1. Schematic drawing of the source.

Fig. 2. Charge-state spectrum with Pb optimized at an 18+ peak. RF power, 270 W; Beam extraction voltage, 10 kV; Mixing gas, O$_2$.

* Sumijyu Accelerator Service, Ltd.
NEOMAFIOS showed very steady operation in ion production of gaseous elements, and the plasma chamber scarcely needs cleaning. Three methods were examined to insert a solid material into the plasma: a pure metal rod (1-3 mm in diameter and 50 mm in length), an oxide ceramics rod (3-5.7 mm in diameter and 40 mm in length), and a power contained in a small tantalum crucible (4 mm in diameter, 0.3 mm in thickness, and 50 mm in length). Ions of most solid elements can be produced with these methods. For ferromagnetic materials such as Fe, Ni, and Co, the samples were made of two twisted wires (each 1 mm in diameter) in order to overcome bending moment due to the magnetic force. Results of the test are summarized in Table 2.

The ECR ion source took 6–12 hours to restore steady operation once the plasma chamber was exposed to the atmosphere. We will have to consider about it in beam time arrangements when we use such ion species that require cleaning of the plasma chamber. The RILAC beam service with the ECR ion source will start in the middle of January 1991.

References
V-1-2. Improvements of the RIKEN Ring Cyclotron Control System

M. Kase, I. Yokoyama, M. Nagase, and Y. Yano

In the past year, the control system (using a MELCOM 350/60) of RIKEN Ring Cyclotron was improved mainly in its man-machine interface. Two sets of new colour graphic displays (Mitsubishi M4328N) were added into an operational console desk. Compared to old ones (M4328), they draw a brighter picture rapidly with higher resolution, displaying mainly a graphic data of beam measurements such as beam turn patterns inside the cyclotron, beam profiles, and trends of beam intensities. A colour hard copy is available for new displays.

A rotary encoder system was introduced as a new input device replacing partly existing touch panels. It promises a real-time-like control of a quadrupole magnet, for example, when a beam spot on a target point is adjusted finely. Three sets of encoders were installed in a small box with a light cable, and they can be used anywhere around the console desk.

Softwares were also improved and adapted to the new hardwares. Programs "TPMAGY" and "RECO00" were newly developed for controlling magnet power supplies with both a touch panel and a rotary encoder. In "TPMAGY", an operator can search easily and quickly a magnet to be controlled out of about 700 elements with the aid of other program for beam diagnosis.

Figure 1 shows an example of the flow of programs communicating with each other via memory on GCA (Grobal Common Area). "TPMAGY" gets information about the position where the last measurement with a beam profile monitor was done by other program "TPPF", that is, where an operator should turn his intention. "TPMAGY" then can make a selection list, on a touch panel screen, of up-to-date magnets arranged from this position toward the upstream beam line, referring to the data base on GCA. Three magnets are selected by a touch action, and their data are stored on GCA. When an operator actuates one of rotary encoders, "RECO00", started by "TPMAGY", feels it, and makes a command to change a current of the corresponding magnet. Since "RECO00" has no output function except for storing the result of its action one by one on GCA, it can make a quick response to rotary encoder. At the end of access by "RECO00", "TPPF" starts, by itself, the next measurement at the same position and displays the result of the access on a graphic screen. This correlative program flow makes the operation simpler and faster.

The data written by these programs on GCA are transferred periodically to other computer (CPU#3) and stored in its logging file. These stored data would be useful in the future operations.

References
V-1-3. Development of a LNA Laser for Polarized 3He Ion Source of Injector AVF Cyclotron

A. Minoh, T. Fujisawa, and Y. Taniguchi

For the polarized 3He ion source of the Injector AVF Cyclotron, we studied a 1083 nm laser of lanthanum neodymium hexaaluminate (LNA) excited with an Ar laser (514 nm). Its fluorescence spectrum exhibits two peaks, and the yield of 1054 nm light is higher than that of 1082 nm. The laser oscillation at the 1054 nm should be suppressed in a cavity to obtain the 1083 nm laser oscillation.

In order to study the condition of the laser oscillation at 1083 nm, a simple laser cavity is set up as shown in Fig. 1. The crystal c-axis is set in the longitudinal direction and a lens L1 whose focal length of 4 cm focuses an Ar laser beam on the LNA crystal where the 1083 nm laser radiation is focused with mirrors M1 and M2. The mirror M1 reflects 100% of the 1083 nm light and 90% of the 1054 nm suppressing the undesirable 1054 nm oscillation, and the reflectivity of M2 is 98% for both lights. All the mirrors and lenses are antireflection coated. We investigate two laser rods of single crystals of 5 mm in diameter and 20 mm in length; in one (LNA10) made by Union Carbide Co. Ltd., a Nd concentration is 10 atomic percent and in the other (LNA15) made by Synthetic Crystal Product Co. Ltd. 15%. The crystal ends are polished perpendicular to the cylinder axis and antireflection coated. The LNA10 crystal absorbs 70% of incident light and the LNA15 80%.

Figure 2 shows spectra of fluorescence of Nd$^{3+}$ in LNA and laser oscillation. The width of the peak of laser oscillation is estimated as 100GHz. The laser must be tuned in the atomic transition line of 3He(2S \rightarrow 2P) whose Doppler width is 2GHz. A 0.1mm air-gap etalon is set in the cavity to reduce the width of the laser oscillation.

* This method to suppress of an desirable oscillation is proposed by one of the authors (A. Minoh).

![Fig. 1. Test cavity used for the LNA laser pumped by an Ar$^+$ laser.](image)

![Fig. 2. Fluorescence spectrum of Nd$^{3+}$ in LNA and laser oscillation.](image)

![Fig. 3. Experimental setup to measure a spectral width of laser oscillation.](image)

The width of the spectrum is measured with a Fabry-Perot interferometer as shown in Fig. 3. The width is reduced to 30 GHz and the output power is larger than a half of the power without the air-gap etalon. In order to reduce the width of the laser spectrum to 2GHz, we will add an air-gap etalon whose gap is controlled by an external signal because the laser frequency must be automatically tuned in the transition frequency of 3He.

Figure 4 shows the output power of 1083 nm laser oscillation as a function of the excitation power. The power conversion efficiency of LNA15 is 4% at a pumping power of 1.4W and that of LNA10 about 3%. The efficiencies are about a half of that obtained by Scheerer. The efficiency is strongly depend on the reflectivity of M2 (98%). We will test other mirrors whose reflectivity are less than 98% in order to get higher output power.
Fig. 4. Output power of the LNA laser as a function of the pumping power.

References
In order to promote fundamental studies as well as applications of scientific research using unstable elementary particle called muons (μ^+, μ^-; with life time of 2.2 μs), RIKEN has now started an international collaboration program with the Rutherford Appleton Laboratory (RAL), the largest science research laboratory in U.K. The agreement has been signed between RIKEN and SERC in September 29, 1990.

The goal of the research program is to develop various types of muon science, whose prominent examples are as follows: (a) muon catalyzed fusion, fundamental understandings and application toward energy resources; (b) non-destructive element analysis, application to various sciences including medical diagnostics; (c) muon spin rotation, relaxation and resonance, application to characterizations of new materials including high T_c superconductors.

In order to realize these muon science experiments, RIKEN has already started to construct a new muon generating beam channel as well as experimental facilities at the accelerator laboratory called ISIS at RAL which contains a proton synchrotron producing the strongest pulsed protons in the world. The beam channel contains a large solid-angle pion collector, a large superconducting solenoid where pion decays into muon under a strong confinement field and an advanced muon collector with an electrostatic separator removing background particles and an rf magnetic kicker to feed muon pulses into two experimental ports simultaneously. The construction of the beam channel will be carried out in the period from 1990 to 1993, followed by the construction of basic experimental instruments such as a set-up for muon catalyzed fusion experiment. For all of these purposes, the Japanese government approved for RIKEN the first 40% of the total budget of 1.7 billion yen for the fisical 1990–1992. The proposed layout is shown in Fig. 1.

![Fig. 1. Proposed layout for the RIKEN-RAL muon beam channel.](image-url)
V-2. Synchrotron Radiation Source Development

1. Status of the Synchrotron Radiation Project

H. Kamitsubo

The design study of the 8 GeV synchrotron radiation source, which was named SPring-8 last year, had been pursued in the past two years and the lattice structure of the 8 GeV storage ring was almost established. R&D work on vacuum chambers, magnets, and RF cavities have been performed. On the other hand the design study of an injector linac and a synchrotron has been done by the group of the Japan Atomic Energy Research Institute (JAERI).

The injector consists of two linac and a synchrotron. A 250 MeV linac is used to produce positrons which are accelerated up to 1 GeV by the main linac. The first acceleration tube of the main linac has a large acceptance for positrons. The synchrotron, which accelerates electrons (positrons) from 1 GeV to 8 GeV, is of FODO type and has 40 cells. Main parameters of the injector are given in Table 1.

<table>
<thead>
<tr>
<th>Injector Linacs</th>
<th>Synchrotron</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF frequency</td>
<td>Injection Energy 1 GeV</td>
</tr>
<tr>
<td>Klystron Power</td>
<td>Maximum Energy 8 GeV</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>Repetition Rate 1 Hz</td>
</tr>
<tr>
<td>Main Linac</td>
<td>Radiation Loss per Turn 11.5 MeV</td>
</tr>
<tr>
<td>Injection Energy</td>
<td>Nominal Tune (νx/νy) 11.73/8.78</td>
</tr>
<tr>
<td>Final Energy</td>
<td>Beam Emittance 195 mrad</td>
</tr>
<tr>
<td>(e⁻)</td>
<td>Chromaticity (kα/kβ) -15.3/-12.7</td>
</tr>
<tr>
<td>Max. Current</td>
<td>Momentum Compaction 9.51x10⁻³</td>
</tr>
<tr>
<td>(e⁻)</td>
<td>Bending Magnet</td>
</tr>
<tr>
<td>Emittance</td>
<td>Energy Loss (GeV/8GeV) 0.006/0.85 T</td>
</tr>
<tr>
<td>Energy Spread</td>
<td>Bending Radius 31.4 m</td>
</tr>
<tr>
<td>Positron Linac</td>
<td>Damping Time 937.938/469 μsec</td>
</tr>
<tr>
<td>Electron Energy</td>
<td>(1GeV, νx/νy) 10 μsec</td>
</tr>
<tr>
<td>Max. Current (e⁺)</td>
<td>(8GeV, νx/νy) 1.8/1.8/0.9 μsec</td>
</tr>
<tr>
<td>Conversion Target</td>
<td>RF System</td>
</tr>
<tr>
<td>Target Thickness</td>
<td>Frequency 508.58 MHz</td>
</tr>
<tr>
<td>Positron Energy</td>
<td>Harmonic Number 672</td>
</tr>
<tr>
<td>Positron Current</td>
<td>Voltage(8GeV) 17.1 MV</td>
</tr>
<tr>
<td></td>
<td>Quantum Lifetime > 10 s</td>
</tr>
</tbody>
</table>

The storage ring is designed to have 40 straight sections of 6.5 m long and 4 long straight sections of 30 m long. The design procedure of this ring is as follows: Firstly we designed a low emittance ring which has a 48-fold symmetric structure and consists of 48 cells. The unit cell is of a Chasman-Green type and consists of two bending magnets, ten quadrupoles, and seven sextupoles. The straight section is 6.5 m in length and the circumference of the ring is 1436 m. As we are thinking to operate the ring in a so-called hybrid mode, that is, in an operating mode that β functions have high and low values alternately at the neighbouring straight sections. We could find a very low emittance lattice structure having 24 superperiod.

We then introduced 4 straight cells by removing two bending magnets in the unit cell. The beam-dynamical properties of this ring are essentially the same as those of the original one. The emittance of this ring is a little higher than the original one because the total number of bending magnets decreases. The parameters of this ring is given in Table 2.

Finally we rearrange quadrupoles and sextupoles in a straight section and convert it to a long straight section. We have not yet optimized the final procedure, but the preliminary result of the calculations shows that a ring having a large dynamic aperture and low emittance can be realized.

Prototypes of the bending, quadrupole, and sextupole magnets were made and their field distributions were measured. By taking the results into account, the final design of these magnets were finished. In R&D work we designed a combined-type sextupole magnet which can produce horizontal and vertical fields independently for small correction of the beam.
Table 2. Major Parameters of the Storage Ring.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>8 GeV</td>
</tr>
<tr>
<td>Current (multi-bunch)</td>
<td>100 mA</td>
</tr>
<tr>
<td>Current (single bunch)</td>
<td>5 mA</td>
</tr>
<tr>
<td>Circumference</td>
<td>1435.95 m</td>
</tr>
<tr>
<td>Dipole magnet field</td>
<td>0.665 T</td>
</tr>
<tr>
<td>Bending radius</td>
<td>40.098 m</td>
</tr>
<tr>
<td>Number of cells</td>
<td>48 (44+4)</td>
</tr>
<tr>
<td>Straight section length</td>
<td>6.4 m</td>
</tr>
<tr>
<td>Natural emittance</td>
<td>6.89 nmrad</td>
</tr>
<tr>
<td>Critical photon energy</td>
<td>28.32 keV</td>
</tr>
<tr>
<td>Tune</td>
<td>51.22</td>
</tr>
<tr>
<td>ν_x</td>
<td>16.16</td>
</tr>
<tr>
<td>ν_y</td>
<td>0.0102</td>
</tr>
<tr>
<td>Momentum compaction</td>
<td>1.49×10^{-4}</td>
</tr>
<tr>
<td>Natural chromaticity</td>
<td>-113.17</td>
</tr>
<tr>
<td>Energy loss in the arc</td>
<td>9.04 MeV/rev</td>
</tr>
<tr>
<td>Energy spread</td>
<td>0.108 %</td>
</tr>
<tr>
<td>Damping time τ_a</td>
<td>8.473 msec</td>
</tr>
<tr>
<td>τ_c</td>
<td>8.481 msec</td>
</tr>
<tr>
<td>τ_e</td>
<td>4.242 msec</td>
</tr>
<tr>
<td>Harmonic number</td>
<td>2436</td>
</tr>
<tr>
<td>RF voltage</td>
<td>17 MV</td>
</tr>
<tr>
<td>RF frequency</td>
<td>508.58 MHz</td>
</tr>
</tbody>
</table>

direction. In the final design, however, we decided to separate the sextupole and dipole magnet to reduce the construction cost.

A cold model of an RF cavity was fabricated and high frequency characteristics were measured. On the basis of the result of the investigation on the cold model, a klystron test facility and two prototypes of the RF cavity are fabricated to perform a high power test. The R&D work on the vacuum chambers is continued.

The site of the SR facility was decided at Harima Science Park City in Hyougo Prefecture and ground preparation started in March. The site will be available for us in 1992. The plan of the campus is shown in Fig. 1. The final design of the storage ring building is under way and its construction will start in the fall of the next year.

The research program at the SPring-8 is discussed in the user organization and JAERI-RIKEN user group. A conceptual design of the front-end part of a beam line is in progress.

The construction of the magnets and the injector linac was authorized and will start this fiscal year.
V-2-2. Design Modification of the Lattice of the SPring-8 Storage Ring

H. Tanaka and M. Hara

Last year, magnet arrangement and specification were finalized in consideration of the spacing of equipment. The terms of them were modified as follows.

1. Each length of quadrupoles and sextupoles was 10–30% shortened.
2. Bending magnet strength was changed from 0.665 T to 0.679 T.
3. All combined type sextupole magnets were divided into correctors and conventional sextupole magnets.

For the new magnet arrangement and specification, the strength of each magnet was optimized again, because above modifications affect beams as the systematic magnetic errors. The optics whose horizontal and vertical tunes are respectively 51.22 and 16.16 was selected as the best one from the viewpoint of beam stability. We show new lattice functions, dynamic aperture, momentum dependence of tunes, and horizontal amplitude dependence of tunes in Figs. 1–4, respectively.

![Fig. 1. Lattice functions of 1/24 ring.](image)

![Fig. 2. Dynamic aperture without errors. Open squares and triangles represent the dynamic aperture for one unit cell and one superperiod (ring), respectively.](image)

![Fig. 3. Momentum dependence of tunes. Open and filled circles represent respectively horizontal and vertical tuneshifts.](image)

![Fig. 4. Amplitude dependence of tunes. Open and filled squares represent horizontal and vertical tuneshifts.](image)

We have also investigated the strength variation of each magnet within the expected operation range to determine the maximum field strength of each magnet. As the operation range, tune space surrounded with $51 < \nu_x < 54$ and $16 < \nu_y < 20$ was determined based on the nmrad-order emittance and the structure resonances arising from the sextupole magnets. Furthermore, nine operation points were selected considering the accidental resonances, and optics was designed in each operation point to minimize nonlinearity and chromaticities. The main parameters of the designed optics and the maximum strength of each magnet are shown in Table 1.
Table 1. Optics parameters.

<table>
<thead>
<tr>
<th>Emittance</th>
<th>HLCl</th>
<th>HLC2</th>
<th>HLC2B</th>
<th>HLC3</th>
<th>HLC4</th>
<th>HLC6</th>
<th>HLC7</th>
<th>HLC9</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tune-X</td>
<td>112.93</td>
<td>115.03</td>
<td>115.65</td>
<td>119.21</td>
<td>116.86</td>
<td>128.32</td>
<td>130.99</td>
<td>134.36</td>
<td>134.36</td>
</tr>
<tr>
<td>Chrom-X</td>
<td>-7.37</td>
<td>7.16</td>
<td>16.16</td>
<td>19.16</td>
<td>20.16</td>
<td>17.16</td>
<td>16.16</td>
<td>16.16</td>
<td>12.16</td>
</tr>
<tr>
<td>Tune-Y</td>
<td>45.17</td>
<td>-40.56</td>
<td>-40.03</td>
<td>-40.78</td>
<td>-36.73</td>
<td>-35.79</td>
<td>-40.67</td>
<td>-36.81</td>
<td>-42.19</td>
</tr>
<tr>
<td>Chrom-Y</td>
<td>37.5</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Quant (1/nm^2)

G1 (0.35m)	0.072	0.063	0.067	0.072	0.072	0.072	0.072	0.072	0.072
G2 (0.35m)	0.3915138	0.3986138	0.3986138	0.4145984	0.43587	0.4488101	0.4488101	0.4527818	0.4527818
Q3 (0.51m)	0.4222091	0.4481372	0.4481372	0.4481372	0.43587	0.4488101	0.4488101	0.4527818	0.4527818
Q4 (0.41m)	0.5345914	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662
Q5 (0.61m)	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981
Q6 (0.51m)	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981
Q7 (0.91m)	0.5117531	0.5610998	0.5610998	0.5610998	0.5610998	0.5610998	0.5610998	0.5610998	0.5610998
Q8 (0.91m)	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981	0.5256981
Q9 (0.51m)	0.5345914	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662
Q10 (0.35m)	0.5345914	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662	0.3484662

Syst. (1/nm^2)

G1 (0.35m)	3.594265	3.892125	3.797812	3.664252	-4.3	3.369342	3.893542	-4.3	3.369342
G2 (0.35m)	3.594265	3.892125	3.797812	3.664252	-4.3	3.369342	3.893542	-4.3	3.369342
Q3 (0.51m)	4.1419007	4.074344	3.959363	4.204125	4.538033	3.380977	4.313678	4.532401	3.947017
Q4 (0.51m)	7.4652048	7.9033777	7.12656	7.4558514	7.3751839	7.2637877	7.8517586	7.7108694	7.2669421
Q5 (0.51m)	4.1419007	4.074344	3.959363	4.204125	4.538033	3.380977	4.313678	4.532401	3.947017
Q6 (0.51m)	4.1419007	4.074344	3.959363	4.204125	4.538033	3.380977	4.313678	4.532401	3.947017
Q7 (0.51m)	4.1419007	4.074344	3.959363	4.204125	4.538033	3.380977	4.313678	4.532401	3.947017
Linear coupling compensation in the storage ring of SPring-8 has been investigated. In previous work,\(^1,2\) we presented a new linear coupling compensation scheme based on a lowest-order perturbation treatment and simulated its effect. To confirm the validity of our approach, we investigated coupling ratio distributions along the ring under four error conditions shown in Table 1, by two methods.\(^3\) One is called an indirect method, in which the coupling ratio is calculated with the maximum amplitudes of betatron oscillations and uncoupled beta functions. The other is called a direct method, in which the coupling ratio is directly calculated from the ratio of phase space areas. If the perturbation treatment is a good approximation, the coupling ratio should be almost constant along the ring, and the results obtained by both methods should be consistent with each other. As a result of this study, we found that the perturbation treatment is not always valid in our ring, and also its validity is strictly limited. Results are summarized below.

1. Linear coupling becomes so strong at error levels above 0.15 mm random rms displacement error (error level 3 in Table 1) and this phenomenon cannot be well described by the perturbation treatment. That is, the coupling ratio much depends on the azimuthal position at these strong error conditions. We show the realistic coupling ratio distributions and those induced by small skew fields, which are well explained by the perturbation treatment, in Figs. 1 and 2, respectively.

2. By a simple compensation scheme with two skew quadrupoles and one observation point, presented in previous study, the strength of linear coupling can be reduced to about one-fourth. But to keep the coupling ratio lower than 10% at every insertion device, the error condition must be under the error level 2, which is severe for the magnet alignment. In Figs. 3 and 4, we show respectively the difference between the distributions calculated by the two methods after the compensation and the realistic coupling ratio distributions. From these
figures, we can see that two skew quadrupoles for the compensation markedly distort the optics above the error level 3.

(3) For such a ring with strong linear coupling, many points for emittance observation and skew magnets should be necessary for sufficient compensation, because one observation point can't represent the whole ring. Furthermore, the coupling ratios can be precisely obtained only by the direct method.

References
V-2-4. Lattice Parameter Distortions at Insertion Devices

H. Tanaka, Y. Ishii,* and M. Hara

From the viewpoint of photon beam characteristics\(^1,2\) and the design of photon beam lines, lattice parameter distortions at insertion devices (IDs) should be reduced. To find the magnitude of the distortions, we calculate the lattice parameters: closed orbit distortion (COD), beta functions, and dispersion functions, at the center of every dispersion free straight section. Momentum and magnetic errors are considered for the calculation.

Table 1(a). Lattice parameter distortions for the high β dispersion-free straight section.

<table>
<thead>
<tr>
<th>COD Displacement (mm)</th>
<th>Beta function Displacement (m)</th>
<th>Dispersion functions Angle (mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum values of 30 rings</td>
<td>Horizontal -0.157 -0.049 43</td>
<td>-0.104 +0.005</td>
</tr>
<tr>
<td></td>
<td>Vertical -0.205 -0.053 25</td>
<td>-0.071 -0.007</td>
</tr>
<tr>
<td>Rms values of 30 rings</td>
<td>Horizontal 0.035 0.008 11.3</td>
<td>0.028 0.0014</td>
</tr>
<tr>
<td></td>
<td>Vertical 0.074 0.014 7.3</td>
<td>0.025 0.0024</td>
</tr>
</tbody>
</table>

Table 1(b). Lattice parameter distortions for the low β dispersion-free straight section.

<table>
<thead>
<tr>
<th>COD Displacement (mm)</th>
<th>Beta function Displacement (m)</th>
<th>Dispersion functions Angle (mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum values of 30 rings</td>
<td>Horizontal -0.626 +0.170 44</td>
<td>+0.024 +0.022</td>
</tr>
<tr>
<td></td>
<td>Vertical +0.356 +0.067 26</td>
<td>+0.049 +0.009</td>
</tr>
<tr>
<td>Rms values of 30 rings</td>
<td>Horizontal 0.058 0.024 7.5</td>
<td>0.007 0.003</td>
</tr>
<tr>
<td></td>
<td>Vertical 0.146 0.024 7.5</td>
<td>0.017 0.003</td>
</tr>
</tbody>
</table>

Table 2. Calculation conditions and results of the increment of beam divergence.

<table>
<thead>
<tr>
<th>Calculation condition</th>
<th>COD Displacement (mm)</th>
<th>Beta function Displacement (m)</th>
<th>Dispersion functions Angle (mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal emittance (mrad)</td>
<td>7×10^{-9}</td>
<td>22.01 (High β)</td>
<td>1.13 (Low β)</td>
</tr>
<tr>
<td>Vertical emittance (mrad)</td>
<td>7×10^{-10}</td>
<td>10.0</td>
<td>4.96 (Low β)</td>
</tr>
<tr>
<td>Horizontal beta function (m)</td>
<td>0.146</td>
<td>0.024 7.5</td>
<td>0.017 0.003</td>
</tr>
</tbody>
</table>

(1) Distortions due to magnetic errors: The magnetic errors used here are 0.2 mm alignment errors, 0.5 mrad rotation errors, and 5×10^{-4} field errors. The field errors only include multipole field errors lower than sextupole. We estimate distortions after a normal COD correction procedure.\(^3,4\) COD is corrected to be about 0.1 mm as a rms value at monitors. A calculation is performed for 30 different rings with a computer code, STAT, which is made of the linear calculation part of RACETRACK\(^5\) and a statistic calculation function. The results are shown in Tables 1(a) and 1(b).

The increment of beam divergence at IDs can be predicted from

\[
\frac{\Delta E_z}{E_z} = \frac{(\eta_1 \Delta P/P)^2}{\beta_z \varepsilon_z}
\]

where, ε, η, β, and $\Delta P/P$ are respectively the emittance, spurious dispersion function, beta function, and momentum spread. Calculation conditions and results are shown in Table 2. We find that the vertical increments of beam divergence are markedly large, about 10% at both straight sections and that some dispersion function corrections in vertical plane are necessary at IDs.

The angular spread of circulating beams broaden an undulator spectrum.\(^1,2\) The spread in the vertical plane, δ, is related to a relative spectrum line width by

\[
\frac{\Delta \lambda}{\lambda} \approx \gamma^2 \delta^2
\]

where, N, γ, β and K are respectively the number of an undulator period, normalized energy by the electron rest mass, normalized velocity by the velocity of light, and field parameter. The line width is inversely proportional to beta, as shown in Fig. 1, because the angular spread is inversely proportional to the square root beta. Thirty percent reduction in the beta values (maximum beta distortion at the high beta straight section) increases the relative line width due to the angular spread by 40%. Since the line width is determined by the angular spread in the SPring-8 storage ring, the beta reduction

* Nuclear Engineering, Tokyo Institute of Technology.
should be recovered at the undulators to suppress the spectrum line width.

On the basis of the results of Table 1(a) and (b), we can estimate a source point deviation. For a displacement and angle error of source point, 1 mm and 0.2 mrad should respectively be considered to design photon beam lines.

(2) Distortions due to the momentum error: Even under an ideal magnetic condition, nonlinear dispersion exists at the dispersion-free straight section. The momentum dependent COD at IDs are shown in Fig. 2. If the momentum spread is increased from 0.1% to 1% owing to the microwave instability at a single bunch operation, the increment of horizontal beam divergence at the high beta straight section reaches about 40%. Therefore, the microwave instability should be sufficiently suppressed at a single bunch operation to keep the beam emittance low.

References
V-2-5. Study of Multipole Field Effects due to Correctors on the Beam Dynamics

H. Tanaka and M. Hara

In the third-generation light source, many quadrupole and sextupole magnets are used to realize low emittance and high beam stability, compared with other kinds of cyclic accelerators. Therefore, it is important for practical design to use a unit cell space, effectively. As an effective space-utilization, there is such an idea as a dipole corrector included in a sextupole magnet. On the other hand, this kind of magnet induces systematic multipole error fields, owing to a pole surface mismatch. In this case, sextupole, decapole, and so on are excited as systematic higher harmonics of a dipole, because the dipole field is generated with a sextupole whose poles are not optimized to a dipole magnetic potential. These error fields excite odd order resonances by first-order of their strengths, which potentially induce unbounded motions. We studied how much these multipole error fields damage beam dynamics.

In Fig. 1 and Table 1, normalized corrector field distributions and strengths of the multipole error fields up to 18-pole are shown. We numerically investigated the systematic multipole error fields’ effects on beam dynamics with particle tracking. To easily treat these systematic multipole error fields, we assumed that magnetic fields were not saturated at every points in poles and yoke within an operation range and used a model that the multipole error fields linearly changed according to the dipole field strength. On the basis of the above model, we added a function of correctors with systematic multipole error fields up to 18-pole to RACETRACK. As a result of numerical investigation, we found systematic multipole error fields’ effects on beam dynamics were not so serious in our ring condition. The results are summarized below.

1. The systematic multipole error fields scarcely affect the COD correction performance. Maximum and rms COD are almost unchanged by these multipole fields.

2. Dynamic aperture is inversely proportional to the strengths of the systematic multipole error fields. It is reduced one-forth by expected multipole error fields and reduced only one-half even by error fields, which is ten times stronger than the expected ones. This one-half reduction is comparable to the effect of random conventional errors. The obtained dynamic aperture is shown in Figs. 2–3.

3. The dynamic aperture with three kinds of errors are shown in Fig. 4, compared with that with only random conventional errors. Combined effects of various errors to the dynamic aperture reduction can’t be found. The dynamic aperture appears to be limited by only random conventional errors mainly working on the beams as linear field errors. This fact shows that the random linear field errors con-

Table 1. Multipole coefficients of a horizontal and vertical corrector included in a sextupole magnet.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Coefficient</th>
<th>Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>a0_0</td>
<td>b0_0</td>
<td>+5.97 x 10^-2</td>
</tr>
<tr>
<td>a2_0</td>
<td>b2_0</td>
<td>-4.75 x 10^-0</td>
</tr>
<tr>
<td>a4_0</td>
<td>b4_0</td>
<td>+4.77 x 10^+3</td>
</tr>
<tr>
<td>a6_0</td>
<td>b6_0</td>
<td>+2.89 x 10^+5</td>
</tr>
<tr>
<td>a8_0</td>
<td>b8_0</td>
<td>-1.08 x 10^+7</td>
</tr>
</tbody>
</table>

Bx = \Sigma a_n sin(n\phi) + \Sigma b_n cos(n\phi)
By = \Sigma a_n cos(n\phi) - \Sigma b_n sin(n\phi)
x = r cos(\theta), y = r sin(\theta)

a_n, b_n [T/m^n]
L_{Mag}(Length of Magnet) = 0.45 m
Br(Magnetic Regidity) = 26.67 T m

As a result of numerical investigation, we found systematic multipole error fields’ effects on beam dynamics were not so serious in our ring condition. The results are summarized below.
Fig. 2. 8-GeV hybrid lattice dynamic aperture with only random conventional errors. The solid line represents the ideal dynamic aperture; the open squares represent the dynamic aperture with the random conventional errors.

Fig. 3. 8-GeV hybrid lattice dynamic aperture with only systematic multipole error fields. The solid line represents the ideal dynamic aperture; the filled squares represent the dynamic aperture with expected error fields. The open squares and triangles represent respectively the dynamic aperture with error fields five and ten times stronger than an expected one.

Fig. 4. 8-GeV hybrid lattice dynamic aperture with a -1% constant momentum error, systematic multipole error fields, and random conventional errors. The solid line represents the ideal dynamic aperture; the open and filled squares represent respectively the dynamic aperture with only random conventional errors and three kinds of errors.

sequently generate nonlinear effects greatly more than the systematic multipole error fields. This phenomenon can be explained as follows. The linear field errors break the periodicity of linear functions. This symmetry breaks of the linear functions much enhance the resonance driving terms by the sextupole magnets, which are almost cancelled out with perfect symmetries of linear functions under an ideal condition.

References
Main light sources in the SPring-8 are insertion devices (IDs) optimized for the storage ring characteristics. The storage ring is designed to have a large number of dispersion-free straight sections for installation of IDs. The target performances of (1) undulator sources are to obtain a high brilliance of 10^{19} (photons/s/mm2/mrad2/0.1%bw) from the first harmonic radiation in the X-ray region from 10 keV to 20 keV, and those of (2) wiggler sources are to obtain a high flux radiation of 10^{14} (photons/s/mrad (horiz.)/0.1%bw) from a multi-pole wiggler (MPW) in the region above 50 keV. We calculated the spectral distributions of on-axis brilliance from typical IDs (undulator and MPW) in the SPring-8.

Table 1. Design parameters of the storage ring for the SPring-8:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron/Positron energy (GeV)</td>
<td>8</td>
</tr>
<tr>
<td>Beam current (multi-bunch) (mA)</td>
<td>100</td>
</tr>
<tr>
<td>Beam current (single-bunch) (mA)</td>
<td>5</td>
</tr>
<tr>
<td>Circumference (m)</td>
<td>1435.95</td>
</tr>
<tr>
<td>Dipole magnetic field (T)</td>
<td>0.679</td>
</tr>
<tr>
<td>Bending radius (m)</td>
<td>39.27</td>
</tr>
<tr>
<td>Number of cells</td>
<td>N_c</td>
</tr>
<tr>
<td>Length of straight section</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>L[m]</td>
</tr>
<tr>
<td>Long</td>
<td>28.1</td>
</tr>
<tr>
<td>Natural emittance (nm·rad)</td>
<td>6.89</td>
</tr>
<tr>
<td>Coupling coefficient (%)</td>
<td>10.0</td>
</tr>
<tr>
<td>Horizontal emittance (nm·rad)</td>
<td>6.264</td>
</tr>
<tr>
<td>Vertical emittance (%)</td>
<td></td>
</tr>
<tr>
<td>Critical photon energy (keV)</td>
<td>28.91</td>
</tr>
<tr>
<td>Energy spread (eV/%)</td>
<td>0.108</td>
</tr>
<tr>
<td>Lorentz factor</td>
<td>7</td>
</tr>
<tr>
<td>Radiation cone of an electron (µrad)</td>
<td>63.87</td>
</tr>
</tbody>
</table>

Design Parameters of the Storage Ring for the SPring-8: The design parameters of the storage ring of the SPring-8 are listed in Table 1. The number of cells are 48, 44 normal cells and 4 straight cells, which are equivalent except for the absence of bending magnets (BMs). The storage ring has 40 normal-length straight sections (6.5 m) and 4 long straight sections (about 30 m) named ‘very long straight section’, each consists of one normal cell and one straight cell. For the 40 normal-length straight sections, 20 straight sections with a high beta function value (high-β) and 20 low one (low-β) appear alternatively. The high-β straight sections are designated for installing undulators because of a small angular divergence and for beam injection elements. On the other side, the low-β ones are for installing MPW and RF-cavities. In the 4 long straight sections, focusing elements (quadrupole and sextupole magnets) are installed for the first stage, and they are capable of installing 4 IDs separated by the focusing elements. The focusing elements will be rearranged to empty the long area of the long straight sections, so that a long ID with a length of about 20 m can be installed.

Since 1 high-β straight section is occupied by the beam injection elements out of 20 high-β ones, other 19 high-β ones are reserved for installing IDs, mainly undulators. On the other side, since 5 low-β ones are occupied by RF-cavities out of 20 low-β ones, the remaining 15 ones are reserved for installing IDs, mainly MPWs. Besides IDs in the straight sections, 23 BMs will be used as light sources. In summary, 23 BMs, 15 low-β normal-length straight sections, and 19 high-β ones will be available for light sources. To our schedule, 10 beam lines (6 IDs and 4 BMs) will be prepared by the commissioning in 1998.

Design Parameters of typical IDs and BM: The betatron function value, electron beam size, and angular divergence at the straight sections for IDs and at the source points of BM are listed in Table 2. The design parameters of a typical MPW and a typical undulator in the SPring-8 are summarized in Table 3 and 4, respectively. The total lengths of IDs are to be about 4.0 m from the normal-length straight section (6.5 m), since the maximum length available for an ID out of a 6.5 m normal length one is 4 m.

Calculated Spectral Distributions of On-axis Brilliance of the SPring-8: The on-axis peak magnetic field and first harmonic photon energy are plotted in Fig. 1 against the undulator gap width. An undulator with a magnetic period length of 3 cm at 8 GeV ring provides the first harmonic radiation that is tunable in the X-ray region from about 16 keV to 20 keV, corresponding to the change in the magnetic gap width from 3.5 cm to 2.0 cm.
Table 2. Electron beam size and the angular divergence.

<table>
<thead>
<tr>
<th>Device type</th>
<th>δ_x [m]</th>
<th>δ_y [m]</th>
<th>σ_x [\mu m]</th>
<th>σ_y [\mu m]</th>
<th>σ_{ϕ_x} [\mu rad]</th>
<th>σ_{ϕ_y} [\mu rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole $^{(1)}$</td>
<td>1.91</td>
<td>26.25</td>
<td>147.81</td>
<td>128.23</td>
<td>70.76</td>
<td>5.00</td>
</tr>
<tr>
<td>MPW $^{(2)}$</td>
<td>1.08</td>
<td>8.65</td>
<td>82.13</td>
<td>73.60</td>
<td>76.27</td>
<td>8.51</td>
</tr>
<tr>
<td>Undulator $^{(3)}$</td>
<td>23.48</td>
<td>10.01</td>
<td>383.49</td>
<td>79.16</td>
<td>16.33</td>
<td>7.91</td>
</tr>
</tbody>
</table>

1) Dipole source is 15 cm apart from the edge.
2) MPW will be installed in the low-β straight section.
3) Undulator will be installed in the high-β straight section.

Table 3. Parameters of a typical MPW.

Magnetic period length λ_0 [m]	0.18
Total length L [m]	3.96
Number of periods N	22
On-axis peak magnetic field B_0 [T]	0.952
Critical photon energy of MPW ε_0 [keV]	40.54(14)0.306
Deflection parameter $K=93.4B_0\lambda_0$ [mi/16]	16.0
First harmonic photon energy on-axis ε_1 [keV]	26.17

Table 4. Parameters of a typical undulator.

Device type	Pure magnet configuration	
Magnetic period length λ_0 [m]	0.03	
Total length L [m]	3.99	
Number of periods N	133	
Magnetic gap width range g [m]	0.02–0.035	
On-axis peak magnetic field range B_0 [T]	0.055–0.265	
Deflection parameter range $K=93.4B_0\lambda_0$ [mi/16]	0.13–0.75	
First harmonic photon energy on-axis range ε_1 [keV]	15.8–20.0	
Nd-Fe-B permanent magnet characteristics		
Residual magnetic flux density B_0 [T]	1.25	
Height of magnet h [m]=	λ_0/2	0.015

Calculated spectral distributions of on-axis brilliance are shown in Fig. 2 as a function of photon energy for MPW listed in Table 3 and BM, and as a function of the K parameter (magnetic gap width) for the undulator listed in Table 4. The spectral distribution of on-axis brilliance calculated as a function of photon energy from the undulator with $K=0.75$ corresponding to a magnetic gap width g of 2.0 cm is also shown in Fig. 2; the calculation was performed by using a program 'URGENT' for generating undulator radiation. In the SPring-8, a brilliance of about 3.7×10^{18} photons/sec/mm2/mrad2/0.1% b.w. will be obtained at a first harmonic photon energy of 15.8 keV with $K=0.75$ by using an undulator whose parameters are listed in Table 4. Brilliances of 3.0×10^{17} and 2.5×10^{16} will be obtained at 3rd and 5th harmonics, respectively. The use of MPW will be more advantageous than that of the undulator in the region above 48 keV, which corresponds to the 3rd harmonic photon energy of the undulator described above.

References
V-2-7. Progress in Magnet System for the SPring-8 Storage Ring

J. Ohnishi, S. Motonaga, and H. Takebe

The SPring-8 storage ring has a 1436 m of circumference, containing 48 unit cells of a Chasman-Green type lattice. One unit cell is composed of 2 dipoles, 10 quadrupoles, 7 sextupoles, and 10 steering magnets. Since the field qualities are required to be stringent to store a low emittance beam in the ring and total number of magnets is very large, we designed and built prototypes of dipoles, quadrupoles, and sextupoles. On the basis of the results of field measurements, we have redesigned the magnets. The points of new designs are as follows.

1) We abandoned a plan that some steering magnets are incorporated with sextupole magnets. The principal reasons are simplification of operation and the reduction of a construction cost.

2) Field strengths of quadrupoles and sextupoles are increased and their lengths are shortened in order to make space for locating steering magnets separated from the sextupole magnets.

3) The bore diameters of quadrupoles and sextupoles are reduced to 85 mm and 92 mm, respectively, to save power dissipation and to increase maximum strengths.

4) Maximum field strengths of quadrupoles and sextupoles are increased to 18 T/m, 450 T/m², respectively. The geometry of iron poles and yokes was designed so that saturation loss is suppressed lower than 5% for quadrupoles and sextupoles at the nominal field strength. On the other hand, the sizes of a uniformed field region are decreased by 4 mm for quadrupoles and 12 mm for sextupoles.

5) The pole width of dipoles is narrowed to 160 mm from 240 mm in order to reduce the weight and the construction cost. Since this induces a sextupole field more strongly, the fields have to be corrected to widen the uniformed region by attaching end shims.

6) Since the yokes of some quadrupoles and sextupoles are interfered with vacuum tubes for extraction of synchrotron radiation from insertion devices or dipole magnets, we designed them with two types of cross-sections.

Table 1 shows newly designed specifications of dipoles, quadrupoles, and sextupoles. Figure 1 shows the cross section of quadrupoles with smaller yokes and the vacuum chamber. Figure 2 shows its gradient distribution calculated with a 2-D code, LINDA. The real integrated fields are expected to be less uniform than the 2-D calculation due to a dodecapole field produced at the end of a magnet core; however, it can be corrected with end shims to restore required uniformity. Figure 3 shows the cross section of the sextupole magnet with smaller yokes. Figure 4 shows a field distribution calculated with LINDA.

We have ordered all the magnets to be located in the ring. The first magnet of each type will be ordered for testing as soon as possible.

Table 1. Parameters for dipole, quadrupole, and sextupole magnets.

<table>
<thead>
<tr>
<th>Family</th>
<th>Number of magnets</th>
<th>Bore diameter (mm)</th>
<th>Effective field length (m)</th>
<th>Magnet length (m)</th>
<th>Magnet weight (Kg)</th>
<th>Field strength, max (T/m)</th>
<th>Magnetomotive force (x10^4 AT)</th>
<th>Turn numbers per pole</th>
<th>Conductor size (mm)</th>
<th>Hollow size (mm)</th>
<th>Current, max (A)</th>
<th>Current density (A/mm²)</th>
<th>Conductor resistance (mΩ/MAG)</th>
<th>Voltage drop, max (V)</th>
<th>Power dissipation (KW)</th>
<th>Cooling circuit (°C)</th>
<th>Water flow (l/min)</th>
<th>Pressure drop (Kg/cm²)</th>
<th>Temperature rise (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dipole</td>
<td>88</td>
<td>96</td>
<td>96</td>
<td>144</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>96</td>
<td>192</td>
</tr>
<tr>
<td>quadrupole</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>192</td>
</tr>
<tr>
<td>sextupole</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>192</td>
</tr>
</tbody>
</table>

Figure 1 shows the cross section of quadrupoles with smaller yokes and the vacuum chamber. Figure 2 shows its gradient distribution calculated with a 2-D code, LINDA. The real integrated fields are expected to be less uniform than the 2-D calculation due to a dodecapole field produced at the end of a magnet core; however, it can be corrected with end shims to restore required uniformity. Figure 3 shows the cross section of the sextupole magnet with smaller yokes. Figure 4 shows a field distribution calculated with LINDA.

We have ordered all the magnets to be located in the ring. The first magnet of each type will be ordered for testing as soon as possible.
Fig. 1. Cross-sectional view of a newly designed quadrupole magnet.

Fig. 2. Field distribution of a quadrupole magnet calculated with a 2-D code LINDA. The Y axis indicates a relative deviation from an ideal quadrupole field at the nominal strength, 18 T/m.

delivered next fall to verify the design. A full-scale manufacturing starts in early 1992.

Fig. 3. Cross-sectional view of a newly designed sextupole magnet.

Fig. 4. Field distribution of a sextupole magnet calculated with a 2-D code LINDA. The Y axis indicates a relative deviation from an ideal sextupole field at the nominal strength, 450 T/m².

References
V-2-S. Magnetic Field Measurements of a Prototype Quadrupole Magnet for the SPring-8 Storage Ring

J. Ohnishi, S. Motonaga, and H. Takebe

The SPring-8 storage ring being designed to be a low emittance machine has a Chasman-Green type Lattice structure with 480 quadrupole magnets. Because the multipole fields of these magnets, produced by the end effect and manufacture imperfection of magnet yokes, cause the reduction in a dynamic aperture, they should be small enough. The tolerance of field gradient uniformity is calculated by tracking simulations as:

\[\frac{\delta \int (dB/dx) \, ds}{\int (dB/dx) \, ds} < 5 \times 10^{-4} \]

(\(| x | < 35 \text{mm}, \ | y | < 15 \text{mm}\))

We constructed a prototype quadrupole magnet and measured the fields to ascertain the design and the production technique. Figure 1 shows a cross section of the prototype quadrupole magnet. It has a core length of 465 mm and a bore diameter of 90 mm. Iron yokes are assembled from four blocks of stacked Si steel plates with a thickness of 0.5 mm. Non-magnetic spacers are put between upper and lower yokes (hatched part in the figure) in order to investigate the effect of symmetry reduction due to cutting magnetic circuits, because some quadrupole magnets have little space for return yokes at this parts through which a synchrotron radiation port goes.

The magnetic fields of the prototype quadrupole were measured with an instrument called "twin flip coils". Figure 2 shows its sensing part in which two coils for fields measuring are fixed. One coil is wound 200 turns on a bobbin with a diameter of 5 mm. This block is supported with a pipe of 1 m long and is flipped in about 0.7 seconds by a stepping motor. The magnetic field and the gradient were measured by integrating output voltages from two coils induced for flipping with a high precision voltmeter (HP3458A) and fields mapping was done by carrying twin coils on a moving table.

Figure 3 shows the transverse distributions of field gradients on the median plane at the centre of the magnet. This measurement and a 2-D LINDA calculation agree within 2×10^{-3}. Figure 4 shows the transverse distributions of integrated gradients calculated by summing up mapped data. The integrated gradients decrease with distance from the center by a dodecapole field produced at the end part, and do not satisfy the
required uniformity within the region. This results are not satisfied with the requirement as already indicated. However, the field distribution can be corrected by attaching end shims as the distributions change little for exiting levels. On the other hand, it is found that an octupole field induced due to cutting magnetic circuits is small enough.

Recently we have finished redesigning\(^2\) and now ordered all the magnets to be located in the ring.

References
2) J. Ohnishi, S. Motonaga, and H. Takebe: This Report, p. 151.
V-2-9. Magnetic Field Measurements of a Prototype Dipole Magnet for the SPring-8 Storage Ring

J. Ohnishi, S. Motonaga, and H. Takebe

The lattice of the SPring-8 storage ring contains 88 dipole magnets. Deviation of field strengths in each dipole causes a closed orbit distortion and ununiformity of field distribution, which signify existence of multipole fields, raises reduction of dynamic aperture. The tolerance of field uniformity is calculated by tracking simulations as

$$\frac{\delta \int |Bds|}{\int |Bds|} < 5 \times 10^{-4}$$

($$|x| < 29 \text{ mm}, \ |y| < 15 \text{ mm}$$)

We constructed a prototype magnet for verification of the design and development of a high-accuracy production technique. Figure 1 shows a cross section of the prototype dipole magnet, which has a rectangular configuration and 3.08 m total length including coils. Its iron yoke is stacked from punched Si steel plates of 0.5 mm in thickness.

Magnetic fields of the prototype were measured with a hall probe (SIEMENCE SBV604), which is fixed in a copper block whose temperature is stabilized within ±0.1°C. Calibration is made by a NMR probe and field strengths are calculated in 7th polynomial of output voltage. The field mapped data are taken by carrying a hall probe on a moving table (4 m × 0.2 m × 0.2 m) controlled with a personal computer through a GP-IB bus.

Figure 2 shows transverse field distributions on the median plane for some longitudinal positions. Distributions measured are in good agreement with a calculation using LINDA. The difference in distributions in the z position, produced by geometrical gap error, is small enough to affect integrated fields. Figure 3 shows a transverse distribution of integrated fields on the median plane. Data were taken at intervals of 20 mm in the longitudinal direction and integrated fields were calculated by summing up mapped data. A sextupole field due to an effect of edge fields is induced fairly strongly as shown in the figure. An influence of the field distributions to beam is being investigated in detail.

In practical magnets, a pole width is narrowed to be 160 mm from 240 mm in order to reduce the cost. As a sextupole field is strengthened in such a case, we shall correct edge fields with end shims.

Recently we have finished design modification and ordered all magnets to be located in the ring.

References
2) J. Ohnishi, S. Motonaga, and H. Takebe: This Report, p. 151.
Fundamental design for an SR magnet power supply system (PS) was achieved and reported already.\(^1\) Lattice parameters are slightly changed and the magnet design are modified. The maximum currents and the PS arrangement are changed. Tables 1 - 4 show magnet types, PS maximum currents and the PS arrangement are changed. Tables 1 - 4 show magnet types, PS names, maximum currents, cable resistances and lengths, power consumptions, PS cubicle DAC lengths, power consumptions, PS cubicle DAC numbers, Divided cubicle numbers, DAC numbers for eight types of Q-magnets (Q-I, -3, -4, -5, -6, -7, -8, -10) are decreased to two from four, though the maximum voltages are less than 600 V. The Q magnets in the long straight sections have auxiliary power supply units in order to adjust the current in a range of few percent (instead of the bypass control circuits). For the correction of beam orbit distortion, effected by an insertion device (ID), Q1-3 and Q8-10, beside ID, have also auxiliary power supply units (1 - 4 %).

A cabling route between the magnet and PS was decided. Cables for large current magnets (B, Q, and Sx) are led along the upper cable rack on the SR machine cave as shown in Fig. 1. Other cables for steering (correction) magnets and Q's auxiliary PS units are led on the outer rack. The total cable lengths of B, Q, and Sx magnets are 3,1, 2.3, and 4.2 km, respectively. The ratio of the cable length inside the machine cave to the total length is 33 %. An average length of steering magnet cables are about 506 m.

The total number of the magnet parameters, which correspond to the DAC numbers, is 1,088. In order to reduce the number of the VME chasis, PS cabinets, must be consists of multiple PS units. Thirty-six steering magnet PS units are enclosed and controlled by one PS system. And twelve auxiliary PS units for the Q-magnets are similar system (see Table 2A and Table 4). In
H. Takebe et al.

Fig. 2. Block diagram of the power supply system. A VME controller and DAC control interfaces are investigated.

order to reduce the manufacturing cost for the PS interface, a control and an interface system are investigated. Figure 2 shows control diagrams of the PS. High powered PS's (B, Q, Sx) are controlled by a floated DAC's through 16 bit isolators (photo-couplers) as seen in Fig. 2-1. Other PS systems (Co-PS, St-PS) are controlled by an analog reference voltage given by a 12-14 bit VME DAC module (see Fig. 2-2) or a VME remote I/O card.

References
On injection of a beam, a bump orbit is formed around the injection section; the orbit is parallel to the reference orbit and has an amplitude of 13.34 mm. The bump orbit is formed by four bump magnets installed at the positions shown in Fig. 1. Two of the four are installed in the both ends of the injection section (BP2, BP3) and the other two are beside bending magnets (BP1, BP4).

The magnets are excited in two operation patterns shown in Fig. 2. In a 1-Hz mode the magnets are energized once a second, and in a 60-Hz mode 8 times a second with repetitions of 60 Hz. Each pulse has a trapezoid form with a 4 μs in width, a 1 μs rise time, and a 2 μs flat top.

To reduce an eddy current, the magnet core is made of ferrite and the vacuum chamber is made of ceramic.

Cross sectional views and main parameters of...
Table 1. Main parameters of bump magnets.

<table>
<thead>
<tr>
<th></th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Kick Angle (mrad)</td>
<td>2.093</td>
<td>0.547</td>
<td>0.547</td>
<td>2.093</td>
</tr>
<tr>
<td>Core Length (mm)</td>
<td>300</td>
<td>200</td>
<td>200</td>
<td>350</td>
</tr>
<tr>
<td>Effective Length (mm)</td>
<td>285</td>
<td>190</td>
<td>190</td>
<td>335</td>
</tr>
<tr>
<td>Peak Field (T)</td>
<td>0.196</td>
<td>0.077</td>
<td>0.077</td>
<td>0.167</td>
</tr>
<tr>
<td>Number of Turns</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Inductance (μH)</td>
<td>2.5</td>
<td>0.42</td>
<td>0.42</td>
<td>4.1</td>
</tr>
<tr>
<td>Peak Current (A)</td>
<td>4680</td>
<td>3670</td>
<td>3670</td>
<td>3980</td>
</tr>
<tr>
<td>Pulse Width (μs)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Rise Time (μs)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Flat Top (μs)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

The bump magnets are shown in Fig. 3 and Table 1, respectively. The magnets BP1, BP2, and BP3 are of a window-frame type. The magnet BP4 is installed upstream of a crotch, so the vacuum chamber of BP4 has a slot through which a photon beam comes; the cross section of BP4 is C-shaped.
V-2-12. Measurement of a 508 MHz Model Coupler for the SPring-8 Storage Ring

K. Inoue, Y. Kawashima, T. Nakamura, and M. Hara

In the SPring-8 storage ring, eight 508.58 MHz cavities are located in each of four 6.5-m straight sections with low-betatron functions. The RF power generated by a CW klystron is fed to the eight single-cell cavities through input couplers. Thus a total of 32 couplers are needed during operation.

The input coupler consists of an adaptor from a waveguide to a coaxial line, an RF window for vacuum seal, and a loop antenna. We decided following design policies of the input couplers for the SPring-8 storage ring.

1) A total of voltage standing wave ratio is within 1.05.
2) A multipactoring discharge on the RF window is reduced as low as possible.

According to these policies, we have fabricated a model coupler shown in Fig. 1 to study its RF characteristics. A schematic cross section of the model coupler is shown in Fig. 2. It includes a WR1500 rectangular waveguide, an adaptor from the waveguide to a WX152D coaxial line, a cylindrical RF window, and a loop antenna. We have adopted a cylindrical RF window, 152 mm in diameter, 193 mm long, 5 mm thick, made of 95% alumina ceramics, which is successfully used for KEK TRISTAN APS cavities operating at 508 MHz, and located it at the transition from the waveguide to the coaxial line. The end plates of the rectangular waveguide and the coaxial line are movable. The direction of the loop antenna was adjusted by rotating the coaxial line. RF characteristics were measured by a reflection and transmission method with a network analyzer. Figure 3 shows a preliminary result of the resonance characteristics of the model cavity when the model coupler is...
mounted on a coupler port.

We are planning to measure its RF characteristics in detail and carry out high power tests using a 1-MW klystron3.

References
V-2-13. Measurement of a 508 MHz Model Cavity for the SPring-8 Storage Ring

K. Inoue, T. Kusaka,* Y. Kawashima, T. Nakamura, and M. Hara

In the SPring-8 storage ring, it is necessary to reduce the intrinsic higher-order mode impedances of cavities. We designed a spherically shaped cavity.1)

A model cavity was fabricated to examine its RF characteristics. Cross section of the model cavity is shown in Fig. 1. The resonant frequency in a TM010 mode was designed to be 508.58 MHz in the model cavity. Because the resonant frequency change due to an input coupler port was calculated to be −1.48 MHz, the resonant frequency of the axially-symmetric structure was designed to be 510.06 MHz. The equatorial radius of the model cavity was designed to be 254.7 mm, and the resonant frequency change corresponding to a machining error of ±0.1 mm was ±0.217 MHz from SUPERFISH2) calculations. The resonant frequency in the air was calculated to be 509.924 ± 0.217 MHz, because the model cavity is tested in the atmosphere. The fabrication process of the model cavity was divided into two steps as follows, and RF characteristics were measured in each process.

In the first step, the model cavity machined out of 5052 aluminum alloy has four φ22 mm holes for measuring probes. Resonant frequencies and Q-values were measured by a reflection method with a network analyzer. Twenty resonant modes were observed below 1.5 GHz. The resonant frequency in the TM010 mode was 509.965 MHz and agreed well with a calculated value. The Q-value of the TM010 mode was 23580, 84% of the calculated value. The electric and magnetic field distributions for intrinsic higher-order modes were measured by a perturbation method.3,4) A metal sphere, a teflon sphere, a metal disk, and a metal needle were used as perturbing objects. The results are shown in Fig. 2 and agree well with MAX3D5) calculations. The geometrical factor R/Q (R: shunt impedance) also agrees well with calculated values as shown in Table 1.

Table 1. Comparison of R/Q values measured in several resonant modes with calculation.

<table>
<thead>
<tr>
<th>Mode</th>
<th>R/Q (Ω or Ω/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured</td>
</tr>
<tr>
<td>TM010</td>
<td>160.026</td>
</tr>
<tr>
<td>TE111</td>
<td>40.392</td>
</tr>
<tr>
<td>TM110</td>
<td>260.464</td>
</tr>
<tr>
<td>TM011</td>
<td>67.191</td>
</tr>
<tr>
<td>TM111</td>
<td>290.557</td>
</tr>
</tbody>
</table>

In the second step, additional four ports were machined in the model cavity. These ports were prepared for an input coupler, two frequency tuners, and a damping coupler which suppresses high-order modes. The Q-value of the TM010 mode at a frequency of 508.58 MHz with an input coupler and three frequency tuners was 21400, which was 76.5% of a calculated value.

We are planning to fabricate a prototype cavity and carry out high power tests using a 1-MW klystron.6)

References

* Kobe Steel, Ltd.
Fig. 2. RF characteristics measured with the model cavity with an axially-symmetric structure.

V-2.14. Design of the Prototype Cavity for the SPring-8 Storage Ring

K. Inoue, Y. Kawashima, T. Nakamura, and M. Hara

Single-cell cavities consisting of 32 pieces with a frequency of 508.58 MHz are installed on the straight lines of 6.5 m in length in the SPring-8 storage ring. We have made a cold model cavity and measured its RF properties. Results are consistent well with calculation and confirmed to be well fitted to the RF feature expected. Furthermore, to examine high power RF, we newly designed a prototype cavity. The design principles are listed below.

1) Two plungers for a frequency tuner are mounted opposite to each other to suppress the symmetry breaking for the distribution of an electro-magnetic field in the cavity as small as possible. Their installed lengths from the inside surface of the cavity is decided to be 10 mm, and one of them is movable and the other is fixed.

2) A coupling coefficient for an input coupler should be 1 because the prototype cavity has no beam loading.

3) Under above two conditions, the diameter at the equator of the cavity is 510.2 mm, corresponding to a resonant frequency of 508.58 MHz.

4) Even if a shift from the resonant frequency happens for thermal deformation due to the energy loss on the surface of the cavity estimated as 100 kW, a frequency tuner can recover 508.58 MHz. The temperature of the inside surface of the cavity that has a structure easily being cooled down must be kept constant everywhere.

In order to examine the influences of the different processes for joining two copper plates in making a cavity on an RF and a vacuum, two methods using diffusion bonding and electron beam welding are adopted. Both cavities are made of oxygen-free high-conductivity copper (OFHC). Their cross sections made by two different methods are shown in Fig. 1(a) and (b). The type (a) is made by the diffusion-bonding method using a copper plate of 40 mm in thickness. One side of the cavity (right-hand side from the bonding place in Fig. 1(a)) is made from 6 copper plates welded by the above method, the other consists of 3 copper plates. Five ports for an input coupler, two frequency tuners, a damping coupler, and an RF pick-up probe are made in a bigger copper block. Furthermore, some vacuum flanges are attached. Two blocks are then bonded after precise machining. By this method, they are bonded with less insert metal.

On the other hand, in type (b), after two OFHC blocks are shaped into designed forms, they are connected at the equator to each other. In connection, temperature is suppressed below 60°C, to make thermal displacement small.

As an input coupler, we adopt the 508.58 MHz-input coupler developed for KEK TRISTAN MR. The RF window shown in Fig. 2 is made of cylin-
dirical ceramic. We are also designing another disk-type RF window.

We will test both cavities by using a 1 MW-Klystron, which is being constructed at RIKEN,4) and then design a practical cavity for the SPring-8.

References

V-2-15. Test Stand of a Klystron for the SPring-8 Storage Ring

K. Inoue, Y. Kawashima, T. Nakamura, and M. Hara

A test stand consisting of a klystron and its waveguide is being constructed in the cyclotron-physics experimental building. The klystron generates about 1 MW radiofrequency (RF) power in continuous wave (CW). This is also the same model as that to be installed in the ring site of the SPring-8 and supplies a 508.58 MHz RF power to RF cavities for a storage and a synchrotron rings. In order to investigate characters of the klystron and, furthermore, take various data for the final design work of RF cavities, various studies are carried out.

The block diagram of the test stand is shown in Fig. 1 and its side view in the building in Fig. 2. The specifications of the klystron are listed in Table 1. As a cooling system for the collector parts of the klystron, vapor cooling has been used, but we improved it to more powerful water cooling. The klystron unit has three operation modes, a storage-ring, a synchrotron, and a pulse modes. The first one is a constant amplitude and continuous wave mode. In the second one, the output power level is modulated in accordance with a pattern required for a synchrotron acceleration at a repetition of 1 Hz. The pulse one generates a pulsed RF power of a 10 μs-1 ms width and is used for aging the klystron and cavities.

In order to protect the klystron from an accident, for example, when a load is short-circuited, a crowbar works within 6 μs. Once the crowbar is triggered, the cathode voltage is short-circuited at least 20 ms long until the vacuum circuit breaker (VCB) on an AC power line is off.

The input system of the klystron comprises a signal generator, a preamplifier, a circulator with a load, and an amplitude and phase monitor.

To handle up to a 1.2 MW power level between the klystron and a cavity, the WR1500 (15" × 7.5") rectangular waveguide made of the
Table 1. Relevant parameters of the klystron.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td>Toshiba</td>
</tr>
<tr>
<td>Type</td>
<td>E3786</td>
</tr>
<tr>
<td>Frequency</td>
<td>508.58 MHz</td>
</tr>
<tr>
<td>Heater power</td>
<td>$23.0A \times 11.2V$</td>
</tr>
<tr>
<td>Anode vol.</td>
<td>64.5 kV</td>
</tr>
<tr>
<td>/current</td>
<td>2.2 mA</td>
</tr>
<tr>
<td>Cathode vol.</td>
<td>95 kV</td>
</tr>
<tr>
<td>/beam current</td>
<td>19.95 A</td>
</tr>
<tr>
<td>Drive power</td>
<td>3.8 W</td>
</tr>
<tr>
<td>RF power</td>
<td>1.2 MW</td>
</tr>
<tr>
<td>Efficiency</td>
<td>63.4%</td>
</tr>
</tbody>
</table>

6063-T5 aluminum is used. The electrical and thermal conductivities are 3.2×10^7 mhos/m and 1.95 W/cm°C, respectively. Air is flowed inside the waveguide for cooling.

In the first stage, the studies on the performance of the klystron and the waveguide system propagating RF power of more than 1 MW from the klystron are examined by using a water cooled dummy load of 1 MW rating. And then RF cavities are installed. There are two type RF cavities. One is single-cell for a storage ring and the other consists of 5 cells for a synchrotron. Their input couplers and tuners are tested with or without RF power from the klystron. The test stand is to be completed early 1991.
V-2-16. All-Metal Gate Valve with an RF Contact

S. Yokouchi, K. Yagi,* K. Yoshida,* T. Ohbayashi,* and S.H. Be

We manufactured an all-metal gate valve with an RF contact on trial. Table 1 gives main specifications of the gate valve. The gate valve at the open position is shown in Fig. 1. The present valve body was made of stainless-steel, but that to be used in the practical SR ring is made of aluminum-alloy except a part of valve seats and disks. A technique is employed, which provides an enclosed evacuated space between double seals, thereby reducing the pressure difference across the seals and decreasing the leak rate of the seals. In the open position, the RF contact which has the same geometry as the beam chamber can bring about a direct electrical connection between two body flanges. Applying the thrusting force of an actuator to cam parts, which are connected to a carrier and two disks by a link mechanism (see Fig. 2), the sealing force between the seats and disks coated with silver is amplified by $F/F_0 > 1$. The further amplification of the sealing force is obtained by pushing the disks with a small arc to tapered seats polished like a mirror (see Fig. 3). The deformation amount of the valve disks and seats due to the sealing force is within an elastic limit.

To investigate the leakage reliability at seals, we actuated the valve 1,000 times using the test system as shown in Fig. 4. The results show that the performance is not yet satisfied completely because there are a leak of the order of 10^{-8} Torr·l·s$^{-1}$ over several times during actuations of these first 1,000 times. However, the present leak rate can be reduced to less 1×10^{-10} Torr·l·s$^{-1}$ by evacuating the enclosed space between double seals.

To improve fluctuation of the leak rate to 1×10^{-10} Torr·l·s$^{-1}$, we are planning an investigation of the relation between the sealing pressure and the leak rate.

Table 1. Main specification.

Pressure range	10$^{-11}$-760 Torr
Leak rate body and valve seal part*	less than 1X10$^{-10}$ Torr·l/s
Materials	
Main parts	SUS304
RF contact	Be-Cu
Others	Al-alloy
Compressed air pressure	5-7 kgf/cm2G
Bakeout temperature	150°C
Flange dimension	JVIS 003 NB100
Bakeable Flange	

* Differential pressure on the valve seal is 1 atm in either direction.

Fig. 1. Outside view.

Fig. 2. Amplification mechanism of sealing force.

Fig. 3. Valve seal part.

Fig. 4. Test system.

* Osaka Vacuum, Ltd.
V-2-17. Pumping Speed of NEG Strips Distributed in a 4 m-Long Vacuum Chamber

We measured the pumping speeds of NEG (St 707) strips distributed in a 4 m-long Al-alloy vacuum chambers manufactured for the R & D of the Spring-8. The NEG strips were installed in the straight section chamber (SSC) in four rows and in the bending magnet chamber (BMC) in two rows. The effective length per row is 360 cm both in SSC and in BMC. The total effective surface areas of the NEG strips in SSC and BMC are 7,776 and 3,888 cm², respectively.

![Image](image_url)

Fig. 1. Schematic diagram of the measurement setup for BMC. \(p(x) \) is the pressure at \(x \) in Torr, \(S_a \) the average pumping speed at the beam chamber per unit length in \(l^{-1} \cdot s^{-1} \cdot cm^{-1} \), \(S_o \) the pumping speed of the NEG strip per unit length in \(l^{-1} \cdot s^{-1} \cdot cm^{-1} \), \(S_c \) the pumping speed of the NEG strip per unit area in \(l^{-1} \cdot s^{-1} \cdot cm^{-2} \), \(C \) the conductance of the slot per unit length in \(l^{-1} \cdot s^{-1} \cdot cm^{-1} \), \(L \) the length of the distributed NEG strip in cm, \(C_o \) the conductance of the orifice in \(l^{-1} \cdot s^{-1} \), and \(p_1, p_2, p_3, p_4, \) and \(p_5 \) the pressure measured at IG1, IG2, IG3, IG4, and IG5 in Torr, respectively.

Figure 1 shows the schematic diagram of the measurement setup for BMC. The base pressure was in the range of \(10^{-10} \) Torr after a bakeout at 140°C for 40 hours. The NEG strips were activated at 450°C for 25 hours before measurements for \(H_2 \). For CO, the activation was performed at 450°C for 50 minutes before measurements. We calculated the average pumping speed, \(S_a \), from

\[
S_a = Q_o / \int_0^L p(x) \, dx \tag{1}
\]

where \(Q_o \) is the throughput injected to the chamber in Torr \(\cdot l \cdot s^{-1} \), and can be obtained from \(Q_o = C \times (P_1 - P_2) \). Since it is difficult to know the true \(p(x) \), we assumed \(p(x) = p_5 \times f(x) \times \cosh(kx) \), where \(k = (1/L) \cosh^{-1}(p_3/p_5) \), and \(f(x) \) is the quadratic determined by \(p_3, p_4, \) and \(p_5 \). Finally, we got \(S_o \) from

\[
S_o = (1/S_a - 1/C_o)^{-1} (350/360) / n / 5.4 \tag{2}
\]

where \(n \) is the number of NEG strips.

* On leave of absence from KAERI, Korea.
speeds for H_2 is fairly constant because of the well known bulk-diffusion.2 On the other hand, the pumping speeds for CO decrease rapidly with an increase in the amount of sorbed CO.5 The dependence of the pumping speed on the amount of sorbed gas is similar to that of a short piece of NEG strip4 for both H_2 and CO. However, the pumping speed for H_2 is rather lower than that of the NEG strip piece. For CO, the maximum pumping speed is lower than that of the NEG strip piece by one order. This disagreement is a problem remaining unsolved.

References
Gases desorbed by photodesorption influence electron beam lifetimes in a storage ring. In fact, it was reported that as an electron beam is injected into the storage ring chamber, the pressure increases from 10^{-11} Torr to 10^{-6} Torr and the lifetime becomes a few minutes. The photodesorption is said to be caused by primary photons (synchrotron radiation), secondary photons (reflect light and fluorescence), secondary electrons (photoelectron, Compton electron and Auger electron), and so on. However, the mechanism of the photodesorption has not been clear. Recently, Trickett suggested that an outgassing rate is not proportional to a photocurrent, but is proportional to a fluorescent flux. Further, our calculations show that photodesorption yield η, which is the number of desorbed molecules per photon, is independent of the critical photon energy.

To investigate the dependence of outgassing on fluorescence and photoelectron, and the dependence of η on critical photon energy, we are planning experiments. Figure 1 shows the experimental apparatus. Synchrotron radiation with a critical photon energy of 26 keV is adjusted with a horizontal collimator and a vertical collimator to be 5x5 mm2 in cross section. As shown in Fig. 2, the test chamber is a cylindrical tube of 60 mm in diameter and 300 mm in length. The chamber is made of oxygen free copper, which is considered to be used as an absorbing material. The chamber is cooled with water to reduce thermal desorption when the chamber is irradiated with synchrotron radiation. The flange attached to the port for the measurement of fluorescence is installed at one end of the test chamber; a beryllium window of 1 mm in thickness is installed at the end of the port. The fluorescence passing through a hole of 1 mm in diameter on a lead shield is detected by a solid-state detector. In this experiment, we pay attention to the fluorescence of absorption edge energy, 8.98 keV, of the copper K shell, because synchrotron radiation is mostly attenuated by a photoelectric effect. Further, the fluorescence yield of the copper K shell has somewhat a large value, 0.374. The outgassing rate is measured by a throughput method. The gas species are observed by a quadrupole mass analyzer.

References
2) S.R. In and S.H.Be: This Report, p. 178.
We have studied the vacuum characteristics of a St 707 non-evaporable getter (NEG) wafer module, which is the basic structure element of the lumped NEG pump (LNP) for the crotch of the SPring-8 storage ring. The main purposes of the unit NEG module experiment are to study the physical properties of NEG and to consider the geometrical effect of the wafer module configuration.

Figure 1 schematically shows the experimental apparatus for measuring the pumping speed of the NEG wafer module. A standard test dome which has an orifice between two chambers was used. The base pressure of the experimental chamber was in the lower 10^{-10} Torr range.

Activation of NEG was carried out at the flat-top temperature of 450°C for sufficient time. Activation followed by H$_2$ injection was continued until the initial gas quantity, Q_0, sorbed per unit mass of NEG reached a desired level, though the dependence of the pumping speed on Q_0 is very weak. Q_0 of H$_2$ was obtained from the NEG temperature and the chamber pressure by Sievert’s law.

Activation for other gases such as CO and N$_2$ was performed not to reduce Q_0’s of these gases, but to enhance the diffusion of sorbed molecules into the bulk of NEG and make its surface fresh. One-hour-activation at 450°C was usually sufficient to reproduce preceding conditions.

* Osaka Vacuum Ltd.
** RIST, Pohang, Korea.
The measurement of a pumping speed was performed at room temperature. The pumping speed, $S(l/s)$, was obtained by a throughput method. The total gas quantity, $Q(Torr\cdot l)$, sorbed in NEG was obtained by integrating the gas injection rate, $q(Torr\cdot l/s)$, with respect to time.

Figure 2 shows the S-Q relationships for H$_2$, CO, and N$_2$. The maximum S's are 390(l/s), 600 (l/s), and 125(l/s), respectively. S for H$_2$ is almost constant owing to the diffusion into the bulk, while those for CO and N$_2$ decrease quickly as the NEG surface becomes saturated with sorbed gases. The NEG surface of the wafer module was almost saturated with CO or N$_2$ of about $10^{-1} - 10^0$ $(Torr\cdot l)$.

The variation in the mass spectrum obtained with a quadrupole mass analyzer (QMA) with time during activation is shown in Fig. 3. Although the peak heights of mass 16, 18, 28, and 44 increase at first due to initial contamination on the NEG surface, that of 2 becomes dominant because of the high diffusion rate of hydrogen atoms to the NEG surface from the bulk at elevated temperature, and increase of the H$_2$ desorption rate.

The calculation of S by a Monte Carlo method in parallel with the distributed pump model, using a sticking coefficient obtained in the NEG strip experiment, is now in progress.

References
V-2-20. Performance Test of Lumped NEG Pump

S.R. In, T. Maruyama, S. Yokouchi, and S.H. Be

In the vacuum system of SPRing-8, synchrotron radiation produced in bending magnets is mostly intercepted by crotches and absorbers. To protect other vacuum components from severe inrush of the photo-desorbed particles from the crotches and absorbers, a proper pumping system of sufficient pumping speed and capacity must be prepared. A Lumped NEG Pump (LNP) was manufactured and tested to examine such requirement.

Structure of LNP A proto-type LNP1 consists of 14 St 707 non-evaporable getter (NEG) wafer modules installed concentrically in a cylindrical housing made of Al-alloy. The inner virtual surface made by 14 wafer modules forms a strong adsorbing cylindrical channel of which diameter and length are all 250 mm. The diameter of the pumping port is 200 mm, and the total weight of the LNP is about 45 kgf.

Performance test of LNP Figure 1 shows a schematic diagram of the experimental setup. Figure 2 indicates the pumping speeds of the LNP for H₂, CO, N₂ and CO₂. CO is more reactive with the NEG material and, consequently, has a higher sticking coefficient than H₂. However the pumping

* On leave from KAERI, Dajeon, Korea.
** Osaka Vacuum Ltd.
speed of H₂ is higher than that of CO in the LNP structure because NEG strips are folded into a highly integrated form in the LNP, and the pumping speed depends strongly on the conductance as well as the sticking coefficient. In Fig. 3 the pumping speeds of the LNP for H₂ and CO calculated from the data obtained with 1 wafer module are compared with the observed pumping speeds of the LNP. In this calculation, we took into account the distributed characteristics of the LNP pumping channel, and conductance to the pump entrance. Figure 3 shows slight but allowable discrepancies between the two values.

The chamber pressure during activation was in the range of 10⁻⁶ – 10⁻⁷ Torr, depending on the amount of H₂ sorbed in the NEG. The maximum temperature of the Al-alloy housing was controlled easily just below 150°C even without water cooling. This scheme of activation had an additional benefit that the pump housing and the adjacent chamber could be baked out at a time with activation. The influence of desorbed gas molecules from a baked wall on the resultant pumping speed of the LNP after activation was tolerable. Figure 4 shows the temperature variations at several positions in the LNP and the test chamber during activation of NEG. In a typical control mode for the NEG temperature, the power consumption of the LNP was about 1.1 kW at the temperature rise stage, and about 700 W at a flat-top temperature of 450°C.

References

Fig. 4. Temporal variations in the temperature of the LNP and the test chamber.
A residual gas analyzer is used to determine the kinds of gas molecules contained in a vacuum system. However, measured mass spectra confuse us occasionally with many unexpected mass peaks of various fragment ions produced in the reaction volume of the analyzer. Since a gas analyzer has its specific cracking pattern for a gas species, we can identify the mass number and calculate the gas composition. If there are other reactions producing undesired molecules, however, we face difficulties in confirmation of gas species.

Figure 1 shows time dependence of the relative peak heights of mass 28 and 44 during the measurement of the pumping speed for CO\textsubscript{2} in a test chamber of a non-evaporable getter (NEG) wafer module.\(^1\) This figure indicates that the CO concentration is changed inversely with the variation in the pumping speed of the NEG for CO. Hot filaments inevitably used in the pressure gauges are considered to be main sources of spurious reactions.\(^2\) The change in the peak height ratio of mass 28 to 44 as given in Fig. 2 was obtained in the experiment programmed to examine possible sources, including a quadrupole mass analyzer (QMA), extractor gauge (EXTR), sputter ion pump (SIP), and NEG, for the CO generation. From this figure we can recognize that the filament of QMA is one of the most probable CO sources.

To measure the rate of CO generation we utilized a standard test chamber containing no NEG. Typical experimental conditions and some selected results are summarized in Table 1. The rate of the CO pressure change is represented as the total generation rate of CO minus the effective pumping speed for CO. In the steady state the CO generation rate is obtained by multiplying the peak height ratio of 28 to 44 by the pumping speed for CO. Consequently we obtain the CO generation rates of 0.2 l/s for the QMA filament with 1 mA emission current, 0.3 l/s for 5 mA emission current, and 0.5 l/s for the BA gauge filament. In conclusion, if the effective pumping speed for CO in an experiment system is at least a few tens of l/s like the situation of the LNP test chamber, we can confidently use the measured pumping speed for CO\textsubscript{2}.

* On leave from Korea Atomic Energy Research Institute, Dajeon, Korea.
** Osaka Vacuum, Ltd.
Table 1. CO generation rates on the hot filaments.

<table>
<thead>
<tr>
<th>Exp. Conditions</th>
<th>(I_0 (10^{-7} \text{A}))</th>
<th>CO generation rate (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.A QMA Ie (mA) GAS</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(\bigcirc \bigcirc 1 \times)</td>
<td>1.0 3.8</td>
</tr>
<tr>
<td>(2)</td>
<td>(\bigcirc \bigcirc 1 \bigcirc)</td>
<td>19.7 12.2</td>
</tr>
<tr>
<td>(3) i)</td>
<td>(\times \bigcirc 1 \times)</td>
<td>0.51 0.715</td>
</tr>
<tr>
<td></td>
<td>(\bigcirc \bigcirc 1 \bigcirc)</td>
<td>28.6 3.77</td>
</tr>
<tr>
<td>(4) i)</td>
<td>(\times \bigcirc 5 \times)</td>
<td>74.4 104.4</td>
</tr>
<tr>
<td></td>
<td>(\bigcirc \bigcirc 5 \bigcirc)</td>
<td>2500 510</td>
</tr>
<tr>
<td>(4) ii)</td>
<td>(\times \bigcirc 5 \bigcirc)</td>
<td></td>
</tr>
</tbody>
</table>

○: Turn on or Injection
×: Turn off or no Injection

References
1) S.R. In, T. Maruyama, Y.P. Lee, S. Yokouchi, and
2) P.E. Gear: *Vacuum, 26*, 3 (1975).
V-2-22. Estimation of the Photo-Desorption Yield of OFHC Absorber

S.R. In* and S.H. Be

Gas molecules desorbed from oxygen free high purity copper (OFHC) absorbers by interacting with synchrotron radiation are major constituents of residual gas of the SPring-8 storage ring during a beam-on operation. The desorption rate is influenced by many factors such as beam energy, beam current, incidence angle, material conditions at the surface and in the bulk of absorber, and history of machine operation. Therefore, theoretical estimation of the photo-desorption yield and application of the experimental results to a practical system are not easy. However we should evaluate the quantitative effect of the photo-desorption to provide the requirements for material selection and pumping system design.

The photo-desorption rate is obtained by multiplying a photo-desorption yield by a photon incident rate. The latter depends only on the machine parameters and is easily given, but the evaluation of the former is considerably difficult, because the photo-desorption yield depends on both machine and material parameters. Fortunately, however, it has been revealed that the photo-desorption yield is nearly independent of a photon energy spectrum. Hence, we can conveniently use the results on other systems of machine parameters different from ours.

Figure 1 shows a rearranged and combined graph of the photo-desorption yield η obtained from two separate experiments in the different range of critical photon energy. Variation in η is less than expected one, and η can be considered approximately constant over the most range of the critical photon energy. On this premise we estimate the photo-desorption yield of a crotch made of OFHC under the operational conditions of SPring-8 by using experimental data29 obtained in PF at KEK with an OFHC sample. η is expressed as [photon dose]$^{-2/3}$, where the photon dose is a function of beam energy multiplied by accumulated beam current, $D[A,H]$. Thus, $\eta = AD^{-2/3}$, where A is a constant determined by a specific beam energy and experimental data. The photo-desorption yields obtained by this procedure for H_2 and CO are approximately $7 \times 10^{-5}D^{-2/3}$ and $5 \times 10^{-6}D^{-2/3}$, respectively, under the normal conditions of SPring-8.

The photo-desorption rate, consequent chamber pressure rise, depletion of the pumping capacity of a non-evaporable getter (NEG), and resulting pumping speed reduction of a lumped NEG pump (LNP) can be calculated by using the photo-desorption yield given above and other machine parameters. An activation schedule of NEG is decided as a final step. The procedures for determining the activation schedule of the LNP are as follows: (1) calculation of the desorption rate $q(t)$ for H_2 and CO, (2) calculation of the sorbed amount $Q(t)$, (3) estimation of the pumping speed $S_p(t)$ from $S_p(Q)$ or the sticking coefficient $s(Q)$ curves, (4) estimation of the pressure rise $\Delta P(t)$ and/or base pressure $p(t)$, (5) evaluation of the activation intervals using proper criteria. We are considering the activation schedules for several types of the LNP under the practically expected conditions of SPring-8.

References

* On leave from Korea Atomic Energy Research Institute, Daejon, Korea.
V-2-23. Equilibrium Characteristics of NEG in LNP

S.R. In,* T. Maruyama,** and S.H. Be

Base pressures of a chamber for testing a lumped NEG pump (LNP) were usually in the medium of 10^{-11} Torr range. However the chamber pressure increased even up to 10^{-5} Torr range during an activation of non-evaporable getter (NEG) because of large sorption-capacity of the LNP for hydrogen. A long activation period is anticipated to attain a low hydrogen sorption level, considering a limited pumping speed in a practical machine. In order to design a supplemental pumping system appropriately and make a reasonable operation schedule for a vacuum system employing NEG as a main pump, we need detailed information on the equilibrium characteristics of the NEG material especially during the activation.

H_2 is absorbed into the NEG forming a metastable compound which can be easily decomposed at elevated temperature. The surface concentration of hydrogen is in equilibrium with external gas pressure. We can not measure the equilibrium pressure itself, but we figure it out by measuring the gas pressure around NEG. By changing an effective pumping speed for outgassed molecules from the NEG during activation we can estimate the relationship between measured pressure and equilibrium pressure. As a conclusion, accurate equilibrium pressure is obtained from the pressure in the lower chamber of the LNP test system.

Measured chamber pressure at the temperature above about 300°C follows Sievert's law, and varies linearly in the $\log P^{-1/2}$ graph. Figure 1 shows a typical chamber pressure variation recorded in the temperature rise and fall stages during NEG activation. Calculated parameter B from this figure is slightly larger than that recommended by maker. Figure 2 indicates the change in the chamber pressure at the flat-top temperature of 450°C.

As the effective pumping speed during NEG activation changes, the chamber pressure and net outgassing rate are also changed; outgassing rate q for opening the gate valve in the LNP test system is expressed as $A s C o (\sqrt{P_{eq}} - P)$, and q' for closing the valve is given as $A s C o (\sqrt{P_{eq}} - P')$. Therefore the sticking coefficient s is calculated by known values of the total NEG area A, unit orifice conductance C_o, pressures P and P' measured for two situations, and calculated outgassing rates q and q', though the true P_{eq} is still unknown. On this principle the sticking coefficient for H_2 is calculated to be about 0.004, which is almost the same as that estimated by comparing data of pumping speed measurements and a Monte Carlo calculation.

Fig. 1. Variation in the chamber pressure as a function of NEG temperature.

Fig. 2. Time dependence of the chamber pressure at the flat-top temperature of 450°C.

References

* On leave from KAERI, Dajeon, Korea.
** Osaka Vacuum Ltd.
Three types of non-evaporable getters (NEG's), i.e., a NEG strip, NEG wafer module, and lumped NEG pump (LNP) comprising several NEG wafer modules, have distinct pumping characteristics even though they are made of the same material. If we know geometrical influences of the NEG configurations, we can accurately estimate the pumping speed of a specified pump structure, using known sticking coefficients as universal parameters. A distributed pump model and Monte Carlo simulation are generally used to solve such a problem.

The pumping speed is expressed as a multiplication of a pumping probability at the top plane and an orifice conductance of the pump entrance port. The pumping probability depends on the sticking coefficient of NEG and the practical geometry of the whole pump system. The Monte Carlo method is an effective tool of calculating the pumping probability. In a Monte Carlo program diffuse reflections and sticking probabilities are treated as random processes. The pumping probability is obtained as a ratio of the total counts of absorption to the total counts of incidence of test particles.

Figure 1 shows the pumping speed of the LNP for H₂ and CO calculated as a function of the sticking coefficient. By comparing with typical experimental data of the pumping speed, the sticking coefficients of NEG used in the LNP are roughly estimated at 0.004 for H₂ and 0.03 for CO. The sticking coefficient for H₂ was directly measured in the experiment of the equilibrium characteristics of the LNP to be about 0.004. This indicates that the calculating model used and the experimental conditions are consistent with each other. A few examples of the pumping speeds calculated for different configurations of the NEG modules in the LNP are also shown in Fig. 1. Because the conductances to the pumping port are almost the same for all the configurations, the pumping speeds of the LNP are not linearly proportional to the number of NEG modules used in the LNP, especially for heavy molecules. The pumping speeds of the LNP with 6 NEG modules for H₂ and CO are about 50% and 70% of those with 14 NEG modules.

The intrinsic pumping speed of a pump is defined as the pumping speed measured with a test chamber of infinite size. In a Monte Carlo calculation such a situation is easily prepared, but actual pumping speeds can not be measured without using a test chamber of finite size. The difference between the two chambers is in the degree of random for the incident directions of gas particles. An average cosine for the chamber of finite size is larger than 1/4, indicating that the particles incident upon the pumping port prefer the forward direction. The Monte Carlo simulation shows that the pumping speed must be measured at the position above the entrance plane of the pump. The influence of the orifice diameter is not clear yet.

References
1) S.R. In, T. Maruyama, and S.H. Be: This Report, p. 179.
V-2-25. Thermal Load Test of the Absorber for the Crotch with an Electron Beam

S. Takahashi, Y. Morimoto,* S. Yokouchi, and S.H. Be

A crotch for the SPring-8 has two absorbers (AB1, AB2), which get high thermal load (~26.7 kW/cm²) from the synchrotron radiation (SR). Therefore, the absorbers should be designed to withstand such a high power-density. We are carrying out thermal analysis especially for AB1, because the power density at AB1 is higher than that at AB2.1,2 The results showed that the inside conditions of an inlet cooling channel such as boiling conditions and the temperature of cooling channel walls, and the temperature gradient on the absorber are mainly influenced by the total power, and that the temperature of the surface irradiated directly with SR is dominated by the power density which strongly affects thermal fatigue of absorber materials. To confirm whether these results are really realistic, we are preparing an thermal load test of AB1 with electron beams.

The test device shown in Fig. 1 consists of an electron beam gun (E.B. Gun) and a test stand. The main specifications of the E.B. Gun are given in Table 1. The test stand made of stainless steel (SUS304) is equipped with a Faraday cup (FC) for the measurement of electron beam currents. To suppress secondary electrons generated by bombarding an electron beam in FC, a negative bias voltage is applied to the entrance of FC.

Table 1. Specification of the E.B. Gun.

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>EB 1030 (Rearranged Type ; IHI)</td>
</tr>
<tr>
<td>Beam Power</td>
<td>Max. 5kW</td>
</tr>
<tr>
<td>Acc. Voltage</td>
<td>Max. 30kV</td>
</tr>
<tr>
<td>Beam Current</td>
<td>Max. 160mA</td>
</tr>
<tr>
<td>Cathode</td>
<td>LaB6 Dia.: 6mm</td>
</tr>
</tbody>
</table>

An absorber (AB), which has two cooling channels (inlet and outlet) and six holes for thermocouples as shown in Fig. 2, is installed at 300 mm below the bottom of the E.B. Gun. AB is irradiated over a length of 18 mm with a scanning E.B. scanned by using lens of E.B. Gun at a frequency of 500 Hz. The scanning irradiation of the E.B. at 500 Hz corresponds to a realistic SR irradiation.

The total power of SR received by AB1 in the real storage ring is about 1.2 kW. A corresponding total power of an electron beam is obtained at a beam current of 40 mA and an accelerating voltage of 30 kV. To find a beam current profile

Fig. 1. Schematic diagram of the test device.

Fig. 2. Cross sectional view of the absorber. It is irradiated with a scanning electron beam, and thermal distribution is measured with six thermo couples.

* Kobe Steel, Ltd.
at the location of ABI for thermal load tests we did a beam dynamical analysis.

Fig. 3. Beam current profile obtained from a beam orbital analysis.

A typical beam current profile obtained from the analysis is shown in Fig. 3, which shows that the beam diameter at the location of AB is 6.4 mm. This value is larger than that expected because of a low accelerating voltage. To carry out an experiment similar to a practical SR, the scanning width of E.B. is to be reduced to below 1 mm with a slit made of tungsten, as shown in Fig. 4. We have to increase the current of E.B. to the value at which a beam power passing through the slit (the slashed area in Fig. 4) is 1.2 kW. Therefore, if we utilize the slit of $W=0.1$ cm, the power density for 18 mm scanning is 6.7 kW/cm2. For the same power density (~ 26.7 kW/cm2) as the practical one, $W=0.025$ cm is required. Problems are whether such a small slit width can be machined accurately, and whether the total power of a beam passing through the slit of $W=0.025$ cm can be 1.2 kW with this E.B. Gun (Maximum total power=5 kW). Therefore, for the time being, our experiments are focused on the investigation of the inside conditions of cooling channels and the temperature gradient on the absorber by using a slit of $W=0.1$ cm. A thermal analysis under actual experimental conditions will be performed in parallel with the experiments.

Fig. 4. Relation between E.B. and a slit width.

References
V-2-26. Thermal Analysis of a Crotch for the SPring-8 Storage Ring

Y. Morimoto,* T. Shirakura,* K. Konishi,* and S.H. Be

In the SPring-8 storage ring, the photon power density deposited at a crotch located just downstream of a bending magnet reaches approximately 35 kW/cm². This high power density causes high metal wall temperature and, as a result, high thermal stress.

A photon beam is stopped at two kinds of photon absorbers (ABS-C1 and C2) installed in the crotch. (see Fig. 1) ABS-C1 receives photons of a power density higher than ABS-C2. Therefore we pay more attention to the analysis of ABS-C1. Three models for ABS-C1 (model C1-1, C1-2, and C1-3) and one model for ABS-C2 (model C2-1) are considered. Models C1-1 and C2-1 are basic models whose shapes are the same as those of ABS-C1 and C2 which have been manufactured for a prototype crotch. Models C1-2 and C1-3 are alternative ones to decrease wall temperature and thermal stress. Model C1-2 has a fin plate for promoting a heat transfer area at the place where maximum temperature would be observed. Model C1-3 has two surfaces inclined with respect to a photon beam to reduce the power density. One of the two surfaces is vertically rotated and another is horizontally rotated to the direction of the outside of the ring, so that reflected photons and gas molecules would not tend to come into an electron beam channel.

Table 1. Computed thermal stress and Tresca's equivalent stress σeq.

<table>
<thead>
<tr>
<th>Model Material</th>
<th>Max. thermal stress (kg/mm²)</th>
<th>σeq (kg/mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X direct</td>
<td>Y direct</td>
</tr>
<tr>
<td>C1-1 OFHC-Class 1</td>
<td>-37.4</td>
<td>-12.6</td>
</tr>
<tr>
<td>GlidCop Al-35</td>
<td>-49.6</td>
<td>+14.5</td>
</tr>
<tr>
<td>C1-2 OFHC-Class 1</td>
<td>-30.4</td>
<td>-7.2</td>
</tr>
<tr>
<td>GlidCop Al-35</td>
<td>-38.8</td>
<td>+8.3</td>
</tr>
<tr>
<td>C1-1 OFHC-Class 1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Thermal analysis was made using a finite element program ANSYS developed by Swanson Analysis Systems, Inc. Figure 2 shows results of calculations for temperature distributions, and Table 1 shows those of calculations for thermal stress. These thermal stress should be judged using a criteria for the fatigue failure due to the thermal cycles during normal operating procedures. The fatigue failure data are commonly plotted on an S-N diagram shown in Fig. 3. The design curve in the S-N diagram is decided using

* Kobe Steel, Ltd.
Fig. 3. Fatigue failure strength of OFHC subjected to the cycles of alternating tension and compression.

If Tresca's equivalent stress of 30.6 kg/mm², which is obtained in model C1-2 for GlidCop AL-35, is estimated from this design curve, the design life would be 5000 cycles. It corresponds a ten-year life, assuming that electrons are injected to the storage ring twice a day. (2 cycles/day × 250 days/year × 10 years = 5,000 cycles). The analysis for model C1-3 is in progress.
We are considering to bake out aluminium alloy chambers for the SPring-8 by means of a heated-water bake out system (HBS). An existing prototype vacuum chambers has been baked out with SUS304 sheathed heaters installed on the chamber surfaces. NEG strips installed in the chamber was activated while cooling the chamber with two channels of 10 mm in diameter.\(^1\)

Advantages of the proposed system are compared with an existing method as follows:

1) Bakeout and NEG activation can be performed simultaneously.

2) The chamber temperature during bakeout and NEG activation can be controlled easily and uniformly without a risk of overheating.

Figure 1 shows the cross-sectional view of a straight chamber. There are two cooling channels of 10 mm in diameter at the pumping chamber side, and one racetrack-shaped channel (12 mm × 16 mm) at the opposite side. A new type bending chamber have four cooling channels of 10 mm in diameter. As shown in Fig. 2, the region of one cell is baked out with one unit of HBS in view of easy control.

We are investigating how to keep the temperature of chambers uniformly at about 150°C in both longitudinal and transverse directions simultaneous with activation of NEG. Table 1 gives power parameters measured actually with existing prototype chambers.

\(Q_1\)	Power required for bakeout
\(Q_2\)	Heat generated during NEG activation
SC : 1.36kW/4m	BC : 1.81kW/4m
SC : 4.1kW/3.5m × 4 lines	BC : 2.4kW/3.5m × 2 lines

Calculations are performed as follows:

1) Heat Balance

\[Q_2 - Q_{1/2} = \frac{\pi}{4} \cdot 1^2 \times v \times N \times \rho \times (T_2 - T_1) \times k \]

2) Heat Transfer between chamber and heated water

1) For the pumping chamber side

\[Q_2 - Q_{1/2} = h \times A \times \Delta T \]
For the beam chamber side

\[Q_1/2 = k \times A \times \Delta T \]

- \(Q_1 \): required power for bakeout (W)
- \(Q_2 \): heat generated during NEG activation (W)
- \(v \): water velocity (cm/s)
- \(N \): number of cooling channels
- \(\rho \): density (at 150°C) = 0.916 kg/cm³
- \(k \): conversion factor = 4.33 J/g·K
- \(A \): heat transfer area (cm²)
- \(h \): heat transfer coefficient (W/cm²·°C) = 0.023 \((Re)^{0.8}(Pr)^{0.4} \times \lambda/d \)
- \(\Delta T \): temperature difference between heated water and channel's wall of a chamber (°C)
- \(\lambda \): thermal conductivity (at 150°C) = 0.587 kcal/m·hr·°C
- \(Pr \): Prandtl number (at 150°C) = 1.15

The calculations give \(T_1 = 141.6°C \) and \(T_3 = 145.3°C \) for \(v = 1.5 \) m/s and \(T_2 = 150°C \) (see Fig. 2). As a result, \(\Delta T \)'s for the pumping and beam chamber side are 0.30°C and 1.59°C, respectively. This means that the temperature of the chamber wall is almost the same as that of heated water. Thus the maximum thermal gradients of the chamber for the longitudinal direction and the transverse direction are 8.4°C/30m and 3.7°C, respectively. A total pressure loss for a system of one cell is about 1.01 kg/cm², and a required flow is approximately 1000 l/h.

Figure 3 shows a rough layout of a unit of HBS. At first, since the vapor pressure of water at 150°C is about 5.9 kg/cm²·G, the hydraulic pressure of hot water should be increased up to about 7 kg/cm²·G. After that, to increase the temperature up to about 150°C, the water is transferred to the heater by a pump. A heat exchanger is used when the heater is overheated or in case of emergency. The heater power and the cooling valve will be adjusted to keep the temperature \(T_1 \) at a predetermined value.

We are planning to test and evaluate the performance of HBS, using a 5 m prototype straight chamber (Fig. 1).

References
Sensitivity Calibration of Nude Ionization Gauges for Several Gases Using a Spinning Rotor Gauge

The calibration system used in the present experiments is shown schematically in Fig. 1. A welded bellows is inserted between the calibration chamber and the turbo-molecular pump (TMP). The calibration chamber has six ports; one is used for installation of spinning rotor gauge (SRG) and others are for the calibrating gauge heads. Because there are no baffles between the ports, only one gauge head can be calibrated at a time. During 3 months we calibrated 15 (9 BA's and 6 EXTR's) gauge heads for N₂, H₂, CO, and CO₂.

Figures 2 and 3 summarize the absolute and relative sensitivities of the calibrating gauge heads measured using SRG as a pressure standard. In an extreme case there is even an 80% deviation in the absolute sensitivity. However the scattering patterns of the sensitivity data of the gauge heads for different working gases are almost identical. Consequently, as shown in Fig. 3, the plots of the relative sensitivities, normalized to that of N₂, exhibit minute dispersion. We accordingly skipped the calibration procedures for all gases except N₂ in some gauge heads which have two filaments.
Because the ambient temperature of the laboratory was not controlled accurately, the temperatures of the SRG components have changed to a certain extent during a calibration cycle. But temperature variation of a few degrees did not affect seriously the residual drag (offset) of SRG. Figure 4 shows the changes of SRG offset and the temperature of SRG mounting flange. In Fig. 4, we can not find that the change in the offset value is strongly related with the temperature variation. Then this change may be thought as a statistical fluctuation.

The vibration level during the calibration work was in the range of 0.005–0.01 G (0.03–0.05 μm) after utilizing a damper for the rotary pump, and any definite correlation between the actual vibration level and the offset of SRG could not be revealed. Even when TMP was installed directly in the calibration chamber without the bellows, this vibration level was within the same range.

References
V-2-29. Vacuum Characteristics of a Mixed Pumping System

H. Daibo, S. Yokouchi, T. Nishidono, K. Watanabe, and S.H. Be

We measured the ultimate pressures of a straight-section chamber (SSC) and a bending magnet chamber (BMC) in which NEG strip, SIP, TSP and turbo-molecular pump (TMP) were installed.

The total active length and surface area of the NEG strip of SSC are 1440 cm and 7776 cm2, and those of BMC, 720 cm and 3888 cm2, respectively. Normal pumping speeds of SIP and TMP are 110 l/s and 300 l/s, respectively. The schematic diagram of the setup for the measurement of pressure is shown in Fig. 1.

The pressure variation in SSC vs the pumping time is shown in Fig. 2. After evacuation for 145 h we carried out bakeout of the chamber and activation of the NEG strip simultaneously ((1) in Fig. 2), and at their last stage we performed preconditioning for SIP and TSP (2). After that, we got the ultimate pressures of 7.4×10^{-9} Pa and 1.3×10^{-8} Pa with the NEG strip and TMP (3). However, the pressures with only NEG strip were increased up to 1.6×10^{-6} Pa and 2.0×10^{-6} Pa (4) with a build-up of CH$_4$ ($M/e=16$), as shown in Fig. 3a), which could not be pumped out by the NEG strip. We obtained the ultimate pressures of 6.2×10^{-9} Pa and 8.9×10^{-9} Pa with the NEG strip and SIP (5), and measured a mass spectrum (Fig. 3b). Although TSP was finally flashed (6), the pressure was not lowered (7) below that with the NEG strip and SIP.

The pressure variation vs. pumping time of BMC is shown in Fig. 4. Mass spectrum obtained when the chamber was evacuated a) with the only NEG strip, and b) with the NEG strip and SIP.
The pressure variation in BMC vs the pumping time is shown in Fig. 3. After evacuation for 160 h we carried out bakeout of the chamber ((1) in Fig. 4), and at its last stage we performed preconditioning for SIP (2). After evacuation for 400 h we performed pre-conditioning for TSP (3). After evacuation for 540 h we carried out activation for the NEG strip (4). After that, we got the ultimate pressures of 1.7×10^{-8} Pa and 7.0×10^{-8} Pa with NEG strip and TMP (5). However, the pressures with NEG strip and SIP were not lowered (6) below that with the NEG strip and TMP. For BMC, the ultimate pressure also was not influenced by TSP (7). Finally we obtained the ultimate pressures 9.4×10^{-9} Pa and 7.4×10^{-8} Pa with the NEG strip, SIP, and TSP (8).
We are considering to use alumina ceramic chambers to prevent eddy current generating on the surface of the chamber used in fast bump magnets. Since the material of normal vacuum chambers in SPring-8 is aluminum-alloy, joining of ceramics to aluminum metals is required.

The cross-sectional views of two different ceramic chambers designed for SPring-8 are shown in Fig. 1. A ceramic chamber of a simple geometry as shown in Fig. 1 (a) can be manufactured easily, and direct joining of ceramics to aluminum (Al)-alloy is feasible by using an existing technique. However the manufacture of a complicated chamber of 35 cm in length and 26 cm in width as shown in Fig. 1 (b) is difficult, and the joining of this chamber to Al-alloy one is not easy either. Therefore its manufacture technique is required to be established.

A manufacture process of the ceramic chamber is shown in Fig. 2. An important subject in the process is to improve a manufacture accuracy. A particular attention is paid to the joining method because the joint must be stronger and leak-tight. For the complicated ceramic chamber, direct joining to stainless-steel (SUS) or Fe-Ni-Co alloy (KOVAR) segment, which have a slightly different expansion and forms a zone of gradual transition with

![Diagram](image_url)

Fig. 1. Cross-sectional view of ceramic chambers. (a) for No. 1, No. 2, and No. 3 bump magnet. No. 2 and No. 3 are 200 mm in length; No. 1 is 300 mm in length. (b) for No. 4 bump magnet, 350 mm in length.

![Diagram](image_url)

Fig. 2. Fabrication process of a ceramic chamber.

Al-alloy is impossible because of thermal stress caused by large thermal expansion mismatch between the two. A joining process of ceramics to Al-alloy is shown in Fig. 3. To minimize the stress in the seal or ceramics, SUS of a different expansion coefficient can be jointed with a graded seal.

The seal consists of Fe-Ni-Co alloy (KOVAR) segment, which have a slightly different expansion and forms a zone of gradual transition with

![Diagram](image_url)

Fig. 3. (a) Geometry of a transition piece; (b) detail of the joining area of a KOVAR piece.
high and low expansion. Using the graded seal, the ceramics can be joining to SUS, as shown in Fig. 3 (b). After that TIG (tungsten inert gas) welding is performed between KOVAR and SUS, and then SUS is jointed to Al-alloy by an explosion bonding method using nickel and titanium as insert metal. As KOVAR is corrosive under a radiation circumstance, the surface of KOVAR is coated electrically with nickel. The weakest joint part is between KOVAR and ceramics. The joining strength is estimated to be in the range of 5–10 kg/mm², because the strain due to the difference in thermal expansions between two mother materials remains.

References

V-2-31. Mounting of a Straight Section Vacuum Chamber with Slide Guides

T. Nishidono, T. Bizen,* H. Daibo, Y. Suzuki,* and S.H. Be

We manufactured a new chamber mount, namely a slide guide, and mounted a straight-section chamber with ribs for suppressing chamber deformation. An end of the chamber is fixed and allows no chamber motion in any direction before and after bakeout.

Fig. 1. Schematic diagram of the experimental model chamber with slide guides. The points of measurement are denoted by numbers.

An experimental model chamber with three slide guides and their structures are shown in Figs. 1. and 2, respectively. A solid lubricant of copper alloys is applied to taper pins (BC6) and fitting cones (LBC3). The chamber is positioned by a taper pin inserted tightly in a fitting cone at room temperature. During bakeout, the taper pin is released by thermal expansion of the chamber. Therefore the chamber motion is allowed in any direction during bakeout, but the chamber returns to the original positions of each bake cycle. This chamber mount is capable of releasing a large force caused by the displacement of the chamber on heating.

The displacements of the chamber were measured with 1 μm scale dial gauges set in the transverse sections of the chamber.

The maximum temperature difference between points m and n in Fig. 1. during bakeout was 10 °C, which caused a 600 μm-deformation at the end of the chamber. The taper pins were perfectly released during bakeout and fit on after bakeout. Figure 3 (a) shows the displacements of the chamber. The displacements of the chamber and a gird were less than 42 μm and 12 μm on each point of the measurements, respectively. Moreover the displacement of dummy magnets was negligibly small, compared with other deformations. This means that the position of a beam position monitor (BPM) is ensured within an

* Ishikawajima-Harima Heavy Industries Co., Ltd.
accuracy of $62 \, \mu m$ even with a measurement error of $8 \, \mu m$. This result with slide guides is to be compared with the result without the slide guides. The result without the slide guides is shown in Fig. 3 (b). The maximum displacement from the initial installation position was more than $400 \, \mu m$ in the horizontal direction after first bakeout, which was invariant after second bakeout. The displacement of the vertical direction was less than tens of micrometers after bakeout because supports suppressed the downward displacement.

To confirm the reliability of chamber deformations before and after bakeout, detailed tests are in progress. From the results of the preliminary tests, we conclude that the slide guide satisfies the restorability of BPM with an accuracy to within $62 \, \mu m$.

Fig. 3. Displacements of the chamber from the initial installation position (a) with and (b) without slide guides. □, 1st bakeout; ▲, 2nd bakeout.
In the design of a bellows assembly, a special effort must be made to minimize its RF impedance, because, in a storage ring, the maximum beam current depends greatly on the impedance. Therefore the bellows assembly is to be designed with no change in the cross-section as much as possible by shielding with RF fingers. Furthermore the bellows assembly should have some tolerance for the variation in the longitudinal direction of the vacuum chamber caused by thermal expansions and contractions due to baking and temperature fluctuations of the cooling water and ambient air. In addition, the assembly should compensate manufacturing tolerance and alignment errors in the longitudinal and transverse direction. Alignment errors are considered to be ±2.5 mm in the longitudinal direction and up to ±1 mm in the transverse direction.

The length of slide fingers and their contact forces must be chosen so as to ensure a good electrical connection between the fingers and the inner surface of the chamber. Since the vacuum chamber with a slot to be used in the SPring-8 storage ring has a different structure from the chambers in an existing storage ring, bellows assemblies which have been using so far are not suitable to our storage ring. Therefore we are now developing a bellows assembly as shown in Fig. 1.

To make a large contact force, we designed the sliding fingers which contact the inclined inner surface of chambers with half cylindrical contact projections. The sliding fingers will be made of a beryllium copper alloy (JIS C1720P-1/4H) of high electrical conductivity, high strength, and nonmagnetism. Depending on a temperature in use, a residual stress of the alloy is relaxed with a time at high temperature: 80% after 5000 hours bakeout at 150 °C. A relationship between the stress relaxation and a Larson-Miller parameter is given in Fig. 2, which shows that the stress relaxation must be considered at the initial stage of design.

Fig. 1. Schematic diagram of a sliding finger for the bellows.

Fig. 2. Relationship between stress relaxation and a Larson-Miller parameter.

Fig. 3. Photograph of a model of a sliding finger.
We manufactured a new bellows assembly, and measured the contact force and resistance, using a simple instrument shown in Fig. 3. The sliding fingers were made of 0.5-mm thick Be-Cu sheet metal by a process shown in Fig. 4, and coated with silver to 3 μm in thickness to decrease contact resistance. Figure 5 shows a schematic diagram of the fingers. Preliminary experimental results of the contact force are in the range of 30 g to 50 g at narrow fingers and 150 g at wide ones, compared with contact forces calculated are 42 g and 345 g, respectively. The total contact resistance of 43 fingers is 0.8 mΩ. The results do not satisfy our requirements; therefore a new design to increase the contact force is in progress.
V-2-33. Problems for Improvement of Existing Aluminum-Alloy Flange

T. Nishidono, S. Yokouchi, H. Daibo, N. Takagi,* and S.H. Be

An aluminum-alloy flange, which is planned to be used in the SPring-8 storage ring, is required to be leakless even after many cycles of baking at 150°C. To pursue the origin of leakage, we inspected the surfaces of flange edges in detail of two types of conflat flanges which have been using for particle accelerators so far. Table 1 shows the specifications of two types of the flanges. The surface was investigated with a scanning electron spectroscope (SEM) and optical microscope. Figure 1 shows expanded sectional views of flange edges photographed with the optical microscope with a magnifying power of 12.5. We observed: 1, Si segregation on the surface.; 2, Existence of lines of a pitch of 4-16μm drawn by machining.; 3, Non-uniformity of the sealing surface, i.e., average roughness of 0.24-3μm; 4, Non-uniformity of TiN and CrN film of 1-2μm thick. 5, Existence of pits of 8-16μm, of cracks of 8-80μm width and spherical projections. To improve the reliability of leakage, these items are problems to be improved. According to our experience of using them, type A seems to be more leakless than type B. 1)

* ULVAC Corporation.
To investigate the relationship between the sealing mechanism and geometry of a knife edge, we photographed the cross-sectional view of a cut sample of fastened type A flanges (see Fig. 3.). The sample was fabricated by the process as shown in Fig. 2. Figure 3 shows that only the top area of a knife edge touches to a gasket. Improvement to be touched over the whole area is required. Moreover we are still inspecting the same items on the type B flange.

Finally, materials of the flange, bolt, and gasket, and the geometry of a knife edge are very important factors for high vacuum sealing.

References
V-2-34. Bending Fabrication of a Vacuum Chamber

T. Nishodono, T. Bizen,* Y. Suzuki,* and S.H. Be

A circulating electron beam in a storage ring reduces electromagnetic fields in vacuum system components such as chamber, bellows, and gate valve. When a straight chamber is used in a bending magnet section, the break of symmetrical electromagnetic fields might drive a transverse instability for an electron beam, because a curved beam causes an offset in respect to the center of the beam chambers transversally. Therefore chambers in the bending magnet section should be curved along beam orbits.

To ascertain the feasibility of bending the complicated chamber to be used in bending magnet section of the SPring-8 storage ring, we built a bending magnet chamber by means of stretch forming. Figure 1 shows the schematics of a stretch former, and Fig. 2 the photograph of a bending test. In this test we used an existing forming block of 23-m curvature radius for another chamber to save the building cost of the bending magnet chamber.

![Fig. 1. Schematic diagram of a stretch former.](image1)

![Fig. 2. Photograph of the test.](image2)

![Fig. 3. Bending radius of the chamber after stretch forming.](image3)

![Fig. 4. Deformations of the cross-sections of the chamber.](image4)

* Ishikawajima-Harima Heavy Industries Co., Ltd.
The chambers were built along the forming block with approximately 80 ton tensile force after elongating by one percent of the total length of the chamber with a hydraulic stretch cylinder beforehand. The test results are shown in Figs. 3 and 4, which reveal that curvature values measured at five points along the bending chamber are not in agreement with calculated ones, but the deformations of the chamber cross-section are within 100 μm except for a few points. We conclude therefore that the bending chamber of 40-m curvature radius to be used in the SPring-8 storage ring will be built by adjusting the curvature radius of the forming block and tensile force.
A chamber mount with leaf springs is one of the positioners for a beam position monitor (BPM). Leaf springs are discussed whether they are used for the chamber mount or not, but the data on their restorability are insufficient for deciding to use them. We have fabricated leaf springs for mounting a model chamber and have been testing their restorability.

The experimental chamber with leaf springs is shown in Fig. 1. Each leaf spring is composed of five layers of 1-mm thick stainless-steel plates. The displacements of the chamber were measured with 1 μm scale dial gages set on the transverse sections of the chamber. The leaf springs suppress the displacement in the horizontal and vertical directions, but deflect in the longitudinal direction when the chamber expands by bakeout. The displacement in the downward direction is also suppressed by a support.

Figure 2 shows the temperature of the chamber during bakeout. The maximum temperature difference between point m and n in Fig. 1. was 10°C.

We noticed that the leaf springs ensured a highly accurate restorability, but were deflected downward at the first setting because of chamber’s weight. We continue the test to solve this problem and design for the SPring-8 with careful consideration.
V-2-36. Design of the Control System for the SPring-8

T. Wada

The SPring-8 accelerator complex consists of four linacs, a synchrotron, and a storage ring. As the accelerator equipments are distributed geographically and functionally over the entire accelerator site (about 900 m × 700 m), a distributed control system will be most appropriate for the facility. In designing this system, it is very important to determine the specifications of hardware (H/W) such as, number, hierarchy structure, linking, and installation places of the processors. The software (S/W) system is also very important, since recently the cost of S/W has become higher than that of H/W. Computer-aided S/W development tools (CAxx) will be introduced, where possible, in all stages of development of application programs.

For control system design, the following conditions are taken into account:

Distributed processors and local area network (LAN):

Easy Operation:
1) The operator’s console should be small and simple, minimizing the number of parameters on regular display.
2) Centralization of operation.
3) Unification of operation and display format.
4) Voice alarm system.

Safety:
Provision of both a H/W and S/W interlock system. All accelerator equipment should have individual internal interlock systems. In some instances, a cross-equipment interlock is required, for example between the vacuum and RF system.

Reduction of Human Labor:
Standard and fixed-order operations are performed automatically by computers. Operators only perform such operations in which high level judgement is required.

Expansibility:
1) Accommodate an increase in and modification of accelerator equipments.
2) Accommodate additional computers or interface H/W.
3) Link with other system such as a radiation safety control system, an experimental system, or a computer center.

Noise immunity:
In order to prevent malfunctions of equipment, or deterioration of exchanged information by equipment, optical fiber cables are adopted for long distance signal transfer, and even in short distance communications opto-coupled devices are adopted. Signals of TTL level are not appropriate for transmission between equipment and interface systems.

Radiation:
Selection of the appropriate location for installation of control devices or cables.

Easy Maintenance:
Adoption of specially produced cables or devices.

Easy programming:
Standardization:
Central management of S/W and database:

The control system consists of a central control system, a program developing system, and several local control systems for each accelerator. These local systems and central control system are linked through computer networks. Each local system consists of a host computer, several front-end processors (FEP) and an operator’s console. Figure 1 shows schematically the computers and their interconnecting network.

At the lower hierarchy level, some FEP’s are linked. These FEP’s are microprocessors such as VME (Versa Module European) crate systems and programmable controllers. At equipment levels, integrated microprocessors are used. Microprocessors are especially useful for driving motors and the acquisition of beam diagnostic data. When high data processing speed is required, such as by a fast digital feedback system, a VXI system has been selected, since the data transmission rate of the VXI bus is much higher than that of the VME bus.

Engineering workstations (EWS) are used as operator’s consoles, which permit X-window operation.

As is shown in Fig.1, a so called multi-media LAN (FDDI-3) is adopted for backbone control, with full- and mini-MAP (Manufacturing Automation Protocol) LAN’s for real-time control. Voice signals and TV signals are also transmitted on FDDI cables. MAP has two advantages over Ethernet (TCP/IP). One is that messages are exchanged by the token-passing method. Hence, even under heavy traffic conditions, real-time response can be maintained. The other is that mini-MAP bypasses
Fig. 1. Schematic diagram of computers and the inter-connecting network.

the middle four (3–6) of the seven layers of OSI (Open System Interconnection, which is a standardized protocol system for computer network). Thereby quick response is achieved.

UNIX and VMS are presently the most popular operating systems. VMS is very powerful, but can only be run on VAX computers. UNIX, on the other hand, is nearly machine independent and has been implemented in many different computers. It is powerful for program development and communication between computers. Although the early version of UNIX had few real-time functions, it has subsequently been improved. One example is the RIKEN ring cyclotron control system, in which UNIX and real-time operating systems coexist in the same computer. ¹ For lower level computers, such as VME, real-time operating systems are adopted. The programs are, therefore, developed in UNIX and later down loaded to real time control computers or written on EPROM’s (erasable programmable read-only memory).

The timing system supplies synchronization pulses to the gun, linac, booster pulsed magnets, storage ring pulsed magnets, beam position monitoring system, and control-room instruments. It also provides pulses for use by experimenters. Pulses driven from booster magnetic field trigger the linac RF system and electron gun to fill a selected booster bucket. The timing signals are lead directly to delay modules in the FEP’s.

References

Overall design of the beam diagnostic system for the SPring-8 Storage Ring has been performed. The primary purpose of the beam diagnostic system is obtaining information of the behavior of the electron beam during the commissioning of the machine, user experimental runs, and machine studies for accelerator physics. The information will be fed back to operation conditions of the storage ring.

The components of the system listed in Table 1 are described in some detail. Since detailed design parameters are not yet decided, only qualitative or semi-quantitative descriptions are presented.

(1) **Direct Current Current Transformer (DCCT):** An average stored current will be measured with a direct current current transformer (DCCT), whose dynamic range should cover the range from about 10 μA for the minimum sensitivity to above 100 mA for the maximum operating current.

(2) **Current Transformer (CT) or Wall Current Monitor (WCM):** The intensity of each bunch could be seen through one of these monitors on an oscilloscope display, if the monitor has enough bandwidth. No detailed time structures within a bunch will be observed because of the attenuations of the high frequency component of signals.

(3) **Screen monitors:** Fluorescent screens will be installed at the injection point and several other places around the storage ring. They will be driven and positioned with air cylinders to be inserted into the electron orbit. Electrons or positrons supplied by successive injection cycles, with a repetition rate of 1 Hz, will illuminate the screens and provide information on the beam positions of the first turn of the injection, in a destructive way.

(4) **Beam Position Monitors (BPMs):** Measurement of position of the stored beam will be done with capacitive coupling button pickup electrodes in a non-destructive way. This type of monitors will be the main monitors during normal operations.

From the viewpoint of beam dynamics and the closed orbit correction scheme which we are going to adopt, it is desirable that beam position signals can be obtained for one single passage of a bunch. Also, for stable multiple passages, the averaged signals should be able to be detected in better position resolution. The single pass processing of the signal is especially desirable during the commissioning. If the monitors can record every single passage of a pulse consisting of a group of a few bunches, then the phase space mapping can be obtained with an appropriately placed pair of position monitors.

The required position measurement accuracy is about 1 mm for single passage of a pulse signal, and within 100 μm for multiple passage signals. The 100-μm accuracy of the position measurements with BPMs is required for correcting the closed orbit within the accuracy of 100 μm. The accuracy will be mainly determined by electronic noise errors arising from the signal processing electronics circuits for the single pass measurements, and by mechanical positional uncertainty of mounting the monitor vacuum chambers to the magnets for the multiple pass measurements. We expect the position resolution determined by the electronic noise of the signal processing electronics circuits for the multiple pass measurements to be less than 50 μm.

A super heterodyne method is adopted for the signal processing electronics. For single pass measurements, a bandwidth is required to be wide enough for covering the revolution frequency, 208.8 kHz. The central frequency of the first band
pass filter will be the same as \(f_{\text{rf}} \), which is 508.58 MHz, and the intermediate frequency will be 50 MHz with a bandwidth of about 2 MHz, \(\text{i.e.,} \) ten times the revolution frequency.

(5) Beam loss monitors: Beam losses can be observed by detecting \(\gamma \)-rays produced by bremsstrahlung of electrons hitting vacuum chamber walls and others. One of these monitors can identify the rough position of the beam loss. Gas ionization chambers filled with dried air or plastic fiber scintillators with lead converters surrounding the whole circumference of the storage ring will be used as loss monitors.

(6) Perturbing electrodes (RFKO): The perturbing electrodes, which are also called RFKO (Radio Frequency Knock Out) electrodes, are driving electrode generating an A.C. magnetic field on the electron orbit so as to excite coherent oscillations or suppress instabilities. Betatron tunes will be measured by exciting coherent oscillations with these electrodes.

(7) Strip line electrode: Strip line electrodes will be used as directional coupling monitors. This type of monitors can be designed so that the frequency response is flat up to high frequencies.\(^2\)

(8) Synchrotron radiation monitoring systems\(^3\): Information about the behavior of an electron beam can be deduced from synchrotron radiation emitted from the bending magnets and insertion devices. Detailed design of SR monitoring systems depends on several factors such as the wavelength of radiation which is used for observation, radiation source characteristics (a bending magnet or an insertion device). In general, for deducing information from synchrotron radiation, following devices will be used: a telescope or a pinhole for focusing the profile of an electron beam, a TV camera to record the profile, one dimensional and two dimensional photodiode arrays for recording the profile and for oscillation frequency analysis when the resonance is excited by the strip line electrodes, and a streak camera to measure the bunch length.

Emittance will be measured from the electron beam profiles or angular distributions with the synchrotron radiation monitoring systems at certain points whose betatron functions will have been already measured by some other methods.

(9) Photon beam stabilization: Various kinds of sources will cause a long term drift and/or vibrations of photon beam lines. The long term drift will be suppressed with a global closed orbit distortion correction supervised by the central control system of the storage ring. Vibrations with much higher frequency components will be suppressed with a local feedback scheme. The high frequency end of the feedback will be limited mainly by the effect of an eddy current in the vacuum chamber. Further studies on photon beam position monitors and their precision, sensitivity, frequency response, and stability, as well as feedback electronics and feedback algorithms are necessary.

References

2) “1-2 GeV Synchrotron radiation source, conceptual design report, July 1986” Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA, 103 (1986).
VI. Radiation Monitoring

1. Neutron Dose Around an Iron Beam Stopper

T. Shikata, N. Nakanishi, S. Nakajima, S. Fujita, K. Ikegami, and T. Kosako

Shielding calculations\(^1\) have been carried out for determining an operation mode of RIKEN Ring Cyclotron to keep the radiation below tolerable level in the key areas of the facility. It is important to confirm the results from experiments, and to make clear the energy- and angular-distribution of neutrons ejected from a beam stopper for design of a neutron shielding. However, we have only a few data on the neutron production by interactions of heavy ions of several hundreds of million electron volts per nucleon with beam-stopping materials.

We carried out a preliminary experiment on the angular distributions of high-energy neutrons ejected from a cubic iron beam stopper of 15 mm in thickness, by collision with nitrogens of 135 MeV/nucleon. The measurements were performed at polar angles of 0°, 25°, 45°, 70°, 110°, and 135° with respect to the beam by a shadow bar method using a "rem counter", Studsvik 2202D. The shield used was a polyethylene slab of 45 cm in thickness, which was placed only at the front of the rem counter. The measurements were also carried out without the shield. The distance between source and detector was 4 m.

Although the response function of the rem counter is not given above 20 MeV in its manual, Suzuki et al.\(^2\) reported that neutrons of above 20 MeV contribute as much as 40% to the dose rate measured by the rem counter outside the thick shield of the high-energy proton accelerator with 12 GeV at KEK. The dose for source neutrons with less than several tens of million electron volts decrease drastically with decreasing energy when the polyethylene shield is used. Neutrons of less than several million electron volts ejected from a beam stopper may be distributed isotropically. Therefore, the angular distribution of high-energy neutrons may be known roughly from the measurement of the dose rate with and without a shielding. The results are shown in Fig. 1. Above several tens of million electron volts, detection efficiency increases with increasing thickness of the polyethylene shield. The greatly decreased dose rates due to the shield with smaller polar angle indicate that they correspond to neutrons mainly up to several tens of million electron volts and that these neutrons has a peak in the forward direction and occupy a comparatively large portion of the energy distribution. The values measured with the shield show contributions from neutrons with higher energies and rather a few backscattered neutrons.

Neutron dose rates outside a concrete wall were also measured in the direction of 90°. The results are about 1/50 of these calculated (not for nitrogen, but for carbon of 135 MeV/nucleon). Even if the decrease of the rem counter response is taken into account for neutrons above 20 MeV, the calculated value is overestimated. The reason may be ascribed mainly to the inaccuracy in neutron energy spectrum from the source and/or in the neutron cross sections used in the calculations. Therefore, exact measurement of the energy spectrum produced in the beam stopper should be necessary.

Fig. 1. Dose rates measured with a rem counter with and without a 45 cm polyethylene shield in front of it.

References

VI-2. Residual Activities in the Ring Cyclotron Facility

S. Fujita, T. Takagi, S. Okamoto, N. Nakanishi, I. Sakamoto, T. Inamura, and H. Kamitsubo

Residual activities were measured at various points in the Ring Cyclotron Facility.

From June 18 to 24, an experiment was carried out with a $^{14}\text{N}^+$ beam of 135 MeV/u in the experimental vault E4. However, because water leakage was found at a part of north side dee of the AVF cyclotron at the last day of the experiment, the acceleration chamber was opened. On June 27, residual activities in the AVF cyclotron

Fig. 1. Detection points around the injector AVF cyclotron. Dose rates are indicated in units of μSv/h.

Fig. 2. Detection points around RIKEN Ring Cyclotron. EDC, an electrostatic deflection channel; MDC1, a magnetic deflection channel 1; MDC2, a magnetic deflection channel 2; MDP1, a main differential probe 1; MDP2, a main differential probe 2; MDP3, a main differential probe 3. Numerals indicated are dose rates in units of μSv/h.

Fig. 3. Layout of RIKEN Ring Cyclotron facility as of 1990. Monitoring positions are denoted by \times. Detection points of residual activity on the beam lines are denoted by alphabets.
were measured with a portable ionization cham­
ber (AE-133/1, manufactured by Applied Engi­
neering Inc., Japan). The measurements were
made for three days after the stop of machine
operation. The results are shown in Fig. 1
together with detection points. The dose rates of
the deflector increased about 25 times than that

Table 1. Summary of residual activities measured along
the beam lines. Alphabets indicate detection points (see
Fig. 3).

<table>
<thead>
<tr>
<th>Detection ionization chamber survey meter(μSv/h)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 100 May. 26</td>
<td></td>
</tr>
<tr>
<td>B 40 May. 26</td>
<td></td>
</tr>
<tr>
<td>C 120 May. 26</td>
<td></td>
</tr>
<tr>
<td>D 120 May. 26</td>
<td></td>
</tr>
<tr>
<td>E 250 May. 26</td>
<td></td>
</tr>
<tr>
<td>F 65 May. 26</td>
<td></td>
</tr>
<tr>
<td>G 40 May. 26</td>
<td></td>
</tr>
<tr>
<td>H 30 May. 26</td>
<td></td>
</tr>
<tr>
<td>I 20 Jul. 25</td>
<td></td>
</tr>
<tr>
<td>J 200 May. 26</td>
<td></td>
</tr>
<tr>
<td>K 40 May. 26</td>
<td></td>
</tr>
<tr>
<td>L 500 May. 26</td>
<td></td>
</tr>
<tr>
<td>M 40 May. 26</td>
<td></td>
</tr>
<tr>
<td>N 150 May. 26</td>
<td></td>
</tr>
<tr>
<td>O 700 May. 26</td>
<td></td>
</tr>
<tr>
<td>P 200 May. 26</td>
<td></td>
</tr>
<tr>
<td>Q 45 May. 26</td>
<td></td>
</tr>
<tr>
<td>R 1000 May. 26</td>
<td></td>
</tr>
<tr>
<td>S 900 Mar. 26</td>
<td></td>
</tr>
<tr>
<td>T 600 May. 26</td>
<td></td>
</tr>
<tr>
<td>U 26 Jan. 21</td>
<td></td>
</tr>
<tr>
<td>V 150 Jan. 21</td>
<td></td>
</tr>
<tr>
<td>W 28 Aug. 02</td>
<td></td>
</tr>
<tr>
<td>X 250 Jun. 25</td>
<td></td>
</tr>
<tr>
<td>Y 300 Jun. 25</td>
<td></td>
</tr>
<tr>
<td>Z 45 May. 07</td>
<td></td>
</tr>
</tbody>
</table>

of a previous report,1 depending on the positions.
From August 1 to 3, last experiments in the
spring term were carried out with an \(^{40}\text{Ar}^{16+}\)
beam of 80 MeV/u in the experimental vault E2.
A routine overhaul was made in August, and
the dose rates due to residual activities of the
Ring Cyclotron was measured on Aug. 24. The
results are shown in Fig. 2 together with detec­
tion points. The dose rates of EDC increased
about 165 times than that of a previous report,2)
depending on the positions.
We also measured those of MDC1 and MDC2 at
the occasion of the overhaul after three-year
separation.
In this period, January to December, residual
activities were measured along the beam lines to
the experimental vault E6 with a portable ioniza­
tion chamber. The detection points above 20μSv/

References
1) S. Fujita, I. Sakamoto, T. Inamura, and H. Kami­
2) S. Fujita, I. Sakamoto, T. Inamura, and H. Kami­
VI-3. Leakage Radiation Measurements in the Ring Cyclotron Facility

The radiation safety control system has work-

Table 1. Dose rates of neutron leakage radiation from a target point A in extended experimental vault E5 (see Figs. 1-a,b).

<table>
<thead>
<tr>
<th>Measured point</th>
<th>Dose rates (μSv/h)</th>
<th>Measured point</th>
<th>Dose rates (μSv/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.56</td>
<td>g</td>
<td>0.002</td>
</tr>
<tr>
<td>b</td>
<td>0.34</td>
<td>h</td>
<td>0.006</td>
</tr>
<tr>
<td>c</td>
<td>0.033</td>
<td>i</td>
<td>125</td>
</tr>
<tr>
<td>d</td>
<td>0.002</td>
<td>j</td>
<td>14</td>
</tr>
<tr>
<td>e</td>
<td>0.010</td>
<td>k</td>
<td>0.125</td>
</tr>
<tr>
<td>f</td>
<td>1.80</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Dose rates of neutron leakage radiation from a target point B in the beam distribution corridor. (see Figs.1-a,b,c.) A letter "A" stands for the neutron dose rate meter of 2202D Studsvik No.8306; "B" for 2202D of Studsvik No.89006; "C" for 2202D of Studsvik No.86032; and "D" for NSN1001 of Fuji electric.

<table>
<thead>
<tr>
<th>Measured point</th>
<th>Detector name</th>
<th>Count rates (C/3min)</th>
<th>Dose rates (μSv/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2)</td>
<td>A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(3)</td>
<td>C</td>
<td>2</td>
<td>0.03</td>
</tr>
<tr>
<td>(4)</td>
<td>C</td>
<td>17</td>
<td>0.22</td>
</tr>
<tr>
<td>(5)</td>
<td>C</td>
<td>89</td>
<td>1.15</td>
</tr>
<tr>
<td>(6)</td>
<td>B</td>
<td>184</td>
<td>3.10</td>
</tr>
<tr>
<td>(7)</td>
<td>A</td>
<td>38</td>
<td>0.64</td>
</tr>
<tr>
<td>(8)</td>
<td>C</td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>(9)</td>
<td>B</td>
<td>2</td>
<td>0.03</td>
</tr>
<tr>
<td>(10)</td>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(11)</td>
<td>C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(12)</td>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(13)</td>
<td>C</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(14)</td>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(15)</td>
<td>A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(16)</td>
<td>C</td>
<td>3</td>
<td>0.04</td>
</tr>
<tr>
<td>(17)</td>
<td>C</td>
<td>42</td>
<td>0.84</td>
</tr>
<tr>
<td>(18)</td>
<td>C</td>
<td>6</td>
<td>0.08</td>
</tr>
<tr>
<td>(19)</td>
<td>C</td>
<td>34</td>
<td>0.44</td>
</tr>
<tr>
<td>(20)</td>
<td>B</td>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>(21)</td>
<td>B</td>
<td>5</td>
<td>0.08</td>
</tr>
<tr>
<td>(22)</td>
<td>B</td>
<td>110</td>
<td>1.85</td>
</tr>
<tr>
<td>(23)</td>
<td>B</td>
<td>6</td>
<td>0.10</td>
</tr>
<tr>
<td>(24)</td>
<td>B</td>
<td>42</td>
<td>1.58</td>
</tr>
<tr>
<td>(25)</td>
<td>C</td>
<td>15</td>
<td>0.19</td>
</tr>
<tr>
<td>(26)</td>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(27)</td>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(28)</td>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(29)</td>
<td>D</td>
<td>0</td>
<td>0.002</td>
</tr>
<tr>
<td>(30)</td>
<td>D</td>
<td>0</td>
<td>0.002</td>
</tr>
<tr>
<td>(31)</td>
<td>D</td>
<td>0</td>
<td>0.020</td>
</tr>
<tr>
<td>(32)</td>
<td>D</td>
<td>0</td>
<td>0.018</td>
</tr>
<tr>
<td>(33)</td>
<td>D</td>
<td>0</td>
<td>0.020</td>
</tr>
<tr>
<td>(34)</td>
<td>D</td>
<td>0</td>
<td>0.006</td>
</tr>
<tr>
<td>(35)</td>
<td>D</td>
<td>0</td>
<td>0.055</td>
</tr>
<tr>
<td>(36)</td>
<td>D</td>
<td>0</td>
<td>0.040</td>
</tr>
<tr>
<td>(37)</td>
<td>D</td>
<td>0</td>
<td>0.029</td>
</tr>
<tr>
<td>(38)</td>
<td>D</td>
<td>0</td>
<td>0.059</td>
</tr>
<tr>
<td>(39)</td>
<td>D</td>
<td>0</td>
<td>0.030</td>
</tr>
<tr>
<td>(40)</td>
<td>D</td>
<td>0</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Fig. 1. Layout of RIKEN Ring Cyclotron facility as of 1990. a: Plan view of basement 2th floor; b: Plan view of basement 1th floor; c: Plan view of first floor. Leakage radiation doses measuring points are denoted by alphabets and the number in the parentheses.
ed steadily this year, performing radiation monitoring continuously and automatically. A new beam line became available in a newly extended experimental vault E5.

On June 14, an experiment was carried out with a 135 MeV/u 12C$^{6+}$ beam at a particle intensity of 1 pnA in the experimental vault E5, where leakage radiation was measured with neutron dose rate meters 2202D of Studsvik. In Fig. 1-a and b are shown a target point A and detection points of leakage radiation alphabetically. Results are summarized in Table 1.

Although the points i and j showed high radiation levels, nobody can enter the stair room, because it was closed during experiments.

On March 22 an experiment was carried out with a 100 MeV/u 18O$^{8+}$ beam at a particle intensity of 44pnA in the experimental vault E6. The beam was stopped at a target point B in the beam distribution corridor located in front of the dipole magnet D1.

Leakage radiation of neutrons was measured with four neutron dose rate meters, three 2202D's of Studsvik and an NSN1001 of Fuji electric. 2202D's were used with pulse counters because of their low sensitivity to neutrons; NSN1001 was used alone because of its high sensitivity. Figure 1-a, b, and c show the target point B and a position where leakage radiation was measured. Results are summarized in Table 2. The radiation level in the controlled area is well below the safety limit (1mSv/week), and the level outside the controlled area is below the safety limit (0.3mSv/week).

This period, January through December, no leakage of gamma rays and neutrons was detected with environmental monitors set outside the building.
VI-4. Routine Monitoring of the Cyclotron, RILAC, TANDETRON, and the Personal Monitoring of RIKEN Accelerator Workers

1. Routine Monitoring of the Cyclotron, RILAC, and TANDETRON

Routine radiation monitoring was carried out for the cyclotron, RILAC, and TANDETRON from January to December, 1990, aspects of leakage radiation from the cyclotron are described in a succeeding report.\(^1\)

1) Contamination in the cyclotron building: Surface contamination has been kept below \(10^{-4}\) Bq/cm\(^2\) on the floors of the cyclotron building.

When radioactive substances were handled in the hot laboratory and chemical laboratories, the air in a draft chamber was activated; the radioactivity at the exit of the chamber was of the order of \(10^{-7}-10^{-8}\) Bq/cm\(^2\).

2) Drainage: Radioactivities in the drain water from the cyclotron and linac buildings were found to be of the order of \(10^{-4}-10^{-3}\) Bq/cm\(^2\). The total activity in aqueous effluents was 14 kBq.

3) Radiation monitoring for RILAC and TANDETRON: The leakage radiation during operation of RILAC was measured outside the linac building every three months. No leakage of \(\gamma\) rays and neutrons from the linac building was detected. No contamination due to residual activities was found on the floor of control area and in conditioned air in the linac building.

X-ray monitoring was carried out for TANDETRON, when an aluminum target was bombarded with 1.6 MeV H\(^+\) ions of 1 nA. No leakage X-rays were detected around TANDETRON and outside the TANDETRON room.

2. Personal monitoring of RIKEN accelerator workers

The number of RIKEN accelerator workers increased to 1.3 times that in the preceding period.

The external exposure doses were measured by using \(\gamma\) ray and neutron film badges. The doses received by accelerator workers from January to December, 1990, are shown in Table 1. The external doses were detected for 11 persons: four RILAC operators, four nuclear chemists, and three other researchers. The collective dose owing to thermal and fast neutron exposures was below the detection limit.

Table 1. Annual external exposure doses received by RIKEN accelerator workers from January to December, 1990.

<table>
<thead>
<tr>
<th>Workers</th>
<th>Number of persons</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Undetectable</td>
</tr>
<tr>
<td>Accelerator physicists and operators</td>
<td>40</td>
<td>4</td>
</tr>
<tr>
<td>Nuclear physicists</td>
<td>163</td>
<td>0</td>
</tr>
<tr>
<td>Researchers in other fields</td>
<td>196</td>
<td>7</td>
</tr>
<tr>
<td>TANDETRON workers</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Health physicists</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>423</td>
<td>11</td>
</tr>
</tbody>
</table>

\(^\#\) Operators: For Ring Cyclotron, Cyclotron, and RILAC.

Average annual dose per person, 0.006 mSv; Maximum individual annual dose, 0.6 mSv.

References

1) I. Sakamoto, S. Fujita, and I. Kohno: This Report, p. 212.
VI-5. Leakage-Radiation Measurements in the Cyclotron Building

I. Sakamoto, S, Fujita, and I. Kohno

Leakage radiation was measured at various points in the cyclotron building in March 1990, when a target placed on the beam line No. 2 was bombarded with 18-MeV helium-3 ions at a beam intensity of 3 μA.

γ-Ray dose rates were measured with an ionization chamber survey meter, and dose-equivalent rates for fast and slow neutrons were measured with "rem counter". The results are shown in Fig. 1.

The leakage doses measured monthly during January—April, 1990, with γ-ray and neutron film badges placed at two positions (points A and B in Fig. 1) on the underground passage shown in Table 1.

Of the dose values measured every month at point A, the maximum total dose of 10.2 mSv was observed in March, when the values for γ-rays, thermal and fast neutrons were 7.8, 0.3, and 2.1 mSv, respectively.

High fast-neutron doses observed at point A in March, and at point B in February, and March were 2.1, 4.7, and 8.5 mSv, respectively. The increase in the neutron dose at point B was due to high intensity irradiation on the beam line No. 4, where a target was bombarded with 22-MeV helium ions at a beam intensity of 100 nA; beam intensities cyclotron users frequently use on this beam line was 7-8 nA. The high fast-neutron doses at point A were due mainly to activation analysis and radioisotope production carried out on the beam line No. 2 during this period.

<table>
<thead>
<tr>
<th>Operating conditions</th>
<th>Dose unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(Piπ) : 18 MeV</td>
<td>γ Ray : μSv/h</td>
</tr>
<tr>
<td>Beam line : No. 2</td>
<td>Neutron : μSv/h (underlined value)</td>
</tr>
<tr>
<td>Target : GaAs</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Leakage radiations (neutrons and γ rays) in the cyclotron building.

* A Neutron Rem Counter NSN1 manufactured by Fuji Electric Co., Ltd. Japan.
Table 1. Leakage-radiation doses (1 cm dose-equivalent in mSv) on the underground passage of the cyclotron building during January-April, 1990.

<table>
<thead>
<tr>
<th>Month</th>
<th>(\gamma) rays (mSv)</th>
<th>Thermal neutrons (mSv)</th>
<th>Fast neutrons (mSv)</th>
<th>Total (mSv)</th>
<th>(\gamma) rays (mSv)</th>
<th>Thermal neutrons (mSv)</th>
<th>Fast neutrons (mSv)</th>
<th>Total (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 90'</td>
<td>2.1</td>
<td>0.1</td>
<td>0.9</td>
<td>3.1</td>
<td>0</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Feb.</td>
<td>0.4</td>
<td>0</td>
<td>0.3</td>
<td>0.7</td>
<td>0.8</td>
<td>0</td>
<td>4.7</td>
<td>5.5</td>
</tr>
<tr>
<td>Mar.</td>
<td>7.8</td>
<td>0.3</td>
<td>2.1</td>
<td>10.2</td>
<td>1.4</td>
<td>0.1</td>
<td>8.5</td>
<td>10.0</td>
</tr>
<tr>
<td>Apr.</td>
<td>4.5</td>
<td>0.1</td>
<td>1.5</td>
<td>6.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>14.8</td>
<td>0.5</td>
<td>4.8</td>
<td>20.1</td>
<td>2.2</td>
<td>0.1</td>
<td>13.4</td>
<td>15.7</td>
</tr>
</tbody>
</table>

* See Fig. 1
VII. LIST OF PUBLICATIONS

1. Accelerator development and accelerator physics

2. Nuclear physics and nuclear instrumentation
 7) M. Tohyama: "Landau's Collision Term in Time-Dependent Density Matrix Formalism", ibid., p. 413.

24) K. Nagamine: “Ultra-Slow μ-Production via Muon Catalyzed Fusion”, *ibid.*, p. 49.

3. Atomic and solid-state physics

2) H. Tawara, T. Tonuma, H. Kumagai,
and T. Matsuo: "Production of Recoil Ne$^{+q}$ Ions Accompanied by Electron Loss and Capture of 1.05-MeV/amu Ne$^{+q}$ $(q=2, 4, 6, 8, \text{and} 10)$ Ions", *ibid.*, 41, 116 (1990).

10) K. Tanaka, E. Yagi, N. Masahashi, Y. Mizuha, K. Tatsumi, and T. Takahara: "Lattice Location B Atoms in Ni$_{0.75}$ Al$_{0.15}$ Ti$_{0.10}$ Intermetallic Compounds as Observed by the Channelling Method", *ibid.*, p. 471.

22) S. Ohtani, M. Kimura, and Y. Awaya: "Reports on Workshop on Atomic Physics at the Advanced Photon
4. Radiochemistry, radiation chemistry and radiation biology

5. Material Analysis

VIII. LIST OF PREPRINTS

(1987—1990)

RIKEN-AF-NP

58 Isao Tanihata; March, 1987, "On the Possible Use of Secondary Radioactive Beams".

59 Isao Tanihata; April, 1987, "Nuclear Structure Studies Using High-Energy Radioactive Nuclear Beams".

62 M. Oshima, E. Minehara, S. Kikuchi, T. Inamura, A. Hashizume, M. Matsuzaki, and H. Kusakari; October, 1987, "Rotational Perturbation to the Natural-Parity Rotational Band of 163Dy".

63 S. Ymaji, H. Hofmann, and R. Samhammer; November, 1987, "Selfconsistent Transport Coefficients for Average Collective Motion at Moderately High Temperatures".

64 Isao Tanihata; November, 1987, "Nuclear Structure Studies Using Beams of Radioactive Nuclei".

66 T. T. Inamura; March, 1988, "Lasers in Nuclear Physics".

67 I. Tanihata; June, 1988, "Nuclear Studies eith Radioactive Beams".

69 F. Sakata, M. Matsuo, T. Marumori, and Y. Zhuo; Sep, 1988, "Master Equations in the Microscopic Theory of Nuclear Collective Dynamics". INS-Rep.-703
70 S. Yamaji, H. Hofmann, and R. Samhammer; Feb, 1989, "Selfconsistent Transport Coefficients for Damped Motion".

71 T. Nakagawa, I. Tanihata, and K. Nakagawa; April, 1989, "Timing Property of a New Type Time Pick-up Detector".

73 R. Samhammer, H. Hofmann, and S. Yamaji; May, 1989, "Self-Consistent Transport Tensors for Collective Motion in Several Dimensions".

74 K. Soutome, T. Maruyama, and K. Saito; June, 1989, "Relativistic sigma-omega Model at Finite Temperature in Thermo Field Dynamics".

77 M. Sano; July, 1989, "Strangeness production in high-energy nuclear collisions"

78 I. Tanihata; August, 1989, "Reactions Using High Energy Beams of Radio Active Nuclei".

79 S. Yamaji; October, 1989, "Nuclear Collective Motion: Markovian or not?"

80 Isao Tanihata; October, 1989, "A Systematics of the Nuclear Radii and Neutron Halo"

84 K. Asahi, K. Matsuta, K. Takeyama, K.H. Tanaka, Y. Nojiri, and T. Minamisono; December, 1989, "Half-life and Branching Rations of the 130 Beta Decay".

88 T. Inamura; February, 1990, "Nuclear Structure Study through the Electromagnetic Interaction".

91 I. Tanihata; March, 1990, "Study of Exotic Nuclei with Radioactive Beams".

93 I.Tanihata; June, 1990, "Structure of Neutron-Rich Nuclei Studied by Radioactive Beams Neutron halo Soft E1 excitation Neutron halo Soft E1 excitation = ".

94 M.Sano and M.Wakai; August, 1990, "Strangeness Production in High-Energy Nuclear Collisions".

96 Kouichi SOUTOME and Shuhei YAMAIJi Mitsuo SANO; October, 1990, "COULOMB DISSOCIATION OF 11Li".

97 Kensuke Kusaka; October, 1990, "Effective Theory of Qcd For Deconfinement and chiral Phase transitions at finite temperature".

IX. PAPERS PRESENTED AT MEETINGS

1. Accelerator development and accelerator physics

10) T. Nakagawa: “Gas Mixing Effect on ECR Ion Source”, ibid.

2. Nuclear physics and nuclear instrumentation

22) S. Yamaji and H. Hofmann: “Nuclear Collective Motion; Markovian or Not?", Int. Conf. on Nucl. Phys. in Honor of Akito Arima, Santa-Fe, May (1990).

24) Y. Watanabe, S. Sakamoto, K. Ishida, T. Matsuizaki, P. Strasser, and K. Nagamine: “New Insights in Muon...
Transfer Reaction of (μd)+He", Int. Conf. on Muon Catalyzed Fusion, Wien, May (1990).

27) K. Ishida, T. Matsuoka, and K. Nagamine: “Large Solid Angle Superconducting Coil and Solenoid Muon Channel for Future μ CF Experiment”, ibid.

41) Y. Watanabe, S. Sakamoto, K. Nagamine, K. Ishida, T. Matsuzaki, and P. Strasser: “Muon Transfer Reaction in Liquid Deuterium with 4He Impurity”, ibid.

43) K. Nagamine, K. Ishida, P. Strasser, and
E. Torikai: “Ultra-Slow μ^- Production via Muon Catalyzed Fusion”, *ibid.*

47) T. Kubo: “Nuclear Physics Experiments at RIKEN Ring Cyclotron”, *ibid.*

49) K. Soutome, S. Yamaji, and M. Sano: “Dissociation of 11Li”, *ibid.*

3. Atomic and solid-state physics

9) T. Watanabe: “History of Ion-Atom
Collision Research in Japan—A Report from the Far-East—", *ibid*.

14) E. Yagi: "Behaviour of Kr Atoms Implanted into Al", *ibid*.

29) K. Fujima, Y. Naito, T. Watanabe, Y. Awaya, and T. Kambara: "The n-Level Dependence of Inner-Shell Excitation by Heavy-Ion Atom Collisions", *ibid*.

32) Y. Zou: "Lifetime of Ti XIII Measured by Beam Foil Method", *ibid*.

33) T. Niizeki: "A Concept of the Beam Line for Atomic Physics at SPring-8", 6th

54) E. Yagi: “Behaviour of Kr Atoms Implanted into Al”, ibid.

on F K Satellites (I), *ibid.*

61) I. Shimamura: “Muon-catalyzed Fusion and Muonic Molecules”, *ibid.*

4. Radiochemistry, radiation chemistry and radiation biology

7) Y. Ohkubo, Y. Yanagida, Y. Kobayashi, F. Ambe, and K. Asai: “Perturbed Angular Correlation and Emission Mössbauer Spectroscopy of ⁹⁹Ru in α-Fe₂O₃ Using ⁹⁹Rh as the Source Nuclide”, *ibid.*

8) Y. Itoh and H. Tachi: “Lattice Defect in GaAs Crystals by Positron Annihilation”, *ibid.*

27) T. Takahashi and Y. Itoh: “Defects in GaAs Crystals Studied by Positron”, *ibid.*

32) J. Nakamura, N. Yamada, K. Asai, Y. Kobayashi, and F. Ambe: “**Sb Möss-
bauer Spectroscopy on MnSb", *ibid.*

46) T. Takahashi and Y. Itoh: "Defects in GaAs Crystals Studied by Positrons", *ibid.*

52) M. Minami: "Application of Heavy Ion Rutherford Scattering to Carbon Materials", *ibid.*

53) A. Kaburagi: "Application of Heavy Ion Rutherford Scattering to Metal Thin Foils", *ibid.*

5. Material analysis

X. SUBJECTS UNDER CONTRACT

(Jan.–Dec. 1990)

1) “Radiochemical Analysis of 16O, 14N, and 12C in Si Crystal and GaAs”
 H. Kirita
 Japan Chemical Analysis Center

2) “Radiation Damage of Solar Cells”
 T. Saga
 Sharp Co., Ltd.

3) “Improvement of Thyristors by Proton Irradiation”
 K. Tomii
 Semiconductor R&D Lab., Matsushita Electric Work Co., Ltd.

4) “Improvement of Thyristors by Proton Irradiation”
 H. Akiyama
 LSI Lab., Mitsubishi Electric Co., Ltd.

5) “Improvement of Thyristors by Proton Irradiation”
 M. Kitagawa and A. Ohsawa
 Toshiba Co., Ltd.

6) “Improvement of Thyristors by Proton Irradiation”
 Y. Shimizu
 Hitachi Co., Ltd.

7) “Improvement of Thyristors by Proton Irradiation”
 K. Muraoka and S. Sasaki
 Toyo Electric Co., Ltd.
XI. LIST OF SEMINARS

(Jan.–Dec. 1990)

Radiation Lab., Cyclotron Lab., Linear Accelerator Lab.

1) R. Seki, California State Univ. (USA), 17 January
 "Understanding Nuclear Force as Soliton Interaction"

2) H. Toki, Tokyo Metropolitan Univ. (Tokyo), 14 February
 "d-Isobar Excitation in (3He, t) Reactions"

3) H.G. Backe, Mainz Univ. (Germany), 28 February
 "Optical Spectroscopy of Fission Isomers"

4) Y. Sakuragi, Osaka City Univ. (Osaka), 22 March
 "Recent Topics on Polarized Heavy Ions"

5) J. Žofka, Nuclear Physics Institute Řež Prague (Czechoslovakia), 22 March
 "Recent Development in Hypernuclear Physics"

6) L. Bimbot, IPN Orsay (France), 27 March
 "Subthreshold Pion Production"

7) R.N. Boyd, Ohio State Univ. (USA), 10 April
 "Lectures in Nuclear Astrophysics"

8) T. Wada, RIKEN, 25 April
 "Induced Fission Studied with Multi-Dimensional Langevin Equation"

9) S. Kox, ISN Grenoble (France), 9 May
 "Total Reaction Cross Sections Measured for Stable and Exotic Heavy Ions in the Intermediate Energy Range"

10) D. Rebreyend, ISN Grenoble (France), 25 May
 "Source Size Measurements in Heavy Ion Reactions from Light Particle Correlations"

11) M. Tohyama, Kyorin Univ. (Tokyo), 6 June
 "Time-Dependent Density Matrix and its Applications"

12) M. Sakai, Institute for Nuclear Study (Tokyo), 13 June
 "Electron Spectra in the e+ + Th Interaction"

13) E.K. Hulet, Univ. of California (USA), 6 July
 "Fission of Heavy Actinide Elements"

14) K. Kaki, Tokyo Institute of Technology (Tokyo), 11 July
 "Multiple Scattering Contributions to the RIA Optical Potential"

15) T. Sasakawa, Tohoku Univ. (Miyagi), 18 July
 "Recent Development in the Study of the Three Nucleon System"

16) U.G. Meissner, Bern Univ. (Switzerland), 4 August
 "The Pion in QCD"

17) K. Ikeda, Niigata Univ. (Niigata), 6 September
 "Structure of Unstable Nuclei and a New Type of Resonance Modes"

18) K. Kusaka, RIKEN, 17 September
 "Schematic Model of QCD Phase Transition"

19) K. Niita, Giessen Univ. (Germany), 22 October
 "Subthreshold Particle Production in Heavy Ion Collisions"

20) G. Hagemann, The Niels Bohr Institute (Denmark), 31 October
 "Study on Band Crossing"

21) B. Mottelson, NORDITA (Denmark), 29 November
 "Physics of Superdeformation"

22) N. Carjan, CEN Bordeaux (France), 4 December
 "Two-Dimensional Langevin Approach to Nuclear Fission"

23) D. Napoli, Legnalo-Padova (Italy), 10
December
“Subbarrier Transfer Reactions with the Legnaro Recoil Mass Spectrometer (LMS)”

24) T. Udagawa, Univ. of Texas at Austin (USA), 25 December
“Subbarrier Fusion Reactions”

Atomic Processes Lab.
1) R. Srivastava, Univ. Roorkee (India), 26 January
“Application of Distorted-Wave Approach to Electron-Atom (Ion) Scattering”

2) U. Safranova, Inst. Spectroscopy (USSR), 18 May
“Spectroscopy of High Ionized Atom in Hot Plasmas”

3) L. Vainshtein, Lebedev Physical Inst. (USSR), 18 May
“Using of K-Matrix for Channel Interaction Problem”

4) D. Habs, Max Planck Inst. für Kernphysik, (Germany), 2 November
“Experiments with Heavy Ion Cooler Ring in Heidelberg”

5) A.M. Ermolaev, Univ. Durham (U.K.), 17 October
“Atomic Physics with Low Energy Antiprotons”

Metal Physics Lab.
1) R. Fleming, Univ. of British Columbia (Canada), 9 October
“Muonium Reactions in Gases”

2) R. Fleming, Univ. of British Columbia (Canada), 11 October
“Muonium Reactions on Powder Surfaces”

3) A. Schenck, ETH (Switzerland), 3 December
“Study of Heavy Fermion Systems Using Muon Probes”

4) A. Zubarev, Tashkent Univ. (USSR), 18 December
“New Theory on α-sticking in Muon Catalyzed Fusion and Complex Energy of dHe μ Resonance”

Radiochemistry Lab.
1) Zhang Guilin, The Shanghai Institute of Nuclear Research (China), 5 December
“Ion Implantation Mössbauer Spectroscopy”

Synchrotron Radiation Facility Design Group
1) K. Kasahara, National Research Center for Disaster Prevention (Tsukuba), 3 April
“Ground Investigation by Artificial Earthquake”

2) S. Liu, IHEP (China), 19 April
“The Consideration of JLC Control”

3) T. Kobari and M. Matsumoto, Hitachi, Ltd., (Tsuchiura), 1 June
“An Investigation on Photo-Desorption at PF”

4) D.D. Bhawalkar, CAT (India), 11 July
“Synchrotron Radiation Facility in India”

5) K. Odaka, Hitachi Ltd., (Tsuchiura), 20 July
“Measurement of Thermal Gas Desorption Rate”

6) Y. Kojima, Mitsubishi Electric Corporation (Tokyo), 20 September
“Superconducting Cavity Development at KEK”

7) G. Hirata, Denken Seiki Co., Ltd. (Tokyo), 3 October
“Earth and Ground for Noise Reduction and Safety”

8) H. Winick, Stanford Synchrotron Radiation Laboratory (USA), 12 October
“Present Status in SPEAR and PEP”
XII. LIST OF PERSONNEL

Steering Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMBE Fumitoshi</td>
<td>Steering Committee</td>
</tr>
<tr>
<td>CHIBA Yoshiaki</td>
<td></td>
</tr>
<tr>
<td>HASHIZUME Akira</td>
<td></td>
</tr>
<tr>
<td>ISHIHARA Masayasu</td>
<td></td>
</tr>
<tr>
<td>KATSUMATA Koichi</td>
<td></td>
</tr>
<tr>
<td>KOHNO Isao</td>
<td></td>
</tr>
<tr>
<td>MIYAZAWA Yoshitoshi</td>
<td></td>
</tr>
<tr>
<td>TAKAMI Michio</td>
<td></td>
</tr>
<tr>
<td>YANO Yasushige</td>
<td></td>
</tr>
<tr>
<td>AWAYA Yohko</td>
<td></td>
</tr>
<tr>
<td>HANAOKA Fumio</td>
<td></td>
</tr>
<tr>
<td>INAMURA Takashi</td>
<td></td>
</tr>
<tr>
<td>KAMITSUBO Hiromichi</td>
<td></td>
</tr>
<tr>
<td>KOHAKA Akira</td>
<td></td>
</tr>
<tr>
<td>MATSUOKA Masaru</td>
<td></td>
</tr>
<tr>
<td>NAGAMINE Kanetada</td>
<td></td>
</tr>
<tr>
<td>TANIHATA Isao</td>
<td></td>
</tr>
</tbody>
</table>

* Chairman

Cyclotron Operation and Maintenance Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUJITA Shin</td>
<td></td>
</tr>
<tr>
<td>KAGEYAMA Tadashi</td>
<td></td>
</tr>
<tr>
<td>OGIWARA Kiyoshi</td>
<td></td>
</tr>
<tr>
<td>ITO Shun</td>
<td></td>
</tr>
<tr>
<td>INAGAMI Kumio</td>
<td></td>
</tr>
<tr>
<td>KOHARA Shigeo</td>
<td></td>
</tr>
<tr>
<td>TAKEBE Hideki</td>
<td></td>
</tr>
</tbody>
</table>

Linac Operation and Maintenance Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIBA Yoshiaki</td>
<td></td>
</tr>
<tr>
<td>IKEZAWA Eiji</td>
<td></td>
</tr>
<tr>
<td>KASE Masayuki</td>
<td></td>
</tr>
<tr>
<td>YANOKURA Minoru</td>
<td></td>
</tr>
<tr>
<td>HEMMI Masatoke</td>
<td></td>
</tr>
<tr>
<td>INOUE Toshikio</td>
<td></td>
</tr>
<tr>
<td>MIYAZAWA Yoshitoshi</td>
<td></td>
</tr>
</tbody>
</table>

Scientific and Engineering Personnel

Cosmic Radiation Laboratory

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAI Takashi</td>
<td></td>
</tr>
<tr>
<td>MUNAKATA Kazuo</td>
<td></td>
</tr>
<tr>
<td>KOHNO Tsuyoshi</td>
<td></td>
</tr>
</tbody>
</table>

(Visitors)

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>HASEBE Nobuyuki</td>
<td></td>
</tr>
<tr>
<td>MURAKAMI Hiroyuki</td>
<td></td>
</tr>
<tr>
<td>NAGATA Katsuaki</td>
<td></td>
</tr>
<tr>
<td>NAKAMOTO Atsushi</td>
<td></td>
</tr>
<tr>
<td>NISIJIIMA Kyoshi</td>
<td></td>
</tr>
<tr>
<td>YANAGIMACHI Tomoki</td>
<td></td>
</tr>
</tbody>
</table>

(Student)

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>KASHIWAGI Toshisuke</td>
<td></td>
</tr>
</tbody>
</table>

Cyclotron Laboratory

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE Suck Hee</td>
<td></td>
</tr>
<tr>
<td>FUJISAWA Takashi</td>
<td></td>
</tr>
<tr>
<td>DATÈ Schin</td>
<td></td>
</tr>
<tr>
<td>FUJITA Jiro</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>HASHIZUME Akira</td>
<td></td>
</tr>
<tr>
<td>ISHIHARA Masayasu</td>
<td></td>
</tr>
<tr>
<td>KATSUMATA Koichi</td>
<td></td>
</tr>
<tr>
<td>KOHNO Isao</td>
<td></td>
</tr>
<tr>
<td>MIYAZAWA Yoshitoshi</td>
<td></td>
</tr>
<tr>
<td>TAKAMI Michio</td>
<td></td>
</tr>
<tr>
<td>YANO Yasushige</td>
<td></td>
</tr>
<tr>
<td>KOHNO Isao</td>
<td></td>
</tr>
<tr>
<td>TAKAMI Michio</td>
<td></td>
</tr>
<tr>
<td>YANO Yasushige</td>
<td></td>
</tr>
<tr>
<td>KOHNO Isao</td>
<td></td>
</tr>
<tr>
<td>TAKAMI Michio</td>
<td></td>
</tr>
<tr>
<td>YANO Yasushige</td>
<td></td>
</tr>
<tr>
<td>AWAYA Yohko</td>
<td></td>
</tr>
<tr>
<td>HANAOKA Fumio</td>
<td></td>
</tr>
<tr>
<td>INAMURA Takashi</td>
<td></td>
</tr>
<tr>
<td>KAMITSUBO Hiromichi</td>
<td></td>
</tr>
<tr>
<td>KOHAKA Akira</td>
<td></td>
</tr>
<tr>
<td>MATSUOKA Masaru</td>
<td></td>
</tr>
<tr>
<td>NAGAMINE Kanetada</td>
<td></td>
</tr>
<tr>
<td>TANIHATA Isao</td>
<td></td>
</tr>
</tbody>
</table>

* Chairman
FUJITA Shin 藤田 新
HARA Masahiro 原 雅弘
INABE Naohito 稲辺 善人
KAGEYAMA Tadashi 彫山 正
KOHARA Shigeo 小原 重夫
NAGASE Makoto 長瀬 誠
NAKAJIMA Shunji 中島 孝二
OGIWARA Kiyoshi 今原 義
SAITOU Motozou 重藤 宏雄
SASAKI Shigeki 沢崎 秀樹
SOUTOME Kouichi 遠藤 光一
WADA Takeshi 和田 隆
YANOU Yasushige 山尾 薫
（Visitors）

ABE Yasuhisa 阿部 恭久 (Res. Inst. Fundam. Phys., Kyoto Univ.)
ARAI Eiichi 新井 恭一 (Res. Lab. Nucl. Reactors, Tokyo Inst. Technol.)
BACKE H.G. (Dep. Phys., Mainz Univ.)
EJIRI Hiroyasu 井原 宏泰 (Dep. Phys., Osaka Univ.)
FUJIOKA Manabu 藤岡 良一 (Cyclotron Radioisot. Cent., Tohoku Univ.)
FUJITA Yoshitaka 藤田 宏 (Dep. Phys., Osaka Univ.)
FUKUMOTO Sadayoshi 福本 貞義 (KEK)
HATANAKA Kichiji 畑中 喜治 (RCNP, Osaka Univ.)
HATSUKAWA Yuichi 初川 雄一 (JAERI, Tokai)
HIRAO Yasuo 平尾 昌男 (Natl. Inst. Radio. Sci.)
HORIUCHI Hisashi 堀内 宏 (Dep. Phys., Kyoto Univ.)
HORIGUCHI Takayoshi 堀口 隆彦 (Dep. Phys., Hiroshima Univ.)
IKEDA Kiyomi 池田 清美 (Dep. Phys., Niigata Univ.)
IKEGAMI Hidetsugu 池上 榮一 (RCNP, Osaka Univ.)
INOUE Makoto 井上 真 (RCNP, Osaka Univ.)
ISHIZUKA Takeo 石塚 武男 (Dep. Phys., Saitama Univ.)
IWAMOTO Akira 岩本 昭 (Japan Atomic Energy Res. Inst.)
IWASHITA Yoshihisa 岩下 芳久 (Inst. Chem. Res., Kyoto Univ.)
KANMURI Tetsuo 冠 光 (Dep. Phys., Osaka Univ.)
KATAYAMA Ichirou 片山 一郎 (RCNP, Osaka Univ.)
KATORI Kenji 鹿取 俊二 (Dep. Phys., Osaka Univ.)
KATSURAGAWA Hidetsugu 桂川 秀嗣 (Dep. Phys., Toho Univ.)
KAWAI Mitsui 河合 光 (Dep. Phys., Kyushu Univ.)
KIKUCHI Fumio 菊池文男 (Coll. Arts Sci., Univ. Tokyo)
KISHIMOTO Teruo 西本 龍夫 (Dep. Phys., Univ. Tsukuba)
KOYAYASHI Shinsaku 小林 眈作 (Dep. Phys., Kyoto Univ.)
KOYOMOTO Susumu 河本 進 (Univ. Electro-Commun.)
KOYOMOTO Toshiro 河本 敏郎 (Dep. Phys., Kyoto Univ.)
KONO Michiyas 近藤 道也 (RCNP, Osaka Univ.)
KOSAKO Toshio 小澤 厚 (Atomic Energy Res. Cent., Univ. Tokyo)
KUDOU Hisao 工藤 光 (Dep. Chem., Niigata Univ.)
KUROYANAGI Tokihiro 黒柳 隆 (Dep. Phys., Kyushu Univ.)
LEE Sang-Moo 李 相茂 (Dep. Phys., Univ. Tsukuba)
MARUMORI Toshio 丸森 晟夫 (Dep. Phys., Univ. Tsukuba)
MATUKI Seishi 松木 正史 (RCNP, Osaka Univ.)
MINOWA Tatsuya 米野 隆哉 (Dep. Phys., Toho Univ.)
MIURA Iwao 三浦 岩 (RCNP, Osaka Univ.)
MIYATAKE Hiroshi 宮武 宏 (Fac. Sci., Osaka Univ.)
MURAKAMI Tetsuya 村上 哲也 (Dep. Phys., Kyoto Univ.)
MURAYAMA Toshiyuki 村山 利幸 (Tokyo Univ. Mercantil Marine)
NAKAHARA Hiromichi 中原 弘道 (Dep. Chem., Tokyo Metrop. Univ.)
NAKAI Koji 中井浩二 (KEK)
NAKAMURA Ichiro 中村市郎 (Dep. Phys., Saitama Univ.)
NAKAMURA Takashi 中村尚司 (Cyclotron Radioisot. Cent., Tohoku Univ.)
NIITA Koji 仁井田浩二 (Dep. Phys., Univ. of Giessen, Germany)
NOMURA Toru 野村 明 (Inst. Nucl. Study, Univ. Tokyo)
OGATA Hiroshi 高田英行 (Fac. Sci., Univ. Tokyo)
SAKAI Hideyuki 酒井英行 (Dep. Phys., Tohoku Univ.)
SASAGAWA Tatsuya 笹川 崇 (Dep. Phys., Osaka Univ.)
SAITO Kenichi 山本健一 (Dep. Phys., Tohoku Coll. Pharm.)
SHIKAZONO Naoki 鳥津 隆基 (JAERI, Tokai)
SHINOZUKA Tsutomu 西園 勉 (Cyclotron Radioisot. Cent., Tohoku Univ.)
SUKEI Keisuke 末木啓介 (Inst. Nucl. Study, Univ. Tokyo)
SUGAI Isao 菅井 勇 (Inst. Nucl. Study, Univ. Tokyo)
TAGISHI Yoshihiro 田渕義宏 (Tandem Accel. Cent., Univ. Tsukuba)
TAKENIYO Kenjiro 高根健朗 (Dep. Phys., Kyushu Univ.)
TAKEMASA Tadashi 武政 卓士 (Dep. Phys., Saga Univ.)
TAKAGAKI Ryozo 瀬川 彰 (Dep. Phys., Tohoku Univ.)
TANAKA Jinchii 田中 進 (Dep. Nucl. Study, Univ. Tokyo)
TOHYAMA Mitsuru 深山 義 (Dep. Phys., Kyorin Univ.)
TOMIMASU Takio 富田弥男 (Electro Tech. Lab.)
TSUNEMOTO Hiroshi 恒元 博 (Natl. Inst. Radiol. Sci.)
VALLI K. (Dep. Phys., Jyvaskyla Univ., Finland)
WAKAI Masamichi 若井正道 (Dep. Phys., Osaka Univ.)
YAMANOICHI Mikio 山野耕雄 (Tandem Accel. Cent., Univ. Tsukuba)
YAMAZAKI Takayuki 山崎 誠 (RCNP, Osaka Univ.)
YOSHIIDA Nobuaki 吉田 尚 (Dep. Phys., Univ. Tokyo)
YOSHIIDA Shiro 吉田 誠 (Dep. Phys., Tohoku Univ.)
YOSHINAGA Naotaka 吉永 圭 (Comput. Cent., Univ. Tokyo)

(Students)
AZUMA Mitsuhiro 東 光弘 (Dep. Phys., Tohoku Univ.)
FUKASHIRO Yasuyuki 緒方 広之 (Dep. Phys., Tohoku Univ.)
HAMADA Shingo 渡辺真悟 (Dep. Nucl. Eng., Kyoto Univ.)
KOBAYASHI Takayuki 小林 慎之 (Dep. Chem., Tokyo Metrop. Univ.)
KOIZUMI Mitsuo 小泉 光 (Dep. Phys., Hiroshima Univ.)
KOSUGA Hiroyuki 小菅 正之 (Dep. Phys., Toho Univ.)
MARUYAMA Toshiki 丸山 敏毅 (Dep. Phys., Kyoto Univ.)
MUROYA Shin 室谷 真 (Dep. Phys., Waseda Univ.)
NAKAOKA Masaya 中岡正哉 (Dep. Phys., Saitama Univ.)
NISHINAKA Ichirou 西中原一 (Dep. Chem., Tokyo Metrop. Univ.)
OGAWA Izumi 小川文 (Dep. Phys., Kyoto Univ.)
SHIMOMURA Koichiro 下村浩一郎 (Dep. Phys., Kyoto Univ.)
SUNAOSHI Hitoshi 鈴木 博 (Dep. Phys., Tohoku Univ.)
SUZUKI Katsuhiro 鈴木 晃 (Dep. Phys., Kyoto Univ.)
WADA Michiharu 和田 実 (Dep. Phys., Tohoku Univ.)
Linear Accelerator Laboratory

CHIBA Toshiya 千葉利哉
FUJIMAKI Masaki 藤巻正樹
KASE Masayuki 加瀬昌之
KUMAGAI Hidekazu 熊谷秀和
SUZUKI Takeshi 鈴木 健
TONUMA Tadao 戸沼正雄
YANOKURA Minoru 矢野倉実

(Visitors)
BAY Xi Xiang 白希祥 (Inst. Atomic Energy, China)
FUJWARA Ichiro 藤原一郎 (Inst. Atomic Energy, Kyoto Univ.)
FUJWARA Mamoru 藤原 守 (RCNP, Osaka Univ.)
ITO Noriaki 伊藤憲昭 (Dep. Cryst. Mater., Nagoya Univ.)
KATORI Kenji 鹿取兼二 (Fac. Sci., Osaka Univ.)
KIMURA Kikuo 木村喜久雄 (Fac. Sci., Kyushu Univ.)
KOBAYASHI Toshio 小林俊雄 (KEK)
SAKAI Hideyuki 酒井英行 (Fac. Sci., Univ. Tokyo)
SUDA Toshimici 須田利美 (Fac. Sci., Tohoku Univ.)
SUGAWARA Masahiko 菅原昌彦 (Fundam. Sci., Chiba Inst. Technol.)
YAMAGUCHI Hiromi 山口裕美 (Sci. Eng. Res. Lab., Waseda Univ.)

(Students)
ABE Kenichi 阿部健一 (Fac. Sci., Osaka Univ.)
ITO Tatsuya 伊藤達也 (Sci. Eng. Res. Lab., Waseda Univ.)

Radiation Laboratory

GONO Yasuyuki 郷野修之
ICHIHARA Takashi 伊原一郎
IZUMO Koichi 出雲光一
NOMURA Izumi 野村和泉
TENDO Yoshihiko 天道芳彦

(Visitors)
ABE Yasuhiro 阿部茂久 (Res. Inst. Fundam. Phys., Kyoto Univ.)
ANDO Yoshiaki 安藤嘉章 (Dep. Phys., Rikkyo Univ.)
APRILE Elena (Columbia Univ.)
ASAHI Koichiro 旭 耕一郎 (Fac. Sci., Tokyo Inst. Technol.)
DOKE Tadayoshi 道家 忠義 (Sci. Eng. Res. Lab., Waseda Univ.)
ENDO Saburo 達野 三郎 (Fac. Eng., Sci. Univ. Tokyo)
FUCHI Yoshihide 植田好秀 (Inst. Nucl. Study, Univ. Tokyo)
FUJIOKA Manabu 藤岡 麟 (Dep. Phys., Tohoku Univ.)
FUKUDA Mitsunori 福田 充 (Fac. Sci., Osaka Univ.)
FUKUDA Tomokazu 福田光和 (Inst. Nucl. Study, Univ. Tokyo)
HASEGAWA Takeo 長谷川武夫 (Inst. Nucl. Study, Univ. Tokyo)
HITACHI Akira 月出 昌 (Sci. Eng. Res. Lab., Waseda Univ.)
ICHIMURA Munetake 伊村宗武 (Coll. Arts Sci., Univ. Tokyo)
IKAZU Kazuo 家増俊夫 (Fac. Sci., Rikkyo Univ.)
IJIRI Kenichi 井尻憲一 (Radioisot. Cent., Univ. Tokyo)
ISHIKAWA Masanobu 石川 雅紀 (Tokyo Univ. Fisheries)
KASAGI Jirotaro 笠木治郎太 (Fac. Sci., Tokyo Inst. Technol.)
KASAI Kiyomi 笠井 清美 (Natl. Inst. Radiol. Sci.)
KATO Norihisa 加藤哲久 （Dep. Phys., Kyushu Univ.）
KATO Seigo 加藤静吾 （Fac. Educ. Yamagata Univ.）
KATORI Kenji 鹿取謙二 （Fac. Sci., Osaka Univ.）
KAWAKAMI Hirokane 川上宏金 （Inst. Nucl. Study, Univ. Tokyo）
KAWASHIMA Hideo 川島英雄 （Inst. Nucl. Study, Univ. Tokyo）
KITAHARA Yoshitaka 北原義孝 （Hoya Corp.）
KITAO Kensuke 喜多尾憲助 （Natl. Inst. Radiol. Sci.）
KOMAGATA Kazuyuki 駒形和行 （Asahi Glass Co., Ltd.）
KOX Serge （ISN, Grenoble, France）
KUBONO Sigeru 久保野茂 （Inst. Nucl. Study, Univ. Tokyo）
KUBOTA Shinzou 窪田信三 （Fac. Sci., Rikkyo Univ.）
KUSAKARI Hideshige 草刈英栄 （Fac. Educ., Chiba Univ.）
LEE Sang Eui 李相茂 （Inst. Phys., Univ. Tsukuba）
MAEDA Kazushige 前田和茂 （Coll. Gen. Educ., Tohoku Univ.）
MASUDA Kimiaki 増田公明 （Saitama Coll. Health）
MERCHEZ F. （ISN, France）
MIYATAKE Hiroaki 宮本和也 （Coll. Gen. Educ., Osaka Univ.）
MORINAGA Haruko 森原昭彦 （Sec. Phys. Tech. Univ. München）
MOTOBAYASHI Tohru 本林透 （Fac. Sci., Rikkyo Univ.）
MÜLLER Alex （Inst. Phys. Nucl., Orsay, France）
MURAKAMI Takeshi 村上健 （Dep. Phys., Tokyo Inst. Technol.）
NAGAI Yasuki 永井雅樹 （Fac. Sci., Tokyo Inst. Technol.）
NAGASHIMA Yasuo 長島泰夫 （Dep. Phys., Univ. Tsukuba）
NAKAYAMA Shintaro 中山信太郎 （Coll. Gen. Educ., Tokushima Univ.）
OGAWA Masao 小川雅生 （Fac. Sci., Tokyo Inst. Technol.）
OHNUMA Hajime 大沼寛 （Fac. Sci., Tokyo Inst. Technol.）
OKAMURA Hiroyuki 大村弘之 （Fac. Sci., Univ. Tokyo）
ORIHARA Hikonojo 原野和也 （Cyclotron and Radioisot. Cent., Tohoku Univ.）
OSHIRO Takashi 小林道夫 （Saitama Coll. Health）
PERRIN Claude （ISN, France）
REBREYEND D. （ISN, France）
RUAN (GEN) Jian-zhi 阮建治 （Dep. Phys., Rikkyo Univ.）
SAKAGUCHI Harutaka 坂口浩雄 （Dep. Phys., Kyoto Univ.）
SAGAMI Mitsuo 坂井光夫 （Inst. Nucl. Study, Univ. Tokyo）
SAITO Hiroshi 佐藤宏 （Seikei Univ.）
SCHMIDT-OTT Wolf-Dieter （II Phys. Inst., Univ. Goettingen, Germany）
SHIBAMURA Eido 柿本英夫 （Saitama Coll. Health）
SHIMIZU Hajime 清水寛 （Fac. Educ., Yamagata Univ.）
SHIMODA Tadashi 下田正 （Coll. Gen. Educ., Osaka Univ.）
SHIMOURA Susumu 下村純 （Fac. Sci., Univ. Tokyo）
SIROTA Hiroshi 塚田浩二 （Dep. Phys., Rikkyo Univ.）
SHIROYAMA Masaki 城山真樹 （Asahi Glass Co., Ltd.）
TAKADA Eiichi 高田栄一 （Natl. Inst. Radiol. Sci.）
TAKAHASHI Noriaki 高橋憲明 （Coll. Gen. Educ., Osaka Univ.）
TAKIKAWA Noboru 滝川昇 （Dep. Phys., Tohoku Univ.）
TANAKA Masahiko 田中雅彦 （Inst. Nucl. Study, Univ. Tokyo）
TAO Kazuyuki 平和之 （Radioisot. Cent., Univ. Tokyo）
TOKI Hiroshi 土岐博 （Dep. Phys., Tokyo Metro. Univ.）
TOYOKAWA Hidenori 豊川秀訓 （Inst. Phys., Univ. Tsukuba）
XU Hushan 徐珊珊 （Inst. Mod. Phys., Acad. Sin. China）
YAMAYA Takashi 山田正 （Dep. Phys., Tohoku Univ.）
YASUE Masaharu 安江正治 （RCNP, Osaka Univ.）
YATO Osamu 矢頭治 （Inst. Radiat. Breeding, NIAR）
YOSHIDA Kazuo 吉田和夫 (Hoya Corp.)
YOSHINAGA Naotaka 吉永尚孝 (Saitama Univ.)
YOSOI Masaru 與曽井 優 (Fac. Sci., Tokyo Inst. Technol.)

(Students)
FUJIWARA Hideaki 藤原英明 (Inst. Phys., Univ. Tsukuba)
FUNATSU Yoshinori 船津義德 (Fac. Sci., Univ. Tokyo)
FURUTAKA Kazuyoshi 古田義雄 (Fac. Sci., Tokyo Inst. Technol.)
FUTAMI Yasuyuki 二見康之 (Inst. Phys., Univ. Tsukuba)
HIRENZA Satoru 比連崎 悟 (Fac. Sci., Tokyo Metrop. Univ.)
HONJO Yoshio 本城義夫 (Inst. Phys., Univ. Tsukuba)
ICHINOSE Hideo 市之瀬秀夫 (Sci. Eng. Res. Lab., Waseda Univ.)
ISHIDA Nobumichi 石田 伸道 (Sch. Sci. Eng., Waseda Univ.)
ISHIDA Satoru 丸山邦子 (Japan Women's Univ.)
MIYABE Noriko 宮部 覲 (Japan Women's Univ.)
MORIKAWA Takeji 中村和 (Fac. Sci., Hiroshima Univ.)
NAKAMURA Takashi 中村隆司 (Fac. Sci., Univ. Tokyo)
OHNO Mariko 大野真理子 (Radioisot. Cent., Univ. Tokyo)
OKUNO Hiroki (Visitors)
PU Y.H. 蒲 越虎 (Inst. Phys., Univ. Tsukuba)
TAKEI Taro 武井 太郎 (Dep. Phys., Rikkyo Univ.)
TAKIMOTO Tatsushi 川本 隆史 (Coll. Sci., Waseda Univ.)
YAMAHIRO Yoshihiro 山合義弘 (Fac. Sci., Tokyo Inst. Technol.)
YOSHIDA Hiroshi 吉田 広 (Sch. Sci. Eng., Waseda Univ.)
YUASA-NAKAGAWA Keiko 中川 恵子 (Inst. Phys., Univ. Tsukuba)

Atomic Processes Laboratory

ANDO Kozo 安藤剛三
FUJIMA Kazumi 藤嶋昌明
HARSTON Michael R.
IZUMA Toshiyuki 作村秀一
KANAI Yasuyuki 金井 悠之
SHIMAMURA Isao 島村 眞

AWAYA Yoheko 栗屋 容子
KAMBARA Tadashi 神原 正
NISHIDA Masami 西田雅美
WATANABE Tsutomu 渡部 力

(Visitors)
AZUMA Toshiyuki 東 俊行 (Coll. Arts Sci., Univ. Tokyo)
DANJO Atsunori 坂上篤雄 (Dep. Phys., Niigata Univ.)
ERMOLAEV Alex (Univ. Durham, England)
FUJI Kazumi 藤間 一美 (Fac. Eng., Yamanashi Univ.)
HABS Dietrich (Max Planck Inst. for Nucl. Phys., Germany)
HARA Shunsuke 原 俊介 (Inst. Phys., Univ. Tsukuba)

HINO Ken-ichi 日野健一 (Univ. Electro-Commun.)
HITACHI Akira 井出 昌 (Inst. Sci. Technol., Waseda Univ.)
ICHIMIYA Ayahiko 一宮 彰彦 (Dep. Eng., Nagoya Univ.)
ISHII Keishi 石井 慶之 (Dep. Eng. Sci., Kyoto Univ.)
ISOZUMI Yasuhito 伊澤史人 (Inst. Chem. Res., Kyoto Univ.)
ITO Shin 伊藤 真 (Radioisot. Res. Cent., Kyoto Univ.)
ITOYOH Yoh 伊藤 洋 (Fac. Sci., Josai Univ.)
IWATA Yasushi 岩田 康嗣 (Coll. Arts Sci., Univ. Tokyo)
KARASHIMA Shosuke 岡島照彦 (Dep. Eng. Sci., Kyushu Univ.)
KAWATSURA Kiyoshi 川面 澄 (Kyoto Inst. Technol.)
KOBA YASHINO Nobuo 小林 信夫 (Dep. Phys., Tokyo Metrop. Univ.)
KOIKE Fumihiro 小池文博 (Sch. Med., Kitasato Univ.)
MAKAMIGAI Masahiko 関本 哲之 (Coll. Arts Sci., Waseda Univ.)
MIZOGAMI Tetsuo 三隅 英悟 (National Inst. Fusion Sci.)
OKUNO Kazuhiko 大野和彦 (Dep. Phys., Tokyo Metrop. Univ.)
SATO Hiroshi 佐藤 浩史 (Dep. Phys., Ochanomizu Univ.)
SEKIYAMA Tsuguhisa 井川利一 (Himeji Inst. Technol.)
SHIMAKURA Noriyuki 岩倉陽之 (Gen. Educ. Dep., Niigata Univ.)
SUZUKI Hiroshi 鈴木 洋 (Dep. Phys., Sophia Univ.)
TAKAGI Shoji 高木 和哉 (Dep. Phys., Toho Univ.)
TANAKA Hiroyuki 田中 博之 (Natl. Inst. Fusion Sci.)
TERASAWA Miiichika 長沢史多 (Himeji Inst. Technol.)
TSUBRECHI Seiji 鈴本誠二 (Fac. Technol., Tokyo Univ. Agric. Technol.)
YAMAZAKI Yasunori 山崎 喜之 (Coll. Arts Sci., Univ. Tokyo)
YAMAGA Masahiro 山形正博 (Dep. Phys., Sophia Univ.)
NABESHIMA Nobuyuki 中村良行 (Dep. Phys., Sophia Univ.)
SAKAE Hiroyuki 坂井洋之 (Dep. Phys., Sophia Univ.)
SILFOX Yarning 針木 嘉 (Jiao Tong Univ., China)

(Students)
KAKUTANI Nobukazu 角谷 留之 (Coll. Arts Sci., Univ. Tokyo)
KUSHIMA Masahiro 久保 良博 (Dep. Phys., Sophia Univ.)
NABESHIMA Takayuki 鍬島 貴之 (Dep. Phys., Sophia Univ.)
NAGAMINE Kanetada 長見賢太郎 (Fac. Sci., Osaka Univ.)

Metal Physics Laboratory

ISHIDA Katsuhiko 石田 歴彦 (Cyclotron Radioisot. Cent., Tohoku Univ.)
KOYAMA Akio 小山 秀男 (Inst. Sci. Technol., Waseda Univ.)
MATSUMA Teiichiro 松崎哲也 (Visitors)
YAGI Eiichi 八木 勲一

(Visitors)
FUJIYAMA Manabu 藤岡 学 (Cyclotron Radioisot. Cent., Tohoku Univ.)
MINAMISONO Tadanori 南園 忠則 (Fac. Sci., Osaka Univ.)
MIYAKE Yasuhiro 三宅康博 (Meson Sci. Lab., Univ. Tokyo)
TANAKA Koki 田中幸基 (Nippon Steel Corp.)
TORIKAI Eiko 鳥巣映子 (Fac. Eng., Yamanashi Univ.)

(Student)
ISHIKAWA Hiroshi 石川浩 (Fac. Sci., Sci. Univ. Tokyo)

Magnetic Materials Laboratory
OKADA Takuya 岡田卓也 SAKAI Nobuhiro 坂井信彦

Plasma Physics Laboratory
OYAMA Hitoshi 大山等 YANO Katsuki 矢野勝喜
(Visitor)
SAKAMOTO Yuichi 坂本雄一 (Electr. Eng. Dep., Toyo Univ.)

Semiconductor Laboratory
(Visitor)
ANO Keiko 青野桂子 (Coll. Lib. Arts, Kitasato Univ.)

Inorganic Chemical Physics Laboratory
AMBE Shizuko 安部静子 KAWAI Jun 河合潤
MAEDA Kuniko 前田邦子 SASA Yoshihiko 佐々嘉彦
TAKAMI Michio 髙見道生
(Visitors)
FUJII Yukihiro 福田行男 (Coll. Lib. Arts, Kobe Univ.)
ISHII Keiyo 石井敬広 (Cyclotron Radioisot. Cent., Tohoku Univ.)
KUSUYAMA Hiroyuki 栗山弘之 (Saitama Med. Sch.)
MUKOYAMA Takashi 向山毅 (Inst. Chem. Res., Kyoto Univ.)
UDA Masayuki 宇田寛之 (Dep. Mater. Sci. Eng., Waseda Univ.)

Radiochemistry Laboratory
AMBE Fumito 三部文敏 ARATANI Michi 荒谷美智
ITOH Yoshiko 伊東芳子 IWAMOTO Masako 岩本正子
KOBAYASHI Yoshio 小林義男 OHKUBO Yoshitaka 大久保嘉高
(Visitors)
ASAI Kichizo 浅井吉蔵 (Univ. Electro-Commu.)
BABA Hiroshi 馬場宏 (Fac. Sci., Osaka Univ.)
CHEN Shaoyong 陈绍勇 (South China Sea Inst. Oceanol.)
ENDO Kazuyoshi 遠藤和彦 (Fac. Sci., Tokyo Metrop. Univ.)
FURUKAWA Michiaki 古川利明 (Fac. Sci., Nagoya Univ.)
GARG Amar Nath (Nagpur Univ., India)
IMAI Masato 今井正人 (Kawasaki Electronic Metals Co., Ltd.)
IMURA Ryo 今村亮 (Cent. Res. Lab., Hitachi, Ltd.)
KATADA Motomi 片田元己 (Fac. Sci., Tokyo Metrop. Univ.)
KATO Hajime 加藤一 (Fac. Educ., Yamanashi Univ.)
KOJIMA Sadao 小島貞男 (Nucl. Med. Cent., Aichi Medical Univ.)
KUBO Kenya 久保謙哉 (Fac. Sci., Univ. Tokyo)
KUBOTA Takeshi 久保田 剛 (Inst. Mat. Sci., Univ. Tsukuba)
OKADA Shigenobu 岡田繁雄 (R/D Eng., Shimadzu Corp.)
OOHIRA Shigeo 大平重男 (Nikkei Techno Res. Co., Ltd.)
SAITO Kazuo 斎藤和男 (Toshiba Corp., R&D Cent.)
SAITO Tadashi 蒔藤直 (Fac. Sci., Osaka Univ.)
SHIBATA Seiichi 柿田誠一 (Inst. Nucl. Study)
SHINOHARA Atsushi 篠原厚 (Fac. Sci., Nagoya Univ.)
SUGAI Isao 菅井 勲 (Inst. Nucl. Study, Univ. Tokyo)
TAKAHASHI Naruto 高橋成人 (Fac. Sci., Osaka Univ.)
TAKAI Mikio 高井斡夫 (Fac. Eng. Sci., Osaka Univ.)
TAZAKI Kazue 田崎和江 (Fac. Sci., Shimane Univ.)
TOMINAGA Takeshi 富永 健 (Fac. Sci., Univ. Tokyo)
WATANABE Yasuo 渡辺裕夫 (Fac. Sci., Tokyo Metrop. Univ.)
YOKOYAMA Akihiko 横山明彦 (Fac. Sci., Osaka Univ.)
ZHANG Guilin 张桂林 (Shanghai Inst. Nucl. Res., China)

(Students)
HAYANO Syuichi 早野修一 (Fac. Sci., Osaka Univ.)
KIRIU Masaru 桐生 大 (Fac. Sci., Osaka Univ.)
KOBAYASHI Hiroshi 小林 洋 (Fac. Sci., Osaka Univ.)
KUSAWAKE Hiroaki 緒方宏光 (Fac. Sci., Osaka Univ.)
MINAMI Masaki 南 正樹 (Dep. Metal Eng., Shibaura Inst. Technol.)
MISHIMA Kenji 三嶋 謙二 (Fac. Sci., Univ. Tokyo)
MIYAUCHI Takahiro 宮内貴宏 (Fac. Sci., Osaka Univ.)
MURAYAMA Koujiro 村山浩二郎 (Fac. Sci., Nagoya Univ.)
NAKADA Masami 中田正美 (Fac. Sci., Tokyo Metrop. Univ.)
NAKAMURA Jin 中村 仁 (Univ. Electro-Commun.)
HIRUDA Midori 成田 緑 (Fac. Sci., Nagoya Univ.)
SHINTAI Junichirou 新田淳一郎 (Fac. Sci., Nagoya Univ.)
TAKESAKO Kazuhiro 竹迫和浩 (Fac. Sci., Osaka Univ.)
TANIUCHI Eugene 谷口勇仁 (Fac. Sci., Nagoya Univ.)
YANAGIDA Yasuo 柳田保雄 (Fac. Sci., Toho Univ.)
YOSHIDA Ryusho 吉田 龍晶 (Fac. Sci., Nagoya Univ.)

Chemical Dynamics Laboratory

KIMURA Kazuie 木村一宇

(Visitor)

(Students)
ARAI Masaru 新井 勝 (Dep. Phys., Chuo Univ.)
WADA Jiro 和田次郎 (Dep. Phys., Chuo Univ.)

Radiation Biology Laboratory

HANAKA Fumio 花岡文雄 KITAYAMA Shigeru 北山 滋
YATAGAI Fumio 谷田英夫

(Visitors)
ANDO Kohichi 安藤 典一 (Natl. Inst. Radiol. Sci.)
FUKUMURA Akifumi 福村 明史 (Natl. Inst. Radiol. Sci.)
HASHIMOTO Shozo 橋本 稔三 (Fac. Med., Keio Univ.)
HOSHINO Kazuo 星野一雄 (Natl. Inst. Radiol. Sci.)
ITOH Hisao 伊東久夫 (Fac. Med., Keio Univ.)
KANAI Tatsuaki 金井陸明 (Natl. Inst. Radiol. Sci.)
KAWACHI Kiyomitsu 河内 清光 (Natl. Inst. Radiol. Sci.)
KAWASHIMA Katsuhiko 川島 勝弘 (Natl. Inst. Radiol. Sci.)
KIMOTO Masafumi 木元 正史 (Natl. Inst. Radiol. Sci.)
KOBAYASHI Yasuhiko 小林 雅彦 (Japan. Atomic Energy Res. Inst.)
KOHNO Toshiyuki 河野俊之 (Natl. Inst. Radiol. Sci.)
KOIKE Sachiko 小池 经子 (Natl. Inst. Radiol. Sci.)
KOSAKA Toshifumi 小坂俊文 (Dep. Vet. Radiol., Nihon Univ.)
MINOHARA Shinichi 宫原伸一 (Natl. Inst. Radiol. Sci.)
NAKAI Hirokazu 中井 昇 (Dep. Agric., Shizuoka Univ.)
OHARA Hiroshi 大原 弘 (Natl. Inst. Radiol. Sci.)
SOGA Fuminori 曽我 文宣 (Inst. Nucl. Study, Univ. Tokyo)
SUDO Michio 須藤美智雄 (Natl. Inst. Radiol. Sci.)
TAKATUJI Toshihiro 高辻俊宏 (RI Cent., Nagasaki Univ.)
WATANABE Hiroshi 渡辺 宏 (Japan Atomic Energy Res. Inst.)
WATANABE Masami 渡辺正己 (RI Cent., Fac. Med., Yokohama City Univ.)
YAMASHITA Shoji 山下 昌次 (Natl. Saitama Hospital)

(Visitor)

KOBAYASHI Takane 小林 峰

Laser Science Research Group

NAMBA Susumu 雑波 進

Synchrotron Radiation Facility Design Group

BE Suck Hee 表 碩喜
KAMITSUBO Hiromichi 上塚 宏道
MATSUI Sakuo 松井 佐久夫

HARA Masahiro 原 雅弘
KAWASHIMA Yoshitaka 川島 祥孝
MOTONAGA Syoshichi 元野 昭七
NAGAOKA Ryutaro 長岡隆太郎
OHIASHI Jun-ichi 大西純一
OIKAWE Yoshifumi 老川嘉郁
SAKISAKI Shigeki 佐々木茂樹
TAKEBE Hideki 武部英樹
TAKESHITA Isao 竹下勇夫
TANAKA Hitoshi 田中寛
WATAKABE Kowashi 渡辺剛
WADA Takeshi 和田雄

（Visitors）
DAIBO Hidemi 大保秀実 （Hitachi, Ltd.）
IN Song Ryul 印相烈 （Korea At. Energy Res. Inst.）
INOUE Kouji 井上浩司 （Kobe Steel, Ltd.）
KUMAGAI Keiko 熊谷桂子 （Fuji Electric Co., Ltd.）
KUSAKA Takuya 久佐田卓也 （Kobe Steel, Ltd.）
MIYADE Hiroki 宮出宏紀 （Sumitomo Heavy Ind., Ltd.）
MORIMOTO Yoshihide 森本佳秀 （Kobe Steel, Ltd.）
NISHIDONO Toshirou 西殿敏朗 （Ishikawajima-Harima Heavy Ind. Co., Ltd.）
SHIMIZU Akira 清水明 （Irie Koken Co., Ltd.）
TAKASHI Takeo 高田武雄 （Shin-Etsu Chemical Co., Ltd.）
TAKAHASHI Sunao 高橋直 （Kobe Steel, Ltd.）
TSUMAKI Kouji 丹間孝直 （Hitachi, Ltd.）
YAMAMOTO Yuichi 山本雄一 （Mitsubishi Electric Corp.）
YOKOUCHI Shigeru 横内浩 （Osaka Vacuum Ltd.）
YOSHIIYUKI Takeshi 吉行健 （Toshiba Corp.）

（Students）
ASADA Eriko 浅田恵利子 （Coll. Hum. Sci., Nihon Univ.）
HASEGAWA Jun 長谷川潤 （Fac. Sci. Eng., Chuo Univ.）
HIRANO Yoshiki 平野芳樹 （Coll. Hum. Sci., Nihon Univ.）
ISHII Yasuyuki 石井保行 （Nucl. Eng., Tokyo Inst. Technol.）
ITOY Kiwamu 伊藤研 （Coll. Hum. Sci., Nihon Univ.）
YAMAGUCHI Hitoshi 山口仁史 （Coll. Hum. Sci., Nihon Univ.）
AUTHOR INDEX

ABE Ryo 阿部 亮 3, 6
ABE Yasuhisa 阿部 克久 30
ADACHI Minoru 足立 實 14
AIHARA Toshimitsu 藍原利光 5, 133
AKAGI Hiroyasu 赤木 安安 3, 6
AIK CHAKrabarti 17, 18
AMBE Fumitoshi 安部文敏 65, 66, 67, 68, 70, 71, 72, 73, 74, 75
AMBE Shizuko 安部静子 72, 73, 74, 75, 76
ANDO Kozo 安藤 輝光 57
ANDO Yoshiaki 安藤嘉章 12, 114, 119
APRILE Elena 118
ARAI Ichiro 有井一郎 26
ARAI Masaru 有井 正 88
ARA TANI Michi 安谷美智 64, 80, 81, 82, 84, 85, 86, 87
ARVIEUX Jacque 13
ASAHI Koichiro 岩崎 宏 14, 22, 23, 96, 101, 102
ASAI Kichizo 髙嶋清 60, 65, 67, 68
ASAI Tatsuo 髙嶋 隆 91
AWA Yohko 深尾幸子 38, 41, 42, 43, 45, 46, 47, 48, 54, 56, 57
AZUMA Mitsuhiro 安藤 光 27, 105
AZUMA Toshiyuki 安藤俊之 45, 54
BABA Hiroshi 巴 哲之 69
BACKE H. 107
BAI Xi Xiang 白锡祥 17, 18
BEAUMEL D. 14
BIZEN Teruhiko 備前輝彦 193, 195, 199, 201
BONIN B. 13
BOUDARD Allain 13
CARBONELL Jaume 13
CARJAN Nicole 30
CHEN Shao Yong 陳 嶽男 72, 73, 74, 75
CHIBA Toshiya 千葉利哉 5, 133
CHIBA Yoshiaki 千葉 淑明 5, 133
DAIBO Hideyuki 大保秀志 169, 187, 189, 191, 193, 195, 197, 201
DANJO Atsunori 間元尚徳 56
DATE Shin 伊達 伸 32
DOKE Tadayoshi 道家達義 115, 118
ELLERT Christoph 95
ENDO Kazutoyo 逢藤和峰 65
FUCHI Yoshihide 渡出好秀 108, 110
FUJIHANA Takanobu 藤花隆宣 62
FUJIMA Kazumi 藤間一美 38
FUJIMAKI Masaki 藤巻正樹 17, 18, 133
FUJIOKA Manabu 深澤 尚 23, 25, 103
FUJISAWA Takashi 藤沢 高志 136
FUJITA Jirou 藤田二郎 125
FUJITA Shin 藤田 新 206, 207, 209, 211, 212
FUJITA Yoshitaka 藤田 佳孝 25
FUJIIWARA Hideaki 藤原 英明 120
FUKASHIRO Yasuyuki 深代尚之 23
FUKUDA Hiroshi 福田 宏 33, 40
FUKUDA Tomokazu 福田 克 26
FUNATSU Yoshinori 船津義德 22
FURUKAWA Michiaki 古川明範 70, 71
FUTAMI Yasuyuki 二見茂之 120
GAILLARD G. 13
GARCON Michelle 13
GONO Yasuyuki 郷野靖之 19, 20
GOTO Akira 後藤 彰 3, 6
GUILLEUME G. 13
GUILLOT J. 13
HABS Dietrich 95
HARSTON M.R. 34, 35
HASEBE Hiroo 長谷部裕雄 5, 133
HASEBE Nobuyuki 長谷部信行 115
HAYAKAWA Shun-ichiro 高岡 隼一 108, 109, 110
HAYAKAWA Shun-ichi 高岡 俊也 108, 109, 110
HEMMI Masatake 望美正太 5, 133
HITACHI Akira 月出 昌 41, 42, 43, 47, 48, 118
HOFMANN H. 28
IIVONO Yoshio 本村義之 120
ICHIHARA Takashi 市原 俊 11, 14, 22, 108, 109, 110, 121, 123
ICHIHARA Takuji 市原 達之 25
ICHIHARA Shinichi 市川進一 21
ICHINOSE Hideo 池野英明 118
IIMORI Kazuo 上原和夫 12, 113, 114, 119
IKEKAWA Hideki 飯村秀紀 21
IKEDA Nobuo 池田伸夫 22, 25
IKEGAMI Kumi 池上久三男 206, 209
IKEZAWA Eiji 池澤英二 5, 133
RIKEN Accelerator Progress Report

理化学研究所加速器年次報告 第24巻（1990）

印刷 平成3年（1991）3月20日
発行 平成3年（1991）3月29日
発行者 理化学研究所

代表者 小 田 稔
〒351-01 埼玉県和光市広沢2番1号
電話（0484）62-1111

編集者 理化学研究所加速器研究施設運営委員会

印刷所 勝美印刷株式会社
〒112 東京都文京区小石川1丁目3番7号

定価 5,000円
（消費税別）