RIKEN Accelerator Progress Report

1999

vol. 33

RIKEN (The Institute of Physical and Chemical Research)
Editors

T. Abe A. Goto
T. Ichihara R. Kadono
T. Kambara Y. Kobayashi
A. Ozawa I. Shimamura
S. Yamaji Y. Yamazaki

All rights reserved. This report or any part thereof may not be reproduced in any form (including photostatic or microfilm form) without written permission from the publisher.

All reports are written on authors' responsibility and thus the editors are not liable for the contents of the report.
CONTENTS

I. PREFACE ... 1

II. OPERATION OF ACCELERATORS
 The Tandem Operation .. 3
 RRC and AVF Cyclotron Operations 4
 RILAC Operation .. 6

III. RESEARCH ACTIVITIES
 1. Nuclear Physics
 Reaction Mechanism and Characteristics of \(T_{20} \) in \(d+^3\text{He} \) Backward Elastic Scattering at Intermediate Energies .. 9
 Structure of Li Isotopes Studied by Gaussian Single-Particle Bases 10
 Molecular-Orbital Structure in Be Isotopes .. 11
 Model-Independent Analysis of the One-Body Density of Unstable Nuclei 13
 Development of a New Code for Large-Scale Shell-Model Calculations Using a Parallel Computer .. 14
 Monte Carlo Shell-Model Study of Unstable Nuclei around \(N = 20 \) 15
 A Search for a Unified Effective Interaction for Monte Carlo Shell-Model Calculations .. 16
 Monte Carlo Shell-Model Calculations for Medium-Heavy Nuclei 17
 The Nucleon Pair Approximation of the Shell Model 18
 Effects of the Dirac Sea on the Giant Monopole States 19
 The Phonon Damping Model .. 20
 Statistical Analysis of the Hot Giant Dipole Resonance with the Phonon Damping Model .. 21
 Hot Giant Dipole Resonance in the Static Path Approximation 22
 Damping of Multiphonon Giant Resonances .. 23
 Giant Dipole Resonance in Neutron-Rich Nuclei within the Phonon Damping Model .. 24
 Local Harmonic Approaches with Approximate Cranking Operators 25
 Relativistic Tilted Axis Cranking Model and Its Application to Shears Bands in the \(A = 80 \) Mass Region .. 26
 Wobbling Motion in the Multi-Bands Crossing Region 27
 Relativistic Hartree-Bogoliubov Approach for Nuclear Matter with a Non-Linear Coupling Term ... 28
 The \(r \)-Process Nucleosynthesis in Supernovae ... 29
 Hydrodynamical Study of Neutrino-Driven Winds as \(r \)-Process Sites 31
^{44}Ti: Its Effective Decay Rate in Young Supernova Remnants, and Its Abundance in Cassiopeia A ... 32
A New Parameterization of Polarized Parton Distribution Functions 33
Large $p_T \Lambda_c^+$ Production in Polarized pp Scattering 34
Λ_c^+ Productions in Polarized ep Reaction and Polarized Gluons in the Proton 35
Behavior of Polarized Light Sea-Quarks in a Nucleon 36
Color-Octet Contribution to the Photoproduction of ψ' 37
Antiquark Flavor Asymmetry in Polarized Drell-Yan Processes 38
Nucleon-Structure Functions in the NJL Model 39
$U_A(1)$ Symmetry Breaking and Eta Prime Meson in the Bethe-Salpeter Approach 40
Final Countdown to RHIC Spin Program ... 41
Measurement of the Charged Pion Asymmetry and Beam Polarization in AGS E925 ... 43
Sensitivities of the Gluon Polarization Measurement at PHENIX 44
Performance of the PHENIX Muon Reconstruction Software 46
Precise Measurement of the Muon Lifetime .. 48
Measurement of the Ortho-Para Effect in Muon-Catalyzed d-d-Fusion 49
Study of Muon Catalyzed Fusion in Solid D-T Mixtures 51
Electron Scattering at MUSES/RIBF .. 52
Measurement of the Polarization Transfer Coefficients, K_{ij}^p, for d-p Elastic Scattering at $E_d = 270$ MeV .. 53
Measurement of the Cross Sections and Vector and Tensor Analyzing Powers for d-p Elastic Scattering at $E_d = 270$ MeV .. 54
The $^3\text{He}(d,p)^4\text{He}$ Reaction at Intermediate Energies 55
Measurement of the Deuteron Spin-Flip Probabilities in the $^{28}\text{Si}(d,d')$ Reaction at $E_d = 270$ MeV .. 56
Proton Spectra from the $^{208}\text{Pb} + ^{208}\text{Pb}$ Reaction at 15 A MeV 57
GDR γ-Rays from the Binary Reaction of $^{209}\text{Bi} + ^{209}\text{Bi}$ at 12 MeV/u .. 58
Search for a $Z = 118$ Superheavy Nucleus in the Reaction of ^{84}Kr with ^{208}Pb .. 59
First Measurement of the $^8\text{B}(p,\gamma)^9\text{C}$ Reaction by the Coulomb-Dissociation Method .. 60
Development of a Li-Ion Isotope Separation and Counting System for a Precise Measurement of the ^{11}Li Charge Radius .. 61
Coulomb Dissociation of ^{12}N and ^{13}O 63
Coulomb Dissociation of ^{13}N and ^{14}O 65
Isobaric Analog State of ^{14}Be .. 66
Coulomb Excitation of 15O ... 67
Coulomb Excitation of 28Ne and 32,34Mg 68
Population of Excited States in Unstable Nuclei Produced by the Fragmentation of 36Si ... 69
Gamma-Ray Spectroscopy of the Very Neutron-Rich Nucleus 34Mg .. 70
Half-Life Determination of 44Ti Using a Radioactive Beam Technique ... 72
Collective States of Neutron-Deficient Doubly Even Barium Isotopes .. 73
Production Cross Sections of Light Neutron-Rich Nuclei from 40Ar Fragmentation 74

2. Atomic and Solid-State Physics

Positron Scattering by Polyatomic Molecules 75
Total Cross Sections for Electron and Positron Collisions with CF$_3$I Molecules .. 76
Simulation of a Diatomic Molecule Colliding with Surfaces .. 77
Radiative Electron Capture of Swift Heavy Ions into the Continuum State .. 78
Fullerene-like Fragment Ion Production in Fast Ion-C$_{60}$ Collision .. 79
Isotope Shifts between He-like 12C and 13C Ions .. 80
Foil Ageing Problems in Beam-Foil Spectroscopy Continued .. 81
Time Delayed Spectral Lines in Beam-Foil Spectroscopy .. 82
Spectroscopy of High Z Spin-Aligned States .. 83
High-Resolution Soft X-Ray Study of Ne Hollow Atoms Created by a Microcapillary Target .. 84
Angular Dependence of Scattering Intensity in C$^{4+}$ + He → C$^{2+}$ + He$^{2+}$ at Collisional Energy of 120 eV/q .. 85
Acoustic Emission Following Fast Heavy-Ion Irradiation of Solids .. 86
Defect Production via Electronic Excitation in Oxide Superconductors Irradiated with High Energy Heavy Ions .. 87
Effects of Defect Morphology on the Vortex Dynamics in Bi$_2$Sr$_2$CaCu$_2$O$_{8+δ}$ Irradiated with GeV Heavy Ions .. 88
Radiation Annealing Induced by Electronic Excitation in Iron .. 89
Infrared Spectroscopy Study on Vacancy-Oxygen Pairs in CZ-Si Irradiated by 3.5 GeV Xe Ions .. 90
Evaluation of SEB in Power MOSFETs Caused by Heavy Ions .. 91
Dynamic Behavior of a Nuclear Probe 57Mn/57Fe in Si after Projectile-Fragment Separation and Implantation .. 93
Atomic-Force-Microscopy Observations of FZ-Si after GeV-57Mn Implantation Using RIKEN Projectile Fragment Separator (RIPS) .. 94
A New Spin Polarimeter Proposed for Spin-Polarized Slow Positron Beams .. 95
Xe Bubble Formation in Xe-Implanted Fe as Observed by the Channelling Method .. 97

Observation of Ion Current in Superfluid Helium ... 99

Observation of a Full Dispersion Curve for the Low Energy Excitation in a Spin Ladder .. 100

μSR Study on the 1/8 Effect in the Bi-2212 System ... 101

LF-μSR Studies of the Vortex State in Bi$_2$Sr$_2$CaCu$_2$O$_{x}$... 102

Current-Induced Vortex Motion in Type-II Superconductors .. 103

μSR Study on the Spin Dynamics of Kagomé Antiferromagnet, m-MPYNN-BF$_4$ 104

Radio-frequency Muon Spin Resonance of a Haldane-Gap System NiC$_2$O$_4$ 2-(2-methylimidazole) .. 105

Muon Spin Resonance Study on an Organic Radical TEMPO Derivative................................. 106

Intra- and Inter-molecular Electron Transfer in Cytochrome c and Myoglobin Observed by the Muon Spin Relaxation Method ... 107

3. Radiochemistry and Nuclear Chemistry

In-beam Mössbauer Study of 57Mn/57Fe in Si Following Projectile Fragmentation and Implantation ... 109

Biological Transport of the Various Trace Elements in the Pregnant Rats and Fetus 111

Uptake of Zinc and Other Trace Metals in Tumor-Bearing Murines ... 112

Biological Tissue Distribution of Vanadium in STZ-Induced Diabetic Rats: Simultaneous Tracing of V, Cr, Mn, Fe, Co, Zn, and Se Using a Radioactive Multitracer .. 113

Metabolic Study of Trace Elements in Se-Deficient Rats (IV) .. 114

Distribution of Bio-Trace Elements in Cell Fraction of Selenium-Deficient Rat Liver 116

Effect of Dietary Selenium Species and Doses on the Organ Distribution of Multitracer .. 117

Uptake Rates of Trace Elements in Zn-Deficient Mice .. 118

Characterization of Manganese Transport System Using Cadmium-Resistant Metallothionein-Null Cells ... 119

Biobehavior of Multitracers in the Brain and Other Organs of 1-, 3- and 8-Week-Old Mice .. 120

Effect of Oral Administration of NaFeEDTA on the Biodistribution of Trace Elements .. 121

Contribution of Arbuscular Mycorrhizal Hyphae to Acquisition of Trace Elements by Marigold ... 122

Influence of Zn on the Uptake of Various Elements into Carrot .. 123

Enhanced Uptake of Mn by LeGlp1-Transgenic Tobacco Plants .. 125

Selective Detection of EC-Decay Radionuclides in Multitracers: A Proposal ... 127

Evaluation of the in vitro Stability of Radiolabeled DTPA and DOTA and Their Conjugated Antibodies .. 128
HPLC Elution Behavior of Multitracer Metallofullerenes .. 129
Gamma-Ray Detection System for Multitracer Research ... 130
Time Course Induction of p53 in Human Cell Lines .. 131

4. Radiation Chemistry and Radiation Biology

Electron-Hole Plasma Luminescence from the Ion Track of Insulator Crystals 133
Luminescence Spectra and Decay Curves of Diamond Crystals Irradiated by Heavy Ions ... 134
Ultrafast Luminescence and Exciton Dynamics in Ion-Irradiated Rbl Single Crystal ... 135
Strontium Uptake by Yeast Schizosaccharomyces pombe ... 137
Influence of Endophytes on the Uptake of Radionuclides by Perennial Ryegrass 138
Analysis of Heavy-Ion Beam-Induced DNA Damage in Saccharomyces cerevisiae 139
Effective Plant-Mutation Method Using Heavy-Ion Beams (IV) 140
Effects of Heavy-Ion Beam Irradiation on Shoot Elongation in Roses 141
Adaptive Response of Human Cultured Cells to Heavy-Ion Irradiation 142
Cytogenetic Effects of Heavy-Ion Beams on Mammalian Cells 144
Effect of Heavy Ion Beams on Cell Cycle Progression ... 145
Recognition of Hit Sites within the Cells Exposed to Accelerated Iron Ions Using CR-39 Plastics .. 146
Oxidation Degradation of High Density Polyethylene Irradiated with Ion Beam 147
Heavy Ion Beams: Application to Mouse Mutagenesis (II) .. 148

5. Instrumentation

Design of Liquid-He-Free Superconducting Solenoid Coils for Electron Cyclotron Resonance Ion Source ... 149
Automatic 18F Supply System for a Slow Positron Beam ... 151
Design and Simulation of an Electrostatic Spin-Polarized Positron Beam System for Surface Magnetism Studies .. 152
Calibration of Beam-Line Polarimeter at $E_d = 140$ and 200 MeV 153
Absolute Calibration of the Deuteron Beam Polarization at an Intermediate Energy via the 12C(d, α) Reaction .. 154
Calibration of 3He Polarization Using Electron-Spin-Resonance Method 156
Response of an Imaging Plate for Heavy Particles ... 158
Development of a Time-of-Flight Detector with Streak Camera 159
Development of a New Photon Detector System for Nuclide Identification 161
Development of High-Efficiency Delay-Line PPAC for High-Energy Light Ions 163
Construction of PHENIX Muon Tracking Chambers ... 165
Status of PHENIX Muon Identifier Mechanics 166
High-Energy Beam Test of PHENIX EM Calorimeter at CERN 168
Feasibility Test of Proton-Carbon CNI Polarimeter for RHIC 170
PHENIX Computing Center in Japan (CC-J) .. 172
A Workstation Farm Optimized for Monte Carlo Shell Model Calculations: Alfleet .. 174
Development of High-Rate MUSIC .. 176
Calibration of Heavy Ion Telescope on Board MDS-1 Satellite with \(^{40}\)Ar Beam .. 177
Beam Calibration of Fiber Neutron Monitor onboard the Exposed Facility of the Japanese Experimental Module .. 178
RF Ion-Guide System for Trapping Energetic Radioactive Nuclear Ions from Fragment Separators .. 180
Development of a Polarized Solid Proton Target by Means of the Integrated Solid Effect (ISE) .. 182

6. Material Analysis

Development of a Highly Sensitive High-Resolution In-Air Particle-Induced X-Ray Emission (PIXE) System: I .. 183
PIXE Analysis of Lead in the Feather of a Jungle Crow Living in Tokyo 185
RBS Analysis of Na-Implanted Glassy Carbon .. 186
Heavy-Ion Irradiation Effects in Bi-2223 Tapes .. 187
A New Method for Determining the Vacancy Formation Energy of Metals Using the Positron Age-Momentum Correlation Technique .. 188

7. Miscellaneous

Neutrino Advanced Generation with Accelerated Muon 189
Light Hadron Spectrum in Quenched Lattice QCD 191
Monte Carlo Simulation of Supersymmetric Matrix Model 192
New Method for Trace Element Analysis Using the Electron Cyclotron Resonance Ion Source and Heavy-Ion Linac .. 193

IV. NUCLEAR DATA

Status Report of the Nuclear Data Group .. 195

V. DEVELOPMENT OF ACCELERATOR FACILITIES

Biased Electrode Method for RIKEN 18 GHz ECRIS 197
Present Status of 14.5 GHz Caprice in RIKEN 199
Development of Compact High Current Multicharged Ion Source for RIKEN RI Beam Factory .. 200
Laser-Plasma Production for Laser Ion Source at RIKEN 202
Generation of Heavy-Ion Pulses with Short Width and Long Interval 203
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Plan for a New Control System for the RIKEN Ring Cyclotron Using EPICS</td>
<td>204</td>
</tr>
<tr>
<td>Low Power Test of CSM Resonators</td>
<td>206</td>
</tr>
<tr>
<td>Construction of the IRC for RIKEN RI Beam Factory</td>
<td>208</td>
</tr>
<tr>
<td>Model Test of the RIKEN-IRC Main Resonator</td>
<td>210</td>
</tr>
<tr>
<td>Status of the SRC for the RIKEN RI Beam Factory</td>
<td>212</td>
</tr>
<tr>
<td>Development and Construction of the SRC Sector Magnets</td>
<td>214</td>
</tr>
<tr>
<td>Quench Analysis of Stagnant Normal Zone in the RIKEN Prototype Sector Magnet</td>
<td>216</td>
</tr>
<tr>
<td>Analysis of the Injection and Extraction Systems for the RIKEN Superconducting Ring Cyclotron</td>
<td>218</td>
</tr>
<tr>
<td>Superconducting Magnetic Channel for the RIKEN Superconducting Ring Cyclotron</td>
<td>220</td>
</tr>
<tr>
<td>Helium Cooling System of RIKEN Superconducting Ring Cyclotron</td>
<td>222</td>
</tr>
<tr>
<td>Design of the RIKEN-SRC RF System</td>
<td>224</td>
</tr>
<tr>
<td>Vacuum System for the RIKEN Superconducting Ring Cyclotron</td>
<td>226</td>
</tr>
<tr>
<td>Influence of External Magnetic Field on the Performance of Cold Cathode Gauges</td>
<td>228</td>
</tr>
<tr>
<td>Design Studies on Beam Transport System of RIKEN RI Beam Factory</td>
<td>230</td>
</tr>
<tr>
<td>Design Study of Beam Transport Lines from SRC to Three Big RIPSs</td>
<td>232</td>
</tr>
<tr>
<td>Design of a 2 T Room-Temperature Dipole Magnet for Beam Transport Lines of RIBF Project</td>
<td>234</td>
</tr>
<tr>
<td>Design of the BigRIPS Separator for the RIKEN RI-Beam Factory Project</td>
<td>236</td>
</tr>
<tr>
<td>Design of a Superferric Quadrupole Magnet for the RIKEN RI-Beam Factory Project</td>
<td>238</td>
</tr>
<tr>
<td>Estimation of Deposited Heat and Damage by Neutrons on the Downstream Superconducting Magnet of the Target Assembly</td>
<td>241</td>
</tr>
<tr>
<td>Shielding Design of RIKEN RI Beam Factory</td>
<td>243</td>
</tr>
<tr>
<td>Refinement of Accumulator Cooler Ring Lattice Design</td>
<td>245</td>
</tr>
<tr>
<td>Development of ACR Electron Cooler (2)</td>
<td>247</td>
</tr>
<tr>
<td>Study of Pickup for Stochastic Cooling</td>
<td>249</td>
</tr>
<tr>
<td>The Ferrite Test Cavity for MUSES (II)</td>
<td>251</td>
</tr>
<tr>
<td>Development of the Kicker Magnet for BSR</td>
<td>253</td>
</tr>
<tr>
<td>Development of a High-Intensity Slow-Positron Source for Cooling of Highly Charged Ions</td>
<td>255</td>
</tr>
<tr>
<td>Preliminary Studies on CORBA-based RIBF Control System</td>
<td>257</td>
</tr>
<tr>
<td>Spin Tracking with “Real” Siberian Snakes in Relativistic Heavy Ion Collider(RHIC)</td>
<td>259</td>
</tr>
<tr>
<td>Ion Optics Study of RHIC OPPIS</td>
<td>261</td>
</tr>
<tr>
<td>Ultraslow Muon Production Using the Resonant Ionization Method</td>
<td>263</td>
</tr>
</tbody>
</table>
VI. RADIATION MONITORING
Radiation Safety Control System for the RIKEN Ring Cyclotron 265
Routine Work for Radiation Safety in the Ring Cyclotron Facility 266

VII. LIST OF PUBLICATIONS 269
VIII. LIST OF PREPRINTS 276
IX. PAPERS PRESENTED AT MEETINGS 279
X. LIST OF SYMPOSIA 292
XI. LIST OF SEMINARS 294
XII. LIST OF PERSONNEL 299

AUTHOR INDEX
This issue of RIKEN Accelerator Progress Report reports research activities of the RIKEN Accelerator Research Facility (RARF) during the calendar year of 1999. The research programs have been coordinated in the framework of the project entitled Multidisciplinary Researches on Heavy Ion Science. The project involves a variety of fields such as: nuclear physics, atomic physics, nuclear chemistry, radiation biology, condensed matter physics in terms of accelerator or radiation application, basic studies on energy production, basic studies on accelerator cancer therapy, material characterization, application to space science, accelerator physics and engineering, laser technology, and computational technology. These activities involved 12 laboratories in RIKEN and more than 300 researchers including outside users from domestic and foreign institutions. Thirty-six universities and institutes from within Japan and 33 institutes from 10 countries are included.

Major research activities of the RARF are based on the heavy-ion accelerator complex consists of the $K = 540$ MeV RIKEN Ring Cyclotron (RRC), the energy-variable heavy-ion linear accelerator (RILAC) and the $K = 70$ MeV azimuthally variable field cyclotron (AVF), which have altogether provided a beam time (on the target) of more than 6500 hours through the year. The operation time is shorter than those of 1998 because of the two and half months shutdown due to the part of the construction-program of RI Beam Factory.

The three accelerators deliver heavy-ion beams of a variety of elements with energies ranging from a few A MeV to 135 A MeV. The two-injector machines (AVF and RILAC) are equipped with ECR heavy ion sources. The AVF is additionally equipped with a polarized ion source for vector and tensor polarized deuterons. The three accelerators have been used in various configurations. The RRC operate with the AVF or the RILAC as the injector. The AVF has been providing beams of ions of mass number up to 60 and the RILAC has been providing beams of ions of mass number larger than that. In addition, the AVF and the RILAC were used separately, when they are not used as the injector, for low energy applications. Recently, low energy (5 A MeV) beam of 54Kr has been accelerated for the study of superheavy elements. The beam current as high as 0.8 particle μA was delivered on the target.

Two new laboratories have been established. One is Applied Nuclear Physics Laboratory and the other is Beam Dynamics Laboratory. The later is the laboratory that takes care of the construction of MUSES in RI Beam Factory.

Two third of the RRC research beam time (~5000 hours in total) goes to nuclear physics and one third is used by atomic physics, material science, nuclear chemistry, radiation biology and others. While the RILAC and the AVF beam time were used for fields other than nuclear physics. The research beam time at the AVF is 2100 hours and 800 hours at the RILAC.

The use of radioactive-ion (RI) beams is the main emphasis of the science at the RRC. Three different types of radioactive beams, i.e., (1) projectile-fragment (PF) radioactive beam, (2) spin-polarized radioactive beam, and (3) high-spin isomer beam, have been developed and used in a broad scope of nuclear research. The PF beams are most widely used by virtue of their versatility and prominent intensities. The spin-polarized beams are particularly useful for NMR experiments of radioactive isotopes. These beams are primarily used for the study of nuclear physics. Major subjects pursued are: (1) exotic nuclear structure and new dynamics of extremely neutron-rich nuclei (such as those with a neutron halo or skin), (2) nuclear astrophysics involving unstable-nucleus reactions, (3) synthesis of new unstable isotopes far from the valley of stability, (4) extensive measurements of nuclear moments. Characteristic features of intermediate-energy direct reactions are often exploited for such studies.

The RI beams were useful for other domains of science as well. In particular, application to condensed matter science has been developed to a large extent by exploiting on-line capability of Mössbauer and PAC spectroscopies that are feasible only with RI beams. Intermediate-energy heavy ions from the RRC have found their own applicability. A strikingly efficient mutagenic effect has been observed when the embryo of a Tobacco plant is shot by heavy ions. High-energy heavy ions were irradiated to the plants naturally placed in the air for desirable amount of LET through sample. It has opened a new scheme of mutant production that is efficient and well controlled. The method is so efficient that it is expected to offer new possibilities of bioscience research through comparison between normal and mutagenic samples. For more detailed information such as cross talks between cells is planned to be studied by developing a micro beam.

Another remarkable development has been seen in the application field of radioactive tracer technique. High-energy heavy ion reactions facilitate production of a wide variety of isotopes simultaneously. This feature is exploited to cultivate a novel multi-tracer methodology in which a radioactive tracer source con-
taining a variety of elements is prepared to be injected into a sample. This enabled to study circulation behaviors of different elements for a common sample, drastically improving reliability and efficiency over the single-tracer experiments. Application of the method is rapidly extending to the fields of bioinorganic chemistry, dietetics, toxicology, pharmacology, environmental issues, and medical fields in general.

The RARF carries many international collaborations, among them are large-size two international-collaboration programs using overseas accelerator facilities: one is the muon science project at ISIS in collaboration with the Rutherford-Appleton Laboratory (RAL), and another is the spin physics program at RHIC in collaboration with the Brookhaven National Laboratory (BNL). The pulsed muon beam facility at ISIS has been operated steadily. Studies of quark-gluon spin structure functions at BNL/RHIC are waiting for the commissioning of RHIC operation soon. The RIKEN/BNL Research Center is in operation and attracts physicists from all over the world. The large computer system for the analysis (CC-J) is under construction.

The RI beam factory project is going reasonably fast. The construction of the sector magnet for the booster cyclotron (ISR) has been completed and magnetic field measurements are in progress. Windings of the superconducting coil for the ring cyclotron (SRC, K = 2500 MeV) is also in progress. The design work of MUSES (accumulator ring and colliding rings) has been started.

I. Tanihata
Director
RIKEN Accelerator Research Facility
II. OPERATION OF ACCELERATORS
The 1.7 MV tandem accelerator has been moved to a new experimentation hall, following the construction plan of the new accelerator facilities (RIBF), and, therefore, was shut down from March to the end of August, 1999. It was, however, operated for 40 days for experiments, except for the machine inspection and beam test, during the annual reporting period from Nov. 1, 1998 to Oct. 31, 1999.

Experimental studies on the following subjects have been performed, and some are still in progress:

(1) Rutherford Backscattering Spectroscopy (RBS)
 (a) Behaviour of Xe atoms implanted into iron.
 (b) Channelling analysis of dopants in II-VI compound semiconductors.
 (c) RBS analysis of polystyrene surfaces and glassy carbon films modified by ion implantation.

(2) Nuclear Reaction Analysis (NRA)
 (a) Lattice location of hydrogen in niobium alloys using the channelling method.

(3) Particle-Induced X-ray Emission (PIXE)
 (a) Application of PIXE in the biomedical and materials sciences: Trace element analysis using energy-dispersive X-ray spectrometry.
 (b) Trace element analysis of feathers to monitor environmental pollution.
 (c) Development of an in-air high-resolution PIXE system for chemical state analysis.
 (d) Characterization of II-VI ternary semiconducting crystals.
RRC and AVF Cyclotron Operations

The operation statistics of the RIKEN Ring Cyclotron (RRC) for 1999 are listed in Table 1. The cumulative statistics since the beginning of operation in 1986 are shown in Fig. 1.

The total hours of operation in 1999 amounted to 5060 hr. This is 20% less than that in the previous year. The main reason for this decrease is the shutdown of all machines for two months due to the preparation for the RI Beam Factory (RIBF) project.

In order to clear the construction site for the new RIBF buildings, every power station, heat source and water supply for all the existing machines was moved to the west side of the Nishina Memorial Building. New buildings for RF power supplies for RRC and RILAC were constructed on the south and north sides of the Nishina Memorial Building, respectively. Almost all cables and pipes connecting the machines to these facilities outside of the building were replaced. The renovation began in February and was finished completely in the middle of April.

The lower limit of output energy of RRC, which had been 7 MeV/nucleon, was decreased to 5.5 MeV/nucleon using a harmonic number of 13. A 5.5 MeV/nucleon 84Kr beam was successfully accelerated with an intensity of 1 pA in September 1999. The parameters are listed in Table 2. This beam was required in the research of superheavy elements ($Z = 118$). The experiment in the GAs-filled Recoil Isotope Separator (GARIS) was carried out in October using this beam for a duration of as long as two weeks.

The operation with a harmonics of 13 is extremely inefficient, especially in RILAC. Only first three cavities of RILAC are operated with very low power levels. To make the acceleration of a low energy beam more efficient, RILAC energy will be upgraded by using acceleration cavities of Charge State Multiplier (CSM). The maximum energy will be 6 MeV/nucleon, which meets the requirements of superheavy elements research.

Six CSM cavities will be installed just after RILAC.

Table 1. Statistics of RRC Operation.

<table>
<thead>
<tr>
<th>Category</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total of Operation Time</td>
<td>5060</td>
</tr>
<tr>
<td>(Beam Tuning)</td>
<td>1400</td>
</tr>
<tr>
<td>(Nucl. Phys. Experiments)</td>
<td>2980</td>
</tr>
<tr>
<td>(Other Field Experiments)</td>
<td>680</td>
</tr>
<tr>
<td>Trouble Shooting</td>
<td>460</td>
</tr>
<tr>
<td>Open House for Guests</td>
<td>40</td>
</tr>
<tr>
<td>Construction</td>
<td>1700</td>
</tr>
<tr>
<td>Holiday & Maintenance</td>
<td>1500</td>
</tr>
<tr>
<td>Total</td>
<td>8760</td>
</tr>
</tbody>
</table>

* Sumiju Accelerator Service, Ltd.
Table 2. Acceleration Conditions for 5.5 MeV/nucleon 86Kr beam.

<table>
<thead>
<tr>
<th>RF Frequency</th>
<th>Cavity No. of RILAC</th>
<th>Harmonics of RRC</th>
<th>Charge- Stripper</th>
<th>Beam Intensities (pA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.7 MHz</td>
<td>3</td>
<td>13</td>
<td>No use</td>
<td>6*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
</tbody>
</table>

*18GHz ECR
*Enrichment 90%

The first two of them are acceleration cavities, which were designed as the first unit of the CSM and completed in March of 1999. Their frequency tunable range is 36 to 78 MHz. On the other hand, the other four cavities, which have been fabricated, will be CSM cavities without a course frequency tuner, operated only at a frequency of 76 MHz. The entire accelerator will be installed in June of 2000 and a high-intensity low-energy beam, such as 6 MeV/nucleon 84Kr beam with an intensity of more than 2 pA, will be available with stand-alone operation of RILAC in the autumn of 2000. In connection with this, GARIS will be moved from the E1 experiment room of RRC to the No. 1 target room of RILAC in June of 2000, and the RILAC-RRC operation will be stopped from May to August of 2000.

Machine troubles in 1999 were related mainly to a layer short in a main coil of the W-sector magnet of RRC. A beam became unstable periodically in February 1999. Since, at the beginning, the effect was so small and it lasted for a short duration, thus it was very difficult to identify the source of the disturbance. After the long-term precise measurement of terminal voltages of each coils as well as a magnetic field, it was discovered that a very unstable and incomplete short circuit between layers had occurred inside of the lower main coil in the W-sector magnet.

The main coil consists of eleven pancakes, each of which has a six-turn two-layer coil. Each conductor was covered with glass insulation tape, and the entire coil was molded with epoxy resin after being wound and assembled. After a careful search on a surface of the molded coil by the thermoviewing method, the exact position where the layer short had been occurring was found in May of 1999. Fortunately, it occurred near the coil surface and also near to the coil terminal. By partially removing epoxy resin, the defective hollow conductor with a square cross-sectional shape was exposed. After the corner edge of each conductor was scraped to create enough space between them, this trouble was overcome completely.

A new ECR ion source using a super-conducting solenoid was completed in the summer of this year and a plasma test was started in the autumn. An injection beam line will be changed for two ECR ion sources, so that one can be tested while the other can be used for the AVF cyclotron.

During the shutdown period, improvement of injection system of RRC was done. Two sets of magnetic inflection channels (MIC1 & MIC2) were replaced with new ones and the size of beam pipe was enlarged slightly. Beam monitors along the injection line will be replaced with new types of monitors, preparing for the high intense beam injection in the future.

The radiation safety system has been changed to a new system using distributed function via a network. All the replacement was completed in the end of April.

In June of 2000, the spectrometers of DUMAS, which are currently installed at the beam line on RCNP, will be moved to experimental hall E7 in the cooperation with the Center of Nuclear Study of Tokyo University.
During this reporting period, RILAC has been in steady operation and has supplied various kinds of ion beams for various experiments. Table 1 shows the statistics of RILAC operation from January through December, 1999. The days taken for overhaul and improvement, as shown in Table 1, include two kinds of large works. First, the sub-power station for RILAC was moved to a new site in order to open space in the project for a RI Beam Factory. Second, improvement of the rf system of RILAC was carried out. Regular RILAC operation was discontinued twice, from February 13 through May 28, 1999, and from November 22 through December 10, 1999.

Table 2 summarizes the number of days allotted to different research groups. The percentage of beam time used by the RIKEN Ring Cyclotron (RRC) group was approximately 52% of the total. The ^{58}Ni, ^{84}Kr, ^{136}Xe, ^{181}Ta, and ^{209}Bi ions accelerated by RILAC were injected to RRC. Tables 3 and 4 show the statistics of the number of days of the RILAC ion beams were delivered using the Cockcroft-Walton injector with an 8 GHz ECR ion source (NEOMAFIOS) and those delivered using the new preinjector (consisting of an 18 GHz ECR ion source and a variable-frequency RFQ equipped with a folded coaxial resonator), respectively. The ion beams of 15 elements were used for the experiments and beam acceleration tests. The percentage of beam time using metallic ions amounted to approximately 21% of the total.

We carried out the following machine improvements during this reporting period.

1. The No. 6 and No. 5 rf systems were replaced with newly designed ones in May 1999 and in December 1999.
The power amplifier chain of the new rf system consists of a solid-state amplifier (1 kW) as the first stage, a tetrode (SIEMENS-RS2012CJ) as the second stage (15 kW), and a tetrode (SIEMENS-RS2042SK) as the final stage (300 kW). The basic design is similar to that of RRC.

(2) A PC-based control system has been adopted for the new rf system. Windows NT is used as the operating system of the personal computer. The system communicates with programmable logic controllers by InTouch software.

(3) Three sets of plate power supplies as the final stages were replaced with newly designed ones in May 1999, because they were worn out from many years of operation. Rated output power is 480 kW for the No. 1 and No. 2 rf systems, 700 kW for the No. 3 and No. 4 rf systems, and 1120 kW for the No. 5 and No. 6 rf systems. Maximum output voltages are 12 kV, 14 kV, and 16 kV, respectively. The ripple voltage at the rated full load is 0.5% peak to peak.

(4) The power supplies for the bending magnet and quadrupole magnets of the beam transport line from the 450 kV Cockcroft-Walton injector were replaced with new ones, because they were worn out from many years of operation. Each new magnet power supply is a switching type.

(5) A PC-based control system for the new magnet power supplies was developed. This new system uses a personal computer with a Windows NT operating system and an application program (HP-VEE). Each new magnet power supply has a GPIB interface module, and is connected to Ethernet LAN through LAN/HP-IB Gateway E2050. The control system has been used since September 1999.

We experienced the following machine troubles during this reporting period. (1) A GPIB card of the computer system controlling RILAC had trouble; we replaced it with a spare one. (2) The No. 4 resonator had a small vacuum leak at the outer wall of the rf feeder. (3) A power supply for the filament (4.5 V, 1640 A) of the final vacuum tube (No. 1) had trouble.
III. RESEARCH ACTIVITIES
1. Nuclear Physics
Reaction Mechanism and Characteristics of T_{20} in $d+{^3}He$ Backward Elastic Scattering at Intermediate Energies

For the last few decades, the tensor analyzing power, T_{20}, of the backward elastic scattering of deuterons by protons ($d+p$) at intermediate energies has been intensively studied as an important source of information about nuclear interactions and reaction dynamics. Since 3He has the same spin as proton, the spin structure of the scattering amplitude of the $d+^3$He system is similar to that of $d+p$ when 3He is considered to be a single body. Thus, the backward elastic scattering of the deuteron by 3He has attracted our attention for investigations of probable differences as well as similarities of information when compared to dp scattering.

A $d+^3$He experiment was carried out at the RIKEN Accelerator Research Facility using polarized deuteron beams of $E_d = 140, 200, 270$ MeV. The beam was provided by a high-intensity polarized ion source. Three polarization modes (unpolarized and two tensor-polarized modes) were cycled every 5 seconds. The beam polarization was measured with a polarimeter based on $d+p$ elastic scattering. It was continuously monitored during a run, and found to typically be 60-80% of the ideal value. Scattered 3He particles were momentum-analyzed in the magnetic spectrograph SMART and detected by a multi-wire drift chamber and plastic scintillators placed at the focal plane. In an off-line analysis, data for ($\theta_{lab} \leq 1.4^\circ$) were used. The background spectrum from the $(d, ^3He)$ reactions on Havar foils was subtracted to obtain the net yield for $d+^3$He events. The signal-to-noise ratio at the peak region was 5-25, depending on the beam energy.

In the $d+p$ backward scattering, the assumption of a mechanism by neutron transfer from the deuteron to the proton has been fundamentally successful in explaining the energy dependence of the observables. For example, a simple PWIA calculation by the mechanism qualitatively describes the features of the measured tensor analyzing power, T_{20}, and the polarization transfer coefficient, $K_{20}(d\rightarrow p)$, at a few hundred MeV. In the case of a 3He target, the possible reaction mechanism of the backward scattering of the deuteron would be proton transfer from 3He to the deuteron.

For the transfer assumption,

$$ T_{20} = \frac{(2\sqrt{2}R \cos \Theta - R^2 - 32R'^2 + 12RR' \cos(\Theta' - \Theta))}{N_R}, $$

with

$$ N_R = \sqrt{2} + 2\sqrt{2}R^2 + 34\sqrt{2}R'^2 - 4R' \cos \Theta', $$

where R and R' are the magnitudes of the tensor scattering amplitudes relative to the scalar one; Θ and Θ' are their relative phases. In PWIA, R and R' are given by

$$ R = \frac{4|R|}{4 + r^2}, \quad R' = \frac{r^2}{\sqrt{2}(4 + r^2)} \quad \text{with} \quad r = \frac{u(k)}{w(k)}, $$

where $u(k)$ and $w(k)$ are the S- and D-wave functions of the $p-d$ relative motion in 3He, k.

Figure 1 shows the calculated and measured T_{20} as a function of the $p-d$ relative momentum in 3He, k.

References

Each Li isotope has its own distinctive feature. For example, ^7Li has a clustering structure and ^{11}Li has a halo structure. We have tried to calculate the structures of Li isotopes with some Gaussian single-particle bases in order to explain these features systematically with only a few assumptions.

We have adopted a Gaussian function as a single-particle wave function,

$$\varphi_\beta^\nu(r) = \left(\frac{2\nu}{\pi}\right)^{3/4} \exp\left(-\nu (r-s)^2\right) |\beta\rangle,$$

where $|\beta\rangle$ is the spin-isospin wave function and ν is the Gaussian size parameter; vector s shows the center of the Gaussian. Here, ν and s are variational parameters. There was no variational parameter on the spin-isospin wave function in this work. We made a basis function of a nucleus by a Slater determinant:

$$|\Psi\rangle = \mathcal{A}\{\varphi_i(r_i)\} = \det\{\varphi_i(r_i)\},$$

$$\varphi_i(r_i) = \varphi_\beta^\nu(s_i).$$

We expressed the wave function of the total system by superposing multi non-orthogonal many-body bases that have different Gaussian size parameters,

$$|\Phi\rangle = c_1|\Psi_1\rangle + c_2|\Psi_2\rangle + \ldots + c_i|\Psi_i\rangle + \ldots + c_N|\Psi_N\rangle.$$

Here, $\{|\Psi_i\rangle\}$ are non-orthogonal bases. The coefficients, $\{c_i\}$, were determined by diagonalization of the Hamiltonian.

We selected parameters of the wave functions in a stochastic manner. We also projected wave functions onto eigenstates of the angular momentum and parity. In calculations of stochastic selections and projections, we used a parallel computing machine, called Alphleet.

In this study, we used a Modified Volkov No. 1 Force\(^1\) ($m = 0.58$, $b = 0.15$, $h = 0.05$) as the central force and the G3RS force\(^2\) as the spin-orbit force. We used a Coulomb force approximated by the sum of seven Gaussians.

We calculated the structures of the ^6Li, ^7Li, ^8Li and ^9Li ground states. In the process of selecting basis wave functions, the z-component of the angular momentum and parity were projected. After we selected wave functions, we projected them onto the eigenstates of the total angular momentum and calculated the energies and moments. We show the calculated values of the magnetic dipole moments and electric quadrupole moments in Fig. 1.

These calculated values show good agreement with the experimental values, although the calculated value of the magnetic moment of ^8Li, 0.956, is smaller than the experimental value, 1.65. We suppose that this disagreement occurs because the spin wave function had no variational parameter in this work.

References
\begin{enumerate}
\end{enumerate}
Recently, the contributions of higher shells were analyzed in $N = 8$ nuclei. A calculation based on the shell model has shown that the slow β-decay of 12Be to 12B can be explained as being due to an admixture of the excitations from the p shell to the sd shell in 12Be ($N = 8$), where the single-particle energy is artificially modified.\(^1\) This shows that the concept of magic number is vague in 12Be. There have been pioneering studies for Be isotopes based on the molecular-orbit (MO) model,\(^2-4\) although the ground state of 12Be has been analyzed to be dominantly the closed p-shell configuration for the neutrons. Here, we propose a new $\alpha + \alpha + n + n + \cdots$ model based on MO, where the model space for the valence neutrons is vastly extended.

In MO, the orbits for the valence neutrons are expressed as a linear combination of orbits around each α-cluster. When a linear combination of two p-orbits around the left-α-cluster and the right-α-cluster is summed up with the same sign, the resultant MO state has negative parity and one node. It cannot spread along the z-axis where two α-clusters are already located. If a linear combination of the p-orbit is summed up with the opposite sign, the resultant state has negative parity and one node.

The ground 0^+ state (-61.1 MeV) has dominantly the $\left(\frac{1}{2}^+\right)^2$ component for the two valence neutrons, and the 0^-_1 state at 8.1 MeV (experimentally 6.263 MeV) has dominantly not the $\left(\frac{1}{2}^-\right)^2$ component, but the $\left(\frac{1}{2}^+\right)^2$ component. Thus, the level inversion of the p-shell and the sd-shell is also found to be reflected in 16Be. The second 0^+ state has a much larger charge radius of 2.93 fm, (a proton radius of 0.813 fm is used), than the ground state, 2.51 fm, since the two valence neutrons occupy a higher nodal orbit along the α-α axis and increase the distance between the two α-clusters so as to reduce the kinetic energy of the system. The state is the band head of enhanced clustering states.

This $\left(\frac{1}{2}^+\right)^2$ configuration is also strongly mixed in the ground state of 12Be. When the α-α distance is small, for example 2 fm, the dominant configuration of the last two valence neutrons is $\left(\frac{1}{2}^-\right)^2$ for the ground state, which corresponds to the p-shell closed configuration at the limit of α-α distance of zero. However, the $\left(\frac{1}{2}^+\right)^2$ configuration for the last two valence neutrons becomes lower as the α-α distance is increased. An α-α distance of 3 fm, which is the optimal distance for $^{\text{12}}$Be, the ground 0^+ state has a squared overlap of 0.41, with $\left(\frac{1}{2}^-\right)^2$, and a squared overlap of 0.64 with $\left(\frac{3}{2}^+\right)^2$. Therefore, in the ground state of $^{\text{12}}$Be, two different configurations contribute, and the neutron magic number, $N = 8$, disappears.

One evidence of the mixing of the $\left(\frac{1}{2}^+\right)^2$ component is the β-decay probability from $^{\text{12}}$Be to $^{\text{12}}$B. Using the present model, the log(ft) value of $^{\text{12}}$Be$(0^+) \to ^{\text{12}}$B(1^+) is calculated to be 3.81; this value agrees with the experimental value of 3.8. However, if we restrict the configuration of the last two valence neutrons to $\left(\frac{1}{2}^-\right)^2$, the log$(ft)$ value becomes 3.51. Therefore, the mixing of the $\left(\frac{1}{2}^+\right)^2$ component is found to suppress this transition and to increases the log(ft) value.

Fig. 1. Calculated and experimental energy levels of 10Be. The calculated levels are sorted into five columns. From left to right: states whose dominant component is $K^\pi = 0^+, 2^+$, and 1^+. The fourth column is the second 0^+ band characterized by the σ-orbits. The fifth column is the negative parity band.
The agreement of the experimental and the theoretical log(ft) values suggests that the breaking of the $N = 8$ magic number is realized in 12Be.

References
Model-Independent Analysis of the One-Body Density of Unstable Nuclei

A. Kohama, S. Yamaji, R. Seki,* and A. Arima

[Unstable nuclei, Matter distribution, Proton-nucleus elastic scattering]

We have analyzed the matter distribution of unstable nuclei model-independently based on the experimental data of proton-unstable-nucleus elastic scattering. We applied the method of Friar and Negele.\(^1\) This method was originally proposed to determine the charge distributions of stable nuclei.

Since the first observation,\(^2\) the reaction cross sections of neutron-rich light nuclei have been found to be quite large. This suggests an extended structure of the neutron-rich nuclei; information concerning the one-body matter distribution is indispensable to prove this hypothesis.

In the formulation of Friar and Negele, the one-body density, \(\rho(r)\), is expanded in terms of the Fourier-Bessel series. No assumption is made concerning the form of the density. The expansion coefficients are determined by minimizing \(\chi^2\), defined as

\[
\chi^2 = \sum_{\alpha=1}^{N} \frac{1}{\epsilon_{\alpha}^2} \left(\frac{\sigma_{\alpha}^{\exp}}{d\Omega} - \frac{\sigma_{\alpha}^{\th}}{d\Omega} \right)^2.
\]

Here, \(N\) is the number of data points, and \(\epsilon_{\alpha}\) is the error of each data point. The superscript "exp" of the cross section implies the experimental data, and "th" implies the theoretically obtained value. We use the expression of the first-order optical potential in the Glauber approximation for the theoretical cross section in this work. It includes the one-body density explicitly.\(^3\)

Detailed numerical calculations are in progress. We simply point out that the previous work on the determination of the matter distribution of \(^6\)He and \(^8\)He\(^4\) may still be too naive.\(^5\) The authors first assume the function form of the density, and then make a parameter-fit using the experimental data. By assuming the function form, theoretical prejudice could be brought into the analysis, which is not a good way to treat this kind of problem. Presently, the available data do not give the density with sufficient accuracy in our formulation.

References

* Department of Physics and Astronomy, California State University, Northridge, and W. K. Kellogg Radiation Laboratory, Caltech, USA
Development of a New Code for Large-Scale Shell-Model Calculations Using a Parallel Computer

T. Mizusaki

[Shell model, Parallel computation]

The nuclear shell model is a fundamental framework for describing interacting nucleons. Therefore, many efforts have been devoted to solve the shell-model problem. Among these efforts, a numerical approach is quite important, especially for realistic shell-model calculations. Due to the recent rapid progress of computer technology, several numerical methods\(^1\,^2\) are being advocated, and can, indeed, come over the limitation of the conventional shell-model diagonalization in many respects. However, up to now, only a shell-model diagonalization method can guarantee an exact (not approximate) solution in the case where a shell-model calculation is possible.\(^1\) Therefore, shell-model diagonalization still keeps its unique value in a nuclear spectroscopic study. In addition, shell-model diagonalization, itself, can also be further developed by the use of modern computational technology.

In this paper, we present the current largest shell-model calculations based on a new shell-model code with a massively parallel computer, called Alphleet.\(^1\) Alphleet was originally designed for Monte-Carlo shell-model (MCSM)\(^1\) calculations. In the MCSM, the numerical intensive part is an angular-momentum projection, performed by three-fold integration over the Euler angles. The strategy of parallel computation is division concerning the Euler angles. This parallelization is quite easy and its efficiency is quite high. On the other hand, efficient parallelization of shell-model diagonalization is difficult because it requires a quite huge amount of numerical data. In the distributed memory system, huge data transfer among CPU's is inevitable. By developing an algorithm which minimizes the data-transfer during shell-model diagonalization, a new shell-mode code on such a distributed memory system becomes efficient. For instance, by 24 CPU's, we can solve the shell-model problem with 0.1 billion dimension. In this case, one Lanczos iteration requires about 6600 seconds. Then, a converged solution can be obtained within few days. The computational time will be further shortened by using a larger number of CPU's.

In Fig. 1, we show the pf-shell calculations of \(^{54}\text{Fe}\) with the FPD6 interaction for \(0^+ - 10^+\), as an example. The energy eigenvalues are shown as a function of the dimension of the truncated shell-model space, defined by \(\Theta_{\ell \leq 5} (f_{7/2})^{A-40-x}(r)^x\), where \(r\) means the \(f_{5/2}\), \(p_{3/2}\) and \(p_{1/2}\) orbits and \(t\) is the maximum number of particle allowed to be excited. The dimension is counted for \(J_z = 0\) space. The results of SMMC and QMCD methods for the ground-state are also added as a reference. As the truncation space becomes larger, the eigenvalues converge. Consequently, such a large-scale shell-model calculations are shown to be quite useful for the yrast spectroscopy of the pf shell region.

In summary, a new shell-model code has been developed, which is well optimized for massively parallel computers. By this code, shell-model calculations with over 0.1 billion dimension become possible, and the realm of full pf-shell calculations becomes enlarged.

References

\(^1\) In the SMMC method, a notorious minus sign problem induces a large error bar for the ground-state energy, as shown in Fig. 1. In the MCM method, its energy is quite precise, but is still variational upper limit

\(^2\) Alphleet is a customized parallel computer in the RI Beam Factory in RIKEN
Monte Carlo Shell-Model Study of Unstable Nuclei Around $N = 20^+$

Y. Utsuno, T. Otsuka, T. Mizusaki, and M. Honma

[NUCLEAR STRUCTURE shell model, Shell gap]

The $N = 20$ closed-shell structure is known experimentally to disappear in the neutron-rich region, for instance, by the 2^+_1 level\(^1\) and the large $B(E2; 0^+_1 \rightarrow 2^+_1)$ value\(^2\) of ^{32}Mg. The aim of this study was to clarify the mechanism of the vanishing shell gap in terms of the shell model. Because the shell-model dimension is too large to diagonalize the shell-model Hamiltonian exactly, we adopted the Monte Carlo shell-model calculation.\(^3\) Since it is desirable to make a systematic calculation in this region to examine the mechanism, we performed shell-model calculations, in a single framework, for even-even nuclei from O to Si. The computations were carried out mainly using the Alphleet computer system at RIKEN.

Figure 1 shows the number of neutrons excited from the sd shell to the pf shell for the ground states of Ne, Mg, and Si isotopes. Particle-hole excitation occurs considerably around $N = 20$ for Ne ($Z = 10$) and Mg ($Z = 12$) isotopes, while the ground state of Si ($Z = 14$) primarily consists of the normal configuration. We note that the calculated states successfully reproduce the energy levels and the $B(E2)$ values.

In order to analyze the result, the effective single-particle energy (SPE) is very useful. Assuming the normal configuration for $N = 20$ nuclei, we define the effective SPE of a given orbit as the one-neutron separation energy from this orbit, and then the energy is evaluated by the monopole interaction of the shell-model Hamiltonian. From Fig. 2, it can be seen that the shell gap between $0d_{3/2}$ and $0f_{7/2}$ becomes wider as Z increases, whereas the gap is quite small for Ne and Mg isotopes. This occurs because the strong proton-neutron monopole interaction within the same major shell (sd shell) stabilizes the $N = 20$ shell closure.

We suggest that the narrow gap between the sd and pf shells is a cause of a vanishing of the closed-shell structure in the neutron-rich Ne and Mg isotopes, together with a preference for a prolate deformation of these isotopes.

References
A Search for a Unified Effective Interaction for Monte Carlo Shell-Model Calculations

M. Honma, B. A. Brown,* T. Mizusaki, and T. Otsuka

[Shell model, Effective interaction]

The nuclear shell model has been successful as one of the most fundamental models of nuclei. It has been demonstrated by p- and sd-shell calculations that, once a suitable effective interaction is found, the shell model can describe various nuclear properties both accurately and systematically in the whole major shell. In such cases, the shell model acquires predictive power; one can see an indication of new physics in any possible deviation of new experimental data from shell-model predictions. For such systematic studies, it is crucially important to find a reliable effective interaction which can properly reproduce the variation of the nuclear structure over a wide mass-range.

On the other hand, the conventional shell-model diagonalization in a complete one-major-shell has been possible only up to the sd-shell, since the dimension of the Hamiltonian matrix becomes too large to diagonalize for larger shells. In order to overcome this difficulty, we have proposed the Monte-Carlo shell model (MCSM)\(^1\) based on the quantum Monte-Carlo diagonalization (QMCD) method. In MCSM calculations, basis states are generated stochastically, and are either adopted or discarded according to its importance for the energy gain. The Hamiltonian matrix is then diagonalized in a subspace spanned by these small number of selected basis states. By using MCSM we can carry out shell-model calculations in the pf- and larger shells with reasonable accuracy.

For the pf-shell nuclei, various effective interactions have been investigated. For example, the KB\(^3\) interaction has been constructed on the basis of the G-matrix derived from an NN-potential. However, for quantitative studies, such a realistic interaction requires sizable empirical corrections to its monopole part. The monopole-modified G-matrix interaction (KB3\(^\ast\))\(^3\) has been found to be successful in the lighter half of the pf-shell (\(A \leq 52\)). However, the KB3 interaction is dangerous to use beyond \(^{56}\)Ni, because of its too-large shell gap above the \(f_{5/2}\) orbit. A different strategy is taken for the FPD6\(^4\) interaction, where an analytic form of the two-body potential, which contains several parameters, is assumed; these parameters are determined by a fit to the experimental data of \(A = 41-49\) nuclei. The FPD6 interaction is quite successful for describing heavier pf-shell nuclei, such as \(^{64}\)Ge and \(^{56}\)Ni. The difficulty of the FPD6 interaction is found in the single-particle properties (a too-low \(f_{5/2}\) orbit), which can typically be seen in \(^{57}\)Ni. There are several other effective interactions for pf-shell nuclei, which have been evaluated with a certain truncation of the model space.

However, such a truncation restricts the applicability and predictive power of the shell model to several limited cases. Thus, it is a quite challenging problem to investigate whether it is possible to construct a unified shell-model effective interaction for pf- and larger shells which can describe various nuclear properties systematically over a wide model space, including both the beginning and the middle of the shell. MCSM enables us to study such a problem. Since MCSM utilizes general deformed bases, we can consider the whole model space without any truncation.

We can approach to this problem by a "model-independent" method, in which two-body matrix elements and single-particle energies are treated as parameters, and are determined by least-squares fit to the experimental binding energies and the excitation energies. This technique was successfully applied to the sd-shell, leading to success concerning the USD interaction.\(^5\) In the USD interaction, 63 two-body matrix elements and 3 single-particle energies were fixed in a fit to 447 energy data with an rms deviation of 185 keV. Practically, the 47 best-determined linear combinations of parameters were determined in a fit, and for the remaining 19 linear combinations the corresponding values of the G-matrix interaction were used.

In the case of the pf-shell, 195 two-body matrix elements and 4 single-particle energies should be determined. Although the number of parameters becomes about 3-times larger than that of the sd-shell, this method is still applicable if we can take a sufficiently large number of data. The shell-model calculations were carried out by a massive parallel machine, Alphleet, at RIKEN. By taking 742 energy data we have obtained a fit with an rms deviation 254 keV. We are now searching for a better set of parameters by changing the data selection and the number of linear combinations to be determined by a fit.

References

* Michigan State University, USA
Monte Carlo Shell-Model Calculations for Medium-Heavy Nuclei

N. Shimizu, T. Otsuka, T. Mizusaki, and M. Honma

[Shell model, Nuclear structure, Collective motion, Computational physics]

It is known that a part of the even-even nuclei around the rare-earth region shows a shape-phase transition, which is nothing but a gradual variation in the spherical-deformed change of the nuclear shape with increasing neutron number. The properties of these nuclei have been well studied using the Interacting Boson Model (ex. see Ref. 1). The purpose of this report is to discuss this intriguing structure change by utilizing a nuclear-shell-model description involving fermions, not bosons.

We have focused on $^{138-150}$Ba isotopes, which are among the above-mentioned nuclei. The single-particle states of the nuclear shell model consists of $N = 82-132$ and $Z = 50-82$. The effective interaction which we have used consists of the paring-type, quadrupole-pairing-type and quadrupole-quadrupole-type interactions whose parameters were fitted for the excitation levels of semi-magic nuclei, except for the proton-neutron quadrupole-quadrupole interaction. We restricted the shell-model Hilbert space to that with an axially symmetric deformation, which is considered to be a good approximation for these nuclei. Since Hilbert space is too huge to use the conventional shell-model diagonalization method, we have used the Monte-Carlo Shell Model method, which was recently developed by M. Honma et al.\(^2\) in order to overcome such a difficulty. In addition, we revised the method so as to utilize pair-bases.

Figure 1 shows a comparison between the experimental values and the MCSM results for the 2^+, 4^+, 6^+, 8^+, 10^+ levels of Ba isotopes. The experimental energy levels show transition from vibrational nuclei (left-hand side) to rotational nuclei (right-hand side). We can see that the theoretical results reproduce such a character quite well.

These computations have been carried out mainly using the Alphleet computer system at RIKEN.

References
The Nucleon Pair Approximation of the Shell Model

Y. M. Zhao, S. Yamaji, N. Yoshinaga, and A. Arima

[Nucleon pair approximation, Shell model, Collective excitations]

We have completed a series of studies\(^1\)\(^-\)\(^4\) on the nucleon pair approximation of the shell model.\(^5\)

Firstly, the validity of the \(SD\)-pair truncation of the shell model was tested in a single-\(j\) shell and many-\(j\) shells within the framework of the nucleon pair shell model. It has been found that \(SD\)-pair truncation is a good approximation of the shell model in the single-\(j\) case when the Hamiltonian consists of (monopole and quadrupole) pairing plus quadrupole-type interactions. The \(SD\)-pair truncation deteriorates if the QQ-type interaction is artificially large compared with the monopole pairing interaction. For multi-\(j\) shells, schematic calculations in the degenerate \(sd\), \(pf\), and \(sdg\) shells were performed for the extreme case of a pure QQ-type interaction. There is a large difference between the binding energies in the \(SD\)-pair truncated subspace and those calculated in the full shell-model space, as in the case of a single-\(j\) shell. However, it has been found that the basic properties of the band structure remain intact, and that the difference in the energy levels, i.e., moments of inertia, can be easily absorbed by adjusting the interaction strengths.

Secondly, calculations using the nucleon-pair shell model were performed in terms of the \(SD\) collective pairs, which were obtained in a suitable way to obtain the maximum collectivity. This method was applied to even-even Sn, Te, Xe, Ba, and Ce isotopes near the \(A = 130\) region using the (monopole and quadrupole) pairing plus quadrupole-type interactions by adjusting a very few parameters. The structure of the energy levels for the quasi gamma band as well as the ground band has been well reproduced for each nucleus. Other properties, such as \(B(E2)\)'s, agree with the experimental data very well. The calculated nuclear radii are well consistent with the relativistic mean-field calculation. The overall fit with the experimental data is superior to that of the previous calculations.

Thirdly, we investigated the role of the single-particle energies on the low-lying states of \(^{132}\)Ba, a typical \(O(6)\) nucleus in the IBM and the FDSM. It has been found that one can usually "restore" the physics of a realistic problem with non-degenerate single-particle energies using degenerate single-particle levels and a slightly different parametrization of the two-body interaction. However, if the single-particle splittings are enlarged by a factor of 1.5, the \(O(6)\) behavior of the nucleus is lost and a model that assumes degenerate levels cannot describe its collective structure. The contributions from interactions other than monopole and quadrupole pairing and quadrupole-quadrupole interactions have been found to be unimportant for the low-lying states. Although the role of the abnormal parity level depends on the details of the single-particle structure, its effects can be "compensated" by using different Hamiltonian parameters and degenerate single-particle levels in the FDSM treatment.

Fourthly, the Wick theorem for coupled Fermion clusters has been used to derive the nucleon-pair approximation for an odd nucleus. The building blocks of the model space were constructed using one unpaired valence nucleon coupled with the collective nucleon pairs stepwisely. Analytical expressions for the related commutators were derived, and formulas were given for the matrix elements of a general Hamiltonian. The formalism for an odd system was presented in a similarly recursive way as the even system. By treating the two-body interaction as an integrated operator in the re-arrangement of the operators before computing the related commutators, the computing time of a general two-body interaction matrix elements is comparable to that of the one-body interaction matrix elements, which is crucial for the nucleon pair approximation of an odd system to be realizable. This formalism unifies the analytical expressions of the Hamiltonian for an even system and an odd system (including odd-even, even-odd, and doubly odd cases). We call this "the unified formalism for even and odd systems".

References

Effects of the Dirac Sea on the Giant Monopole States

H. Kurasawa* and T. Suzuki

[Relativistic model, Effects of the Dirac sea, Giant resonance states]

The relativistic mean-field approximation (RMFA) neglects the Dirac sea in describing the nuclear ground state. Recently, however, it has been numerically shown that in a relativistic random-phase approximation (RRPA) built on RMFA, the monopole states cannot be well described without Pauli blocking terms, which express transitions between the Dirac sea and the occupied Fermi sea.\(^1\) If the blocking terms are neglected, the excitation energies of the monopole states in RRPA are much lower than those in the time-dependent relativistic mean-field approximation.\(^2\)

We show in an analytic way the role of the Dirac sea in the excitation energy of the monopole states. In the relativistic model, the excitation energy of the monopole states is expressed as\(^3\)

\[
E_M = \left(\frac{K}{\epsilon_F (r^2)} \right)^{1/2},
\]

where \(\epsilon_F\) denotes the Fermi energy and \langle r^2 \rangle the root-mean-square radius of the nucleus. The incompressibility coefficient, \(K\), is expressed in terms of the relativistic Landau-Migdal parameters, \(F_0\) and \(F_1\), as

\[
K = \frac{3p_F^2}{\epsilon_F} \frac{1 + F_0}{1 + \frac{1}{3} F_1},
\]

\(p_F\) being the Fermi momentum.

In order to see the effects of the Pauli blocking terms on the monopole states, we derive the Landau-Migdal parameters according to RRPA. We calculate the longitudinal RRPA correlation functions with and without the Pauli blocking terms.\(^4\) By comparing them with the correlation function of the Landau theory, we can obtain the expressions of the Landau-Migdal parameters in each approximation.

Including the Pauli blocking terms, we obtain

\[
F_0 = F_v - \frac{1 - v_F^2}{1 + a_s F_v} F_v, \quad F_1 = -\frac{v_F^2 F_v}{1 + \frac{1}{3} v_F^2 F_v},
\]

where we have defined

\[
F_v = N_F \left(\frac{g_s}{m_s} \right)^2, \quad F_v = N_F \left(\frac{g_v}{m_v} \right)^2,
\]

\[
N_F = \frac{2p_F E_F}{\pi^2}, \quad v_F = \frac{p_F}{E_F},
\]

\[
E_F = \left(p_F^2 + M^* \right)^{1/2}.
\]

In the above equations, \(g_s\) and \(g_v\) stand for the Yukawa coupling constants, \(m_s\) and \(m_v\) the masses of the \(\sigma\)- and \(\omega\)-meson, respectively, and \(M^*\) denotes the effective nucleon mass. \(N_F\) and \(v_F\) represent the relativistic density of states at the Fermi surface and the relativistic Fermi velocity. The factor \(a_s\), in \(F_0\) of Eq. (3), is given by

\[
a_s F_v = \frac{4}{(2\pi)^3} \left(\frac{g_s}{m_s} \right)^2 \int d^3 p \frac{p^2}{E_p^3} \theta_p,
\]

\[
E_p = (p^2 + M^*)^{1/2},
\]

where \(\theta_p\) denotes the step function, \(\theta(p_F - |p|)\). If we neglect the Pauli blocking terms, we obtain the Landau-Migdal parameters as

\[
F_0 = F_v - (1 - v_F^2) F_v, \quad F_1 = -v_F^2 F_v.
\]

The difference between Eqs. (3) and (7) is very clear. \(F_0\) and \(F_1\) in Eq. (7) have no denominator. In fact, we can show that the Landau-Migdal parameters in Eq. (3) are those from the second derivative of the total energy density with respect to the quasiparticle distribution. In order to obtain correct expressions of \(F_0\) and \(F_1\) within RMFA, we thus need to include the Pauli blocking terms in the configuration space of RRPA.

The values of \(K\) were calculated using the following parameters\(^5\) as an example:

\[
M = 939, \quad m_s = 520, \quad m_v = 783 \text{ (MeV)},
\]

\[
g_s^2 = 109.626, \quad g_v^2 = 190.431,
\]

which reproduce the nucleon binding energy, \(E_B = -15.75\) MeV, at \(p_F = 1.30\) fm\(^{-1}\). In this case, we have \(K = 544\) MeV by taking the Pauli blocking terms into account, and \(K = 357\) MeV by neglecting them. Thus, the value of \(K\) is fairly reduced, if the Pauli blocking terms are neglected. In \(^{208}\)Pb, the reduction amounts to about 2.7 MeV for the present parameters. This fact may be observed in Ref. 1 by numerical calculations.

References
The Phonon Damping Model

N. Dinh Dang, K. Tanabe, and A. Arima

[Hot giant dipole resonance, Double and triple giant dipole resonances, Damping, Exotic nuclei]

The Phonon Damping Model (PDM) was proposed by Dinh Dang and Arima in 19981 as PDM-1. Its further development, which includes all configuration mixings up to two-phonon configurations, has been carried out by Dinh Dang, Tanabe, and Arima (PDM-2).2 The primary purpose of PDM is to describe the damping of the giant dipole resonance (GDR) in highly excited (hot) nuclei. This model has shown that the main mechanism that causes a sharp increase in the GDR width at low temperatures, $T \sim 3\text{ MeV}$, and its saturation at high temperatures, $T > 3\text{-}4\text{ MeV}$, is coupling of the GDR phonon to the particle-particle (pp) and hole-hole (hh) configurations, which appear due to the deformation of the Fermi surface at $T \neq 0$. In PDM, a model Hamiltonian including coupling between the GDR phonon to all ph, pp, and hh configurations at $T \neq 0$ is used, and the strength function is calculated directly in the laboratory frame without any need for an explicit inclusion of the thermal fluctuations of shapes or the angular-momentum effect. The PDM has been proved to be quite successful in reproducing not only the width, but also experimentally observed shapes of hot GDR in ^{120}Sn and ^{208}Pb.

Very recently, in order to test the capability of PDM, we have further developed and applied it to:

(1) A statistical analysis of the shape evolution of hot GDR in ^{120}Sn;3

(2) A study of multiphonon GDRs, especially double and triple GDRs in heavy nuclei;4

(3) A study of damping of GDR in neutron-rich nuclei.5

Our analysis of numerical calculations has shown that:

(1) The GDR shapes predicted by the PDM strength functions in combination with the calculations3 are in overall reasonable agreement with the data from inelastic α-scattering experiments;

(2) PDM can account reasonably well for the damping of double and triple GDRs, where a noticeable difference in the damping of the DGDRs in open-shell and double magic nuclei has been pointed out;4,6

(3) PDM is able to describe the damping of GDR in exotic nuclei. In particular, it shows the appearance of a low-lying dipole mode in neutron-rich nuclei, like $^{18,24}\text{O}, ^{60}\text{Ca}$, and ^{150}Sn.5

References

Statistical Analysis of the Hot Giant Dipole Resonance with the Phonon Damping Model

N. Dinh Dang, K. Eisenman,* J. Seitz,* and M. Thoennessen*

The comparison between theory and experimental data of the hot GDR is not straightforward. Typically, only the parameters of a Lorentzian strength function (resonance energy, width and strength) are extracted from the data and compared to the theoretical values. In addition, the conversion of the experimentally measured excitation energy to the temperature which is calculated within theoretical models is difficult and sometimes can even be misleading as has been recently discussed.1,2) Although the importance of including the temperature dependence of the GDR parameters in the statistical model calculations was pointed out a long time ago, it was not crucial as long as the data were not compared to detailed models, but only fitted to extract a functional form of the width increase. Recently, a method has been proposed to incorporate the theoretical strength functions directly into full statistical decay calculations.2) This way, not only the GDR energy and width, but also the entire shape of the GDR strength functions, can be compared with the measured spectra. In this work, we have applied this method to the strength functions of the hot GDR obtained within the PDM.3)

The strength functions of the hot giant dipole resonance (GDR) in 120Sn, obtained within the phonon damping model (PDM), have been included in complete statistical CASCADE calculations and compared with their experimental divided spectra as a function of the temperature, T. The entire experimental shape of the hot GDR can be reproduced reasonably well using the PDM strength functions. The effect of superfluid pairing at $T < 1$ MeV is important to obtain better agreement between theory and the experimental data (Fig. 1).

References

* National Superconducting Cyclotron Laboratory, Michigan State University, USA

Fig. 1. Experimental (shade areas) and theoretical divided spectra calculated within the CASCADE without pairing (dashed curves) and including pairing (solid curves) at various excitation energies.
Hot Giant Dipole Resonance in the Static Path Approximation

A. Ansari,* N. Dinh Dang, and A. Arima

[Static path approximation, Giant dipole resonances, Thermal fluctuations of shapes]

The effects of the thermal fluctuations of nuclear shapes on the damping of the hot giant dipole resonance (GDR) have been the subjects of a number of recent studies. These effects have usually been incorporated so far by averaging the γ-absorption cross section, $\sigma(E_\gamma)$, over all possible quadrupole shapes using a Boltzmann weight factor, $e^{-F/T}$, where F is the free energy, which depends on the quadrupole deformation parameters, β and γ, and temperature, T. In the calculations of Ref. 1 the dipole strength function is computed by a simple deformed harmonic-oscillator (HO) model. At the same time, for thermal averaging, a free energy is used corresponding to the macroscopic-microscopic Strutinsky shell correction approach in combination with a parametrized expansion following the macroscopic Landau theory of phase transitions. Hence, a particular specific Hamiltonian has not been employed to calculate every quantity, such as the GDR strength function. On the other hand, thermal averaging can be performed in a consistent manner following the static path approximation (SPA) for the grand canonical partition function using the same Hamiltonian. The SPA allows one to include the angular-momentum effects rather easily within the standard cranking approach. Thus, thermal averaged values, $\langle \beta \rangle$ and $\langle \gamma \rangle$, can also be computed at given temperature and spin.

In this work, the GDR was calculated in 120Sn using the linear response theory incorporating the thermal shape fluctuations within SPA. This is the first application of such an approach to the GDR in a realistic nucleus at finite temperature and angular momentum. A model Hamiltonian with a quadrupole-quadrupole interaction was used. The obtained results show that the thermal fluctuations of quadrupole shapes increase the GDR width by only 40% at $T = 3$ MeV, compared to its value at $T = 0$. The effect of the angular momentum on the damping of the hot GDR is found to be negligible for this nucleus up to $T \approx 4$ MeV and $J \approx 80$ h. The combined effect of temperature and angular momentum leads to a GDR energy that is nearly independent of the excitation energy (Fig. 1).

References

* Institute of Physics, Bhubaneswar, India
Damping of Multiphonon Giant Resonances

N. Dinh Dang, K. Tanabe, and A. Arima

[Multiphonon giant resonance, Strength function, Anharmonicity]

Recent observation of the double giant dipole resonances (DGDR) in relativistic heavy-ion reactions via the Coulomb excitation\(^1\)) and pion-induced charge-exchange reactions\(^2\)) has sparked intensive studies and hot debates on the issue of multiphonon excitations. The harmonic picture represents the n-phonon giant resonance as a result of folding n independent single resonances. The energy of an n-phonon dipole resonance would be exactly n times of the energy of the giant dipole resonance (GDR), each with a width \(\Gamma_{GDR}\). Hence, the width of the n-phonon GDR would be equal to \(n\Gamma_{GDR}\). If a Gaussian distribution is used instead of a Lorentzian to approximate the GDR, the width of the n-independent-phonon GDR becomes \(\sqrt{n}\Gamma_{GDR}\). The data, however, have shown that there is a significant deviation from the harmonic picture of the DGDR. In a closed-shell nucleus \(^{208}\text{Pb}\) this deviation is much smaller than that in an open-shell one \(^{136}\text{Xe}\). In \(^{208}\text{Pb}\), the cross section of the DGDR in the Coulomb excitation is about 33% larger than the value obtained by folding the cross sections of two independent GDRs (the folding results). In \(^{136}\text{Xe}\), the cross section has been observed \((215 \pm 32 \text{ mb})\) to be strongly enhanced about 2–3 times compared to the folding results \((70–87 \text{ mb})\). Since the harmonic picture neglects the coupling between the GDRs, the fundamental question is how large the anharmonicity is, or how strongly the coupling between GDR phonons makes the description of the multiphonon resonance deviate from the independent-phonon picture.

In this work, the phonon damping model (PDM)\(^3\)) was applied to derive a set of equations that describe the damping of n-phonon giant resonances \((n > 1)\). As examples of the application of this approach, the results of numerical calculations for the double giant resonance (DGDR) \((n = 2)\) and triple giant dipole resonance (TGDR) \((n = 3)\) in \(^{90}\text{Zr}, \text{ }^{120}\text{Sn}\) and \(^{208}\text{Pb}\) are discussed and compared with the folding results. For the DGDR in the double magic nucleus \(^{208}\text{Pb}\), we found that these results are very close to the folding results. In the open-shell nuclei \(^{90}\text{Zr}\) and \(^{120}\text{Sn}\), a clear deviation from the folding results was obtained, in agreement with the experimental trend. The results for the integrated strength and energy of TGDR are found to be much closer to the folding results in all three nuclei.
Giant Dipole Resonance in Neutron-Rich Nuclei within the Phonon Damping Model

N. Dinh Dang, T. Suzuki, and A. Arima

When the binding energy approaches zero, coupling to the continuum becomes very important. Large gaps between the proton and neutron binding energies in exotic nuclei lead to a big difference in the neutron and proton level spacing. As a result, the distribution of the giant dipole resonance (GDR) in exotic nuclei becomes more fragmented. These are some common features of the GDR in exotic nuclei that have been obtained in a number of theoretical calculations within the random-phase approximation, relativistic RPA, self-consistent Hartree-Fock plus RPA, and large-scale shell-model calculations. In these calculations, the damping of the GDR has not been explicitly calculated, but the strength distributions were just smeared out by a Lorentzian with a finite width. The question concerning the effect of damping of the GDR on the strength of the pigmy resonance in exotic nuclei still remains open.

In this work, the damping of the giant dipole resonance (GDR) in neutron-rich unstable nuclei $^{18,24}O$, ^{60}Ca, and ^{150}Sn was calculated within the phonon damping model (PDM) and compared with those in stable isotopes: ^{16}O, ^{40}Ca, and ^{120}Sn. The Hartree-Fock single-particle energies obtained employing the SGII interaction were used in the calculations. The PDM parameter for the (particle-hole)-phonon interaction between the levels close to the Fermi surface in exotic nuclei was chosen to simulate the strong coupling between the GDR phonon and the dense incoherent particle-hole configurations. The results of the calculations show the appearance of a low-lying structure (pigmy resonance) in all neutron-rich nuclei under consideration. Figure 1 shows the difference between the GDRs in stable nuclei (^{40}Ca and ^{120}Sn) and those in unstable nuclei (^{60}Ca and ^{150}Sn) obtained within the PDM. The calculations at nonzero temperature show that the GDR in a hot medium and heavy neutron-rich nuclei exhibits a similar behavior to that of the hot GDR in stable nuclei. The pigmy resonance is smoothed out with increasing temperature.

References
Local Harmonic Approaches with Approximate Cranking Operators

T. Nakatsukasa, N. R. Walet,*1 and G. Do Dang*2

[Collective models, Hartree-Fock, Random-phase approximations]

The selection of proper collective variables is an important problem in studying large-amplitude collective motion. In the usual Constrained Hartree-Fock (CHF) or Hartree-Fock-Bogoliubov (CHFB) calculations, the collective subspaces are generated by a small number of one-body constraint (also called cranking) operators, which are most commonly taken to be of the multipole form \(r^L Y_{L,K} \). In realistic calculations of processes such as fission, because the number of coordinates used to describe the full nuclear dynamics can easily become larger than can be dealt with in a satisfactory manner, a method to determine the optimal combination needs to be devised. Even assuming that such a method exists, there is no \textit{a priori} reason to limit oneself to multipole operators, and the cranking operators should be determined by the nuclear collective dynamics, itself, from the set of all one-body operators. This is clearly a difficult task, and one would like to be able to select a small group of operators, and to find the optimal combination of these operators at each point of the collective surface.

In our past work, we investigated a theory of adiabatic large-amplitude collective motion as a method to generate self-consistent collective subspaces.\(^1,2\) The key ingredient of the method is the self-consistent determination of the constraint operator; as such, it may provide an answer to the selection question discussed above. Using the local-harmonic version of the theory, the local-harmonic approximation (LHA), we have recently embarked on a study of the properties of large-amplitude collective motion in systems with pairing.\(^2\)

We would like to find the collective coordinate, \(q = q(\xi) \), for a classical Hamiltonian in a large configuration space \(\{\xi^n\} \),

\[
H = \frac{1}{2} B^{\alpha\beta} p_\alpha p_\beta + V(\xi).
\]

In LHA, the collective path (or collective surface for more than one coordinate) is determined by solving the CHFB problem with a cranking operator which is self-consistently determined by the local random-phase approximation (RPA). The usual RPA equation can be expressed by

\[
V_{\alpha\gamma} B^{\gamma\delta} q_{\delta\beta} = \omega^2 q_{\alpha\beta},
\]

where a comma denotes the derivative as

\[
V_{\alpha\gamma} = \frac{\partial^2 q}{\partial \xi^\alpha \xi^\gamma}, \quad q_{\alpha\beta} = \frac{\partial q}{\partial \xi^\alpha}.
\]

We have shown that this RPA equation should be modified as follows, when the state is not a local minimum:

\[
V_{\alpha\gamma} B^{\gamma\delta} q_{\delta\beta} = \omega^2 q_{\alpha\beta},
\]

where the covariant derivative \(V_{\alpha\gamma} \) is defined by

\[
V_{\alpha\gamma} = V_{\alpha\gamma} - \Gamma^\beta_{\alpha\gamma} V_{\beta\alpha},
\]

\[
\Gamma^\beta_{\alpha\gamma} = \xi^\beta q_{\alpha\gamma}.
\]

The mass parameter, \(B^{\alpha\beta} \), is also modified according to the terms of the second order in momentum. This modified RPA equation guarantees separation of the spurious (Nambu-Goldstone) modes.

Since the LHA procedure requires us to solve RPA at each point on the collective path, it will be very useful if the RPA eigenvectors can be approximated by taking linear combinations of a small number of one-body operators. This means that we can restrict RPA diagonalization to this small space, rather than deal with the full millions-by-millions RPA matrix. For the pairing-plus-quadrupole model, we have examined the possibility of expressing the self-consistent cranking operator in terms of a limited set of one-body operators. This seems to be very difficult to approximate the normal-mode vectors using elementary one-body operators. This difficulty disappears, however, when we use a small number of state-dependent one-body operators. This may reflect the importance of the self-consistent determination of the collective coordinates for large-amplitude collective motion, because the coordinates now have a state dependence as well. The best cranking operator that we have found for describing the \(\gamma \) vibration is the quadrupole operator, whose two-quasiparticle matrix elements are weighted with a factor \(E_{2qp}^{-2} \). With the self-consistent cranking operators, LHA should provide a significant improvement over the conventional CHFB calculation based on fixed cranking operators.

References

*1 Department of Physics, UMIST, UK
*2 Laboratoire de Physique Théorique, Université de Paris-Sud, France
New shears bands in ^{82}Rb and ^{84}Rb were discovered in a recent experiment. Many shears bands have been observed in several mass regions, such as the $A \sim 200, 130$ and 100 regions; this is the first experimental data obtained in the $A \sim 80$ mass region. Up to now, many features of these shears bands have been well understood within the framework of Tilted Axis Cranking (TAC), by using the pairing+QQ model and the shell model. On the other hand, fully microscopic and self-consistent calculations have not been performed. Therefore, for the first time we have applied the Relativistic Mean Field (RMF) model, which has gracefully been successful in reproducing many properties of finite nuclei, to such tilted rotation.

For applications to rotating nuclei, the Lagrangian of the RMF model must be generalized into a uniformly rotating frame which rotates with constant rotational frequency, Ω. From this generalized Lagrangian, the equations of motion can be derived. This can be done in the same manner as that in the Principal Axis Cranking (PAC) case. For details, see Ref. 5. The method used to solve the coupled equations of motion is, again, the same as that in the PAC case. The nucleon and meson fields are expanded in terms of 3-dimensional harmonic-oscillator eigenfunctions.

In the actual calculation, we use a parameter set called NL3. Here, we show the result for ^{84}Rb as an example. The configuration is fixed to $\pi(1g_{9/2})^2\nu(1g_{9/2})^{-3}$. The contribution to the total angular momentum mainly comes from 2 proton particles and 3 neutron holes in the $1g_{9/2}$ orbital. The calculated quadrupole deformation at $\Omega = 0.1$ MeV is $\beta_2 \sim 0.2$. This value seems to be slightly too large compared with the typical values observed in the shears bands in other regions. In our present calculation, the pairing correlation is not taken into account. Note that including the pairing correlation may reduce the quadrupole deformation. The triaxial deformations are rather small, which can be neglected.

Figures 1 and 2 show how the direction of the total angular momentum vector changes with an increase of the rotational frequency in ^{84}Rb. Also shown are the net contributions from proton particles and neutron holes individually. From Figs. 1 and 2, we can see that both the proton and neutron angular momenta align towards the total spin as the rotational frequency increases. The direction of the total angular momentum does not change very much. We thus observed that the shears mechanism does appear in this case. In the future, we will include a pairing correlation within the framework of the cranked relativistic Hartree Bogoliubov approach.

References
Wobbling Motion in the Multi-Bands Crossing Region†

M. Oi, A. Ansari,* T. Horibata, and N. Onishi

[NUCLEAR STRUCTURE; Wobbling motion, Tilted cranking, Band crossing]

The back-bending in the A ~ 180 mass region is expected to be caused by multi-bands crossing between low-K (g- and s-bands) and high-K bands (K∗ = 8+).1,2) We have analyzed a mechanism for coupling these bands in terms of a dynamical treatment for nuclear rotations, i.e., the wobbling motion. The wobbling states are produced through the generator coordinate method after angular momentum projection, in which the intrinsic states are constructed through 2d-cranked HFB calculations.3,4) We have investigated a mechanism of back-bending and signature inversion in 182Os, by means of the generator coordinate method with angular momentum projection (GCM after AMP) on the 2d-cranked HFB states. Using this method, we qualitatively reproduced the main feature of level structure showing the signature inversion in the high-K band (see Fig. 1). We interpret this result from the point of view of an inter-band interaction between the low-K and high-K bands. We have shown that the perturbed states have characters of the wobbling motion, that is, dynamical-mode coupling low-K PAR and high-K TAR states (see Fig. 2). In terms of this wobbling model, we have discussed an enhancement of back-bending in the A ~ 180 region, in which the typical rotation-alignment is somewhat suppressed by the location of the Fermi level. We have also shown that the solutions of the Hill-Wheeler equation have a new type of symmetry ("signature") in the wobbling model, and that the restoration of the signature through the wobbling motion is related to coupling between high-K and low-K states.

Fig. 1. Energy spectrum calculated through GCM after AMP. The angular momentum constraint for the intrinsic state is fixed to be J = 14 h. From an analysis of the generator wave functions, the yrast and the second yrare bands (∆I = 2-bands) are of the low-K characters, while the first yrare band (∆I = 1-band) is of the high-K character. The signature inversion is seen at the region I > 15 h.

Fig. 2. Graphs for the overlaps between the GCM state and the spin-projected intrinsic states: gK ≡ ⟨Ψ(J, θ)|PK|ΨJM⟩. The left panels are for the GCM states before band crossing (I = 14 h), and the right panels are for the states after crossing (I = 16 h). The lower and upper panels show the yrast and first yrare states, respectively. In each panel, the graphs are separately drawn for each tilt angle: θ = 0°, ±7° and ±20°.

References

† Condensed from the article submitted to Phys. Lett. (1999)
* Institute of Physics, Doordarshan Marg, India
Relativistic Hartree-Bogoliubov Approach for Nuclear Matter with a Non-Linear Coupling Term

S. Sugimoto, K. Sumiyoshi, and H. Toki

[Relativistic Hartree-Bogoliubov theory, Pairing interaction]

We have developed the new method which can incorporate non-linear coupling terms of mesons into the pairing channel in the relativistic Hartree-Bogoliubov theory (RHB). RHB theory is an extended version of the relativistic mean-field theory (RMF), which can treat both the pairing channel and the particle-hole channel self-consistently. We have applied it to nuclear matter to see the effect of the non-linear coupling terms of mesons on the pairing channel, and found that these terms reduce the pairing gap, Δ, by a few MeV.

Pairing interaction is a well-known residual interaction, which is especially important for open-shell nuclei. In the mean-field theory it is usually implemented by a BCS-type scheme. In this scheme, because two nucleons which are in the time-conjugate states to each other constitute a Cooper pair, the ground-state energy of the nuclei are lowered. It is known that BCS theory works well in the region around the stable line. However, the BCS scheme cannot properly incorporate the mean field of nuclei in the pairing channel. The Hartree-Fock-Bogoliubov (HFB) theory can incorporate the mean field of nuclei in the pairing channel in addition to the usual mean-field effect, which is brought by Hartree-Fock theory. The relativistic Hartree-Fock-Bogoliubov (RHFB) theory is a relativistic version of the HFB theory, which was first derived by Kucharek et al. In RHFB theory the pairing interaction is mediated by mesons. We can treat the particle-hole interaction and the pairing interaction self-consistently and simultaneously within RHFB theory. Recently, RHFB theory and RHB theory, which neglects the Fock term, have been applied to nuclear matter and finite nuclei, with satisfactory results. However, by now the non-linear terms of mesons are being neglected in the pairing channel. In RMF theory these terms are needed to reproduce the properties of nuclear matter and the finite-nuclei properly. We can believe that these terms may have some effect on the pairing channel in RHFB and RHB theory. We have thus extended the RHFB theory to be able to incorporate non-linear meson coupling terms in the pairing channels. In our framework, meson fields are expanded around the classical mean field value, which can reproduce the RMF theory, and the residual terms mediate the pairing interaction.

For a detailed formulation we are presenting a paper.

In Fig. 1 we show the pairing gap, Δ, at the Fermi momentum, k_F, in nuclear matter, calculated by the RHB theory with the non-linear terms having an effect on the pairing channel. In Fig. 1 we also show the result without the non-linear coupling term. We use the TM1 parameter set, which has non-linear σ and ω meson terms. From Fig. 1 we can see that by including the non-linear terms the pairing gap is reduced by a few MeV. This is because the masses of the mesons increase effectively by the non-linear terms of the mesons. If we use the other parameter set, although the maximum $\Delta(k_F)$ values somewhat change, all other tendencies are almost the same. Note that in the calculation we introduce the cut-off parameter in the pairing channel.

In summary, we extended the RHFB theory to include non-linear meson terms in the pairing channel. We have applied it to nuclear matter, and have found that the non-linear terms reduce the Δ by a few MeV. In the future we will apply it to finite nuclei.

References

All elements up to the region of the iron peak are synthesized by the charged-particle-induced nuclear reaction in stars. If heavier elements above the iron peak had been produced by silicon burning or another charged-particle-induced fusion reaction, their abundances would drop very steeply with increasing mass. Actually, the observed solar-system abundance distribution of the heavy elements exhibits a much slower decrease with mass number and much higher abundances than expected from charged-particle-induced reactions. On the other hand, heavy elements easily capture neutrons even at extremely low energy with no coulomb barrier to overcome. Moreover, the abundances of heavy elements have characteristics correlated with neutron captures. The most important characteristic would be seen to be an enhanced stability of nuclei with magic numbers \(N = 50, 82,\) and 126 neutrons. We observe six peaks in the solar-system abundance distribution, three at the number of the neutron magic number, and the other three at a number smaller than the magic number. The abundances of the nuclear species seem to suggest that two different types of neutron-capture processes (s-process and r-process) have participated in the synthesis of the heavy elements.

For the s-process, neutron capture is slower than beta-decay, and closely follows the valley of beta-stability. Thus, relatively stable nuclei at the magic number are abundant. The astrophysical site where the s-process occurs is He flash of an AGB star. This has been confirmed by an observation of \(^{99}\)Tc in S-type stars.

On the contrary, if neutron capture proceeds on a rapid time scale compared with the beta-decay lifetimes, the network of reactions is called the r-process, which occurs in a very strong neutron flux. The r-process follows a path at the extreme neutron-rich side of the valley of stability. Very neutron-rich nuclei also have the property of magic nuclei. Thus, magic nuclei are abundant. Once the neutron flux ceases, neutron-rich matter produced evolves quickly by several beta-decays to the region of stability. We observe the nuclei after beta-decay. Then, the nuclei at a smaller number than the magic number are abundant. Although many studies have been devoted for clarifying the origin and evolution of those nuclei, the astrophysical site for the r-process still remains an unresolved mystery. The high neutron density and rapid expansion time scale associated with the r-process suggest core-collapse (type II or type Ib) supernovae as being the most likely setting for explosive nucleosynthesis, though the exact environment within supernovae is unclear. Most of the focus of recent studies on the r-process has been on the stellar wind or the atmosphere of a hot neutron star to is formed as a remnant of collapsing iron cores of massive stars. This is because these models are directly relevant to SN 1987A, and most of the collapse models currently being studied are representative of this progenitor mass, 15–20\(M_\odot\).

Previous works in the literature have shown that 3-body reactions (for example \(^{3}\)He \(\rightarrow \alpha + \alpha\)) are most important to create seed nuclei for the r-process. They ignored light neutron-rich nuclei (\(Z < 10\)). This is because at high temperature \((T)\) and high density \((\rho)\) the rate of 3-body reactions is higher than that of other reactions. However, in the r-process environment \(T\) varies from 1 to 0.1 MeV and \(\rho\) from \(10^9\) to \(10^2\) g/cc, typically. If \(T\) and \(\rho\) drop rapidly, seed nuclei must be continually created when \(T\) and \(\rho\) get low. This implies the importance of no-3-body reactions. In studies of the r-process nucleosynthesis, the r-process could occur in a low-entropy environment with a short dynamic time scale of the expansion. Thus, we included light neutron-rich nuclei reactions in our network calculation. The results are shown in Fig. 1. In this calculation, we applied a short dynamic expansion model(Sumiyoshi et al. 1999). Figure 1 shows that the light neutron-rich nuclei reactions play an important role in the r-process. We are now determining what are the most important reactions.
References

Hydrodynamical Study of Neutrino-Driven Winds as r-Process Sites

[EOS, Supernova, r-Process]

The rapid neutron-capture process (r-process) is believed to be the origin of heavy elements in the Universe. Although supernova explosions are most likely to be the sites, where and how the r-process can occur in supernovae has not yet been clarified. We have studied the neutrino-driven wind as an r-process site by performing hydrodynamical simulations to clarify whether the r-process nucleosynthesis can occur or not.1) We have simulated the hydrodynamics of the surface layers just above the proto-neutron star, which is born in a supernova explosion, and have performed r-process network calculations using the trajectories obtained from the simulations.

We adopted a numerical code for the general relativistic, implicit hydrodynamics in spherical symmetry.2) The heating and cooling processes due to neutrinos are added on top of the hydro code. As for the equation of state (EOS) of dense matter, we have adopted the table of the relativistic EOS, which was recently derived for supernova simulations.3) The relativistic EOS is derived by the relativistic nuclear many-body framework, which reproduces the nuclear matter saturation and the properties of stable and unstable nuclei in the nuclear chart.4) The table covers a wide range of density, electron fraction and temperature, which has enabled us to perform supernova simulations.

Figure 1 demonstrates the hydro simulations of the neutrino-driven wind. The surface layers above the proto-neutron star are heated up by neutrinos and ejected as expanding matter. We have examined this expansion, which leads to nucleosynthesis, to judge whether the r-process is possible from numerical simulations. We found that the expansion time scale is shorter than those in previous analytic studies. A shorter expansion time scale is favorable for the r-process, since it leaves a higher neutron-to-seed-nuclei ratio.

Using the trajectory obtained from the simulations, we performed the nuclear reaction network calculations of the r-process. Figure 2 shows the calculated abundance of the r-process elements as a function of the mass number. In this case, mass elements up to the 3rd peak ($A = 195$) are successfully created. We have found that the r-process indeed occurs in the case of a short expansion time scale with a massive and compact neutron star having a high neutrino luminosity.

In summary, we have shown by hydro simulations that the neutrino-driven wind in supernova explosions is a promising site for the r-process to create heavy elements.

References
44Ti: Its Effective Decay Rate in Young Supernova Remnants, and Its Abundance in Cassiopeia A

Y. Mochizuki, K. Takahashi,*1 H. T. Janka,*1 W. Hillebrandt,*1 and R. Diehl*2

[Nucleosynthesis, Supernovae]

Radioactive isotopes such as 44Ti probably offer the most direct probe into nucleosynthesis environments in the interior of exploding stars, when the associated γ-ray activities in the explosion remnant are detected and translated back to the isotopic abundances at the time of the explosion. In this paper, we assert that the procedure may not necessarily be straightforward, at least in the case of 44Ti, an orbital-electron capture decay isotope.

The binding energy of the K-shell electrons of 44Ti was calculated to be 6.6 keV. Hence, it is obvious that 44Ti is fully ionized when it is synthesized in a supernova explosion. After the explosion, the temperature of the ejected material decreases rapidly due to adiabatic cooling as the ejecta freely expands. Consequently, it is expected that the freshly synthesized nuclei become neutral within about 1000 sec.

There is a possibility that 44Ti re-ionizes, however. This is due to reverse-shock heating. The reverse shock is produced by high pressure behind the blast-wave shock interacting with the surrounding circumstellar medium. The reverse shock goes back into the ejecta and heats up and ionizes it during the free-expansion phase on the evolutionary course of the supernova remnant.

Using the analytic model of McKee & Truelove) for young supernova remnants, and assuming the existence of overdense 56Fe-dominated clumps that also contain 44Ti, we showed that a high degree of ionization may be caused by reverse shock, so that the electron-capture rate of 44Ti can be significantly reduced from its laboratory value. Note that the decay rate measured in laboratories is for neutral atoms.

The nuclear γ-rays from 44Ti decay have been detected by COMPTEL experiments on the CGRO satellite from Cassiopeia A (Cas A), a nearby supernova remnant. The γ-ray flux detection has a strong impact, since we can test the theories of collapse-driven supernova explosions through conversion of the flux into the initial abundance of 44Ti at the time of the explosion, employing the values of the decay rate, the distance, and the age of Cas A.

In conclusion, we found that under certain conditions the ionization of 44Ti and the corresponding delay of its decay can yield up to three times higher 44Ti activity at the present time than predicted on the grounds of the laboratory β-decay rate. This effect is large enough to reduce the apparent discrepancies between the 44Ti production in the explosion inferred from the COMPTEL γ-line measurements and the theoretical predictions from the current supernova nucleosynthesis models. This possibility is, however, subject to various uncertainties, and particularly to the unknown properties and radial distribution of the clumps in the ejecta.

References

Condensed from the article in Astron. Astrophys. 346, 831 (1999)

*1 Max-Plank-Institut für Astrophysik, Germany
*2 Max-Plank-Institut für Extraterrestrische Physik, Germany
A New Parameterization of Polarized Parton Distribution Functions

The main sources of the PDF information are inclusive deep-inelastic-scattering (DIS) experiments. For unpolarized PDF, the Drell-Yan process, the prompt-photon process, and the jet-production process are also available to cover a wider kinematical region.

For the polarized PDF, we have only polarized DIS data to determine the distribution, although there has been progress concerning the data precision. Theoretically, there has been much progress, including a next-to-leading order (NLO) calculation. Many groups are analyzing the polarized DIS data and parameterizing the polarized PDF. Because the polarized DIS data are still limited, there are many uncertainties in the analysis. Conventional analyses show that the quark contribution to the proton spin ΔE is only 20% to 30% of the total spin. To explain other contributions to the proton spin, we need to know the gluon contribution, ΔG.

Experimentally, in addition to the DIS data, there have been several attempts to determine the gluon contribution to the proton spin. Charm production at DESY-HERMES and CERN-COMPASS, and prompt photon, heavy flavor and jet production in polarized pp collisions at BNL-RHIC will constrain both the shape and the first moment of ΔG.

The parameterized polarized PDF provides predictions for current and future polarized experiments to test their analyses. After new data are obtained, parameterization will be performed by including all of the new information.

In our model for the parameterization, we require two natural conditions: the positivity condition and the counting rule. Its functional form at the initial scale Q_0^2 is

$$\Delta f_i(x, Q_0^2) = A_i x^{a_i} (1 + \gamma_i x^\alpha) f_i(x, Q_0^2)$$

for $i = u, d, c, \bar{c}, q, g$ (valence u quark, valence d quark, sea quark, and gluon). Functions $f_i(x, Q_0^2)$ show the unpolarized PDFs, $\Delta f_i(x, Q_0^2)$ show the polarized PDFs, and $A_i, a_i, \gamma_i, \alpha_i$ are parameters to be determined in the analysis. This form satisfies the counting rule by requiring it on $f_i(x, Q_0^2)$. The positivity condition is required by $|\Delta f_i(x, Q_0^2)| < f_i(x, Q_0^2)$. Here, we reduce the number of free parameters by assuming the $SU(3)$ flavor symmetry for the sea quarks.

The physical quantities to be fitted are the cross-section asymmetry, $A_1(x, Q^2)$, of the proton, neutron, and deuteron. The polarized PDFs are evolved to the (x, Q^2) points where the experimental data were taken to calculate $A_1(x, Q^2)$ for a χ^2 analysis. Figure 1 shows $A_1(x, Q^2)$ data for the proton and the fitting result of our leading-order (LO) and the next-to-leading order (NLO) calculation.

In this analysis, we did not apply any theoretical requirements to restrict the small-x behavior of the PDF, e.g. the Regge theory or perturbative QCD. The amount of quarks carrying the nucleon spin is $\Delta \Sigma = 0.201$ in the LO, and $\Delta \Sigma = 0.051$ in the NLO at $Q^2 = 1$ GeV2. Although these results confirm that the quarks carry a small amount of nucleon spin, it should be noted that our $\Delta \Sigma$ in the NLO seems to be considerably smaller than the conventional values. The difference originates mainly from the small-x behavior of the antiquark distribution. The existing data cannot fix it. In order to clarify the situation, we need to have higher energy facilities.

We also obtained positive values of ΔG in both LO and NLO. However it is difficult to determine ΔG, particularly in the LO. We need to wait for measurements of ΔG at DESY, CERN and RHIC.

References

2) Y. Goto et al.: RIKEN-AF-NP-342 (1999); to be published.
Large $p_T \Lambda_c^+$ Production in Polarized pp Scattering

K. Ohkuma, K. Sudoh, and T. Morii

[pp interaction, Polarized gluon, Λ_c^+ production]

The proton spin has been long considered to be given by the sum of the constituent quark spin in the naive quark model. However, recent experimental data on the polarized structure functions of nucleons, $g_1^{p(n)}$, have revealed that the amount of the proton spin carried by quarks is very small.\(^1\) This has been called the "proton spin puzzle". Actually, the proton spin is given by the sum of the spin of quarks, gluons and orbital angular momenta among them. To understand the physical ground of this spin-sum rule, it is very important to understand the behavior of the polarized partons in the nucleon. However, knowledge about the polarized gluon density, $\Delta g(x)$, in a nucleon is still poor, though many processes have been proposed so far to extract information about them.

Here, to extract the polarized gluon distribution, $\Delta g(x)$, we propose another process, large $p_T \Lambda_c^+$ productions in polarized pp scattering, in anticipation of the forthcoming RHIC experiment. The Λ_c^+ spin is basically carried by a charm quark, which is produced by gluon-gluon fusion at the lowest order in this process. Hence, an observation of the spin of the produced Λ_c^+ provides information about polarized gluons in the proton. To extract information about $\Delta g(x)$, we calculated the spin-dependent differential cross section for $pp \rightarrow \Lambda_c^+ + X$ at the large-p_T region and the spin-correlation asymmetry, A_{LL}, defined by

$$A_{LL} = \frac{d\sigma^{+ +} - d\sigma^{++} + d\sigma^{--} - d\sigma{-+}}{d\sigma^{++} + d\sigma^{--} + d\sigma^{-+} + d\sigma{++}},$$

where $d\sigma^{+-}$, for example, denotes the spin-dependent differential cross section with the positive helicity of the target proton and the negative helicity of the produced Λ_c^+. Those values will be measured by the forthcoming RHIC experiment. To calculate the cross section and asymmetry, A_{LL}, we took the G96\(^2\) and GRSV96\(^3\) parameterization models for the polarized gluon distribution function and the GRV95\(^4\) model for the unpolarized one. The G96 and GRSV96 models can excellently reproduce the polarized structure function of nucleons, though the polarized gluon distributions for those models are quite different.

We show the numerical result of A_{LL} in Fig. 1. Here, the difference can be seen between the solid and dotted lines corresponding to the G96 and GRSV96 models, respectively. As shown in Fig. 1, A_{LL} is sensitive to the polarized gluon distribution functions. Therefore, this process which we proposed here could provide good information about the distribution of the polarized gluons in a nucleon.

References
Over the years, the spin structure of nucleons has been one of the most challenging topics in nuclear and particle physics. To understand it deeply, it is very important to know the polarized gluon distribution. However, knowledge about the polarized gluon distribution in a nucleon is still poor. To extract such information, we propose to study the process of semi-inclusive Λ_c^+ production in electron-polarized proton scattering.

$$e + p \rightarrow e + \Lambda_c^+ + X.$$

In the naive quark model, the spin of Λ_c^+ is equal to the spin of the c quark. In addition, the c quark is produced from protons just through gluon fusion in the lowest order. Therefore, a measurement of the spin of Λ_c^+ provides information about the polarized gluon in the proton. Furthermore, since the process directly depends on the polarized gluons in the proton, it must be effective for testing the model of polarized gluons. By using the typical parameterization models of polarized gluons, GS96$^{1)}$ and GRSV96, $^2)$ we calculated the spin-dependent differential cross sections, $d\Delta\sigma/dydz$, and their 2-spin asymmetry, A_{LL}, between the proton and Λ_c^+ on semi-inclusive Λ_c^+ productions in electron-proton scattering; y and z are dimensionless variables used in semi-inclusive deep inelastic scattering. The results are presented in Fig. 1.

In Fig. 1, we can see that the results largely depend on the models of the polarized gluon distributions. Therefore, the process proposed here must be promising for testing the polarized gluon distribution in the proton, though we need to know the polarized fragmentation function of the c quark to Λ_c^+ decays to make the numerical results more accurate.

References
Behavior of Polarized Light Sea-Quarks in a Nucleon

T. Morii and T. Yamanishi

[Parton distribution, Sea quark, Structure function, Nucleon spin structure]

Experimental groups of NMC, E866/NuSea and HERMES observed a violation of the flavor symmetry in the unpolarized light flavor sea-quark distributions. Recently, this subject has been a challenging topic in particle and nuclear physics. In the polarized case, an important question is whether the symmetry of polarized sea-quarks of Δu and Δd is also violated at an initial Q^2_0 in the nonperturbative region. So far, several theoretical groups have presented excellent parameterization models by analyzing high-precision data of polarized deep inelastic scatterings based on NLO of QCD. From these analyses, we now have a good understanding of the polarized valence of u and d quarks. However, our understanding of polarized sea-quarks and gluons is still very poor.

Here, we propose new formulas\(^2\) for extracting a difference in the polarized light sea-quark density, $\Delta d(x) - \Delta u(x)$, from the present polarized deep-inelastic semi-inclusive data. By using these formulas together with suitable unpolarized quark distributions and fragmentation functions, we have estimated the values of $\Delta d(x) - \Delta u(x)$ from the data set of $(A_{1p}^{h^+}, A_{1d}^{h^+})$ by SMC, and (A_{1p}^{z}, A_{1d}^{z}) and (A_{1p}^{z}, A_{1d}^{z}) by HERMES\(^3,4\) on the double spin asymmetries. The result is shown in Fig. 1. To extract some physics from this result, we parameterized the difference of the light flavor sea-quark densities as $\Delta d(x) - \Delta u(x)$ by the GRV98(LO) unpolarized parton distribution.

$$C = x \frac{\Delta d(x) - \Delta u(x)}{2}$$

at $Q^2 = 4$ GeV\(^2\), and carried out a χ^2 fitting to the result presented in Fig. 1. The χ^2 fitting led to $C = -3.40$ and $\sigma = 0.567$ for the GRV98(LO) unpolarized parton distribution. $C \neq 0$ is a remarkable result, suggesting an asymmetry of $\Delta d(x)$ and $\Delta u(x)$, as shown in Fig. 1. It is interesting to note that the negative value of C is consistent with predictions from an instanton interaction or the chiral quark soliton model.\(^5,6\) However, it must be premature to emphasize this result, because the present data have errors that are too large. We urgently need to have more high-precision data to confirm this result.

References
4) A. Simon: HERMES Internal Note 98-054.
Color-Octet Contribution to the Photoproduction of ψ'

K. Sudoh and T. Morii

[Color-octet model, NRQCD, Polarized gluon]

Heavy quarkonium productions and decays have been traditionally calculated within the framework of the color-singlet model based on QCD. However, the predictions by the color-singlet model were too small to explain the recent Tevatron and HERA data. During these years, the color-octet model has been discussed as one of the most promising candidates that can remove such large discrepancies between the theoretical prediction and the experimental data. A rigorous formulation of the color-octet model has been introduced based on an effective field theory called nonrelativistic QCD (NRQCD). The cross section can be systematically calculated by the factorization approach based on NRQCD. However, the validity of the NRQCD factorization approach has not yet been confirmed with good accuracy. The discussion still seems to be controversial.

It is thus important to test the model in other processes.

In this work, to test the possible color-octet contribution, we propose the following process:

$$\gamma^* p \rightarrow \psi' + X,$$

at small-p_T regions, which might be observed in the forthcoming COMPASS or polarized HERA experiment, where the arrow attached to the particles means that these particles are longitudinally polarized. The process is dominated by the color-octet subprocess, $\gamma + g \rightarrow (c\bar{c})_{\text{octet}}$, at small-$p_T$ regions, if the color-octet mechanism works. The conventional color-singlet subprocess, $\gamma + g \rightarrow (c\bar{c})_{\text{singlet}} + g$, appears only as a second order of the strong coupling constant, α_s. Furthermore, since the process is dominantly produced in photon-gluon fusion, the cross section is sensitive to the gluon density in a proton. We can thus obtain good information about the polarized gluon distribution functions, if the NRQCD factorization approach is confirmed with good accuracy.

To test the color-octet mechanism and polarized gluon, we calculated the two-spin asymmetry, A_{LL}, for ψ' production in the polarized process, which is defined by

$$A_{LL} \equiv \frac{d\sigma_{++} - d\sigma_{+-} + d\sigma_{-+} - d\sigma_{--}}{d\sigma_{++} + d\sigma_{+-} + d\sigma_{-+} + d\sigma_{--}},$$

where $d\sigma_{+-}$, for instance, denotes that the helicity of the beam particle is positive and that of the target proton is negative. If there is only the color-octet contribution, which is the lowest-order process in α_s, the asymmetry of A_{LL} can be given by a product of the ratio of gluon densities and that of the color-octet long-distance parameters, Θ and $\tilde{\Theta}$, which could be determined from other experiments, as

$$A_{LL}^{\psi'}(\gamma p)_{\text{lowest}} = \frac{d\sigma_8}{d\sigma_8} = \frac{\Delta g(x, Q^2)}{g(x, Q^2)} \cdot \tilde{\Theta}.$$

The factor of $\Theta/\tilde{\Theta}$ has been extracted from recent analysis of the charmonium hadroproduction data, as follows:

$$\tilde{\Theta} \equiv \frac{\langle O_8^{\psi'}(1S_0) \rangle - \frac{1}{m_T^2} \langle O_8^{\psi'}(3P_0) \rangle}{\langle O_8^{\psi'}(1S_0) \rangle + \frac{7}{m_T^2} \langle O_8^{\psi'}(3P_0) \rangle} \approx 3.6 \sim 8.0.$$

To calculate A_{LL}, we used the GS96 (set A and B) and GRSV96 parametrizations for the polarized gluon distribution. In the GS96 or GRSV96 parametrization model, which is widely used, the maximum value of $\Delta g(x)/g(x)$ becomes roughly 0.2–0.35. Hence, if we rely on this value for the ratio of the gluon distributions, the maximum value of the ratio of the NRQCD matrix elements should be

$$\frac{\tilde{\Theta}}{\Theta} \lesssim 5.0,$$

from the requirement that the A_{LL} should be less than 1.

In summary, to investigate possible color-octet contribution, we calculated the two-spin asymmetry, A_{LL}, for various values of $\Theta/\tilde{\Theta}$, and found that A_{LL} becomes quite large in the regions $\sqrt{s} = 10–20$ GeV. Therefore, we can sufficiently test the color-octet model in this process. In addition, the measurement of A_{LL} is very effective to severely constrain the value of the NRQCD matrix elements, though it depends on the polarized gluon distribution, $\Delta g(x)$.

References
Antiquark Flavor Asymmetry in Polarized Drell-Yan Processes

S. Kumano and M. Miyama

[Parton distribution, Structure function]

Light antiquark flavor asymmetry has been an exciting topic after the discovery of the Gottfried-sum-rule violation in 1991.1) It is important for testing a nonperturbative aspect of the nucleon structure. In light of the RHIC-Spin project, the polarized version should become an interesting topic in the near future. In this report, we discuss the relation between the ratio of the proton-deuteron (pd) Drell-Yan cross section to the proton-proton (pp) one, \(\Delta(T)\sigma_{pd}/2\Delta(T)\sigma_{pp} = R_{pd} \), and the flavor asymmetry in polarized light-antiquark distributions.2)

A formalism of the polarized proton-deuteron Drell-Yan process is given in Ref. 3. The difference between the spin-parallel and anti-parallel cross sections is given by

\[
\Delta(T)\sigma_{pd} \propto \sum_q s_q^2 \times [\Delta(T)q_u(x_1)\Delta(T)\bar{q}_d(x_2) + \Delta(T)\bar{q}_u(x_1)\Delta(T)\bar{q}_d(x_2)],
\]

where \(\Delta(T) = \Delta \) or \(\Delta_T \), depending on the longitudinal or transverse case, and \(\Delta(T)\bar{q}_u^d \) and \(\Delta(T)\bar{q}_d^d \) are the quark and antiquark distributions in the deuteron. The pp cross sections are given in the same way simply by replacing the parton distributions in Eq. (1):

\[
R_{pd}(x_F \rightarrow -1) = \frac{1}{2} \left[1 + \frac{\Delta(T)\bar{d}(x_2)}{\Delta(T)\bar{u}(x_2)} \right]_{x_1 \rightarrow 0}. \tag{2}
\]

Therefore, if the distribution \(\Delta(T)\bar{u} \) is the same as \(\Delta(T)\bar{d} \), the ratio is simply given by one. The above equation suggests that the deviation from one should be related to the \(\Delta(T)\bar{u}/\Delta(T)\bar{d} \) asymmetry. In this way, we have found that the data in the large-\(x_F \) region are especially useful for measuring the flavor asymmetry ratio, \(\Delta(T)\bar{u}(x)/\Delta(T)\bar{d}(x) \). On the other hand, if another limit, \(x_F \rightarrow -1 \), is taken, the ratio becomes

\[
R_{pd}(x_F \rightarrow -1) = \frac{1}{2} \left[1 + \frac{\Delta(T)\bar{d}(x_1)}{4\Delta(T)\bar{u}(x_1)} \right]_{x_1 \rightarrow 0}. \tag{3}
\]

If the antiquark distributions are flavor symmetric, the ratio is given by \(R_{pd} = 5/8 = 0.625 \). Comparing the above equation with Eq. (2), we find a difference of a factor of 4. This suggests that the ratio \(R_{pd} \) for \(x_F \rightarrow -1 \) should not be as sensitive as that in the large-\(x_F \) region, although the \(\Delta(T)\bar{u}/\Delta(T)\bar{d} \) asymmetry could also be found in this region.

Next, we show expected pd/pp ratios numerically. The leading-order (LO) results are shown in Fig. 1 at \(\sqrt{s} = 50 \text{ GeV} \) and \(M_{\mu\mu} = 5 \text{ GeV} \). The Drell-Yan cross-section ratio, \(R_{pd} \), was calculated in the longitudinally and transversely polarized cases; the results are indicated by the solid and dashed curves, respectively. For the transversity, we assumed that they are equal to the longitudinal distributions at \(Q^2 = 1 \text{ GeV}^2 \). They are evolved to those at \(Q^2 = M_{\mu\mu}^2 \) with the LO evolution equations.4) The flavor asymmetry ratio was taken to be \(r_{\|} \equiv \Delta(T)\bar{u}/\Delta(T)\bar{d} = 0.7, 1.0, \) or \(1.3 \) at \(Q^2 = 1 \text{ GeV}^2 \). As shown in Fig. 1, the flavor asymmetry effects are conspicuous especially at large \(x_F \).

We have shown that the difference between the pp and pd cross sections is valuable for finding the flavor asymmetry. It is especially important that we point out the possibility of measuring the flavor asymmetry in the transversity distributions, because it cannot be found in W-production processes and inclusive lepton scattering due to the chiral-odd property. We hope that the experimental possibilities are seriously considered at FNAL, HERA, RHIC, and JHF.

References
Nucleon-Structure Functions in the NJL Model†

H. Mineo,* W. Bentz, and K. Yazaki

[Quark distribution function, Faddeev approach, NJL model]

Quark light-cone momentum distributions in the nucleon are calculated in a relativistic 3-body approach to the NJL model¹,²) by using a simple "static approximation"³) for the Faddeev kernel, which reduces the original three-body problem to an effective two-body problem.

A method based on a straightforward Feynman-diagram evaluation is presented which automatically satisfies the number and momentum sum rules, even in the regularized theory. In order to assess the sensitivity to the regularization scheme, two schemes which can be formulated in terms of light-cone variables are discussed. One is due to Lepage and Brodsky,⁴) which introduces a cut-off in the two-body invariant masses. The other is due to Lenz et al.,⁵) which introduces a cut-off only in the transverse directions, while renormalizing the longitudinal direction. A comparison of the resulting distributions with the empirical ones after the Q^2-evolution⁶) indicates that the latter scheme is superior, which is similar to the situation found previously for the distribution in the pion.⁷)

The effects of the (composite) pion cloud are taken into account in a convolution approach, and the violation of the Gottfried sum rule is discussed. The effects slightly improve the agreement with the empirical distributions and enhance the violation, but are not sufficient to explain the observed asymmetry of the sea-quark distributions.

References

† Condensed from the article in Phys. Rev. C 60, 065201 (1999)
* Department of Physics, Graduate School of Science, University of Tokyo
Chiral symmetry and its spontaneous breakdown are key concepts in hadron physics. Eight pseudo-scalar mesons (π, K, η) have been identified as the Nambu-Goldstone bosons. Further, $U_A(1)$ symmetry breaking is also important, because it affects the chiral symmetry breaking and the properties of the ninth pseudo-scalar meson, η'. Since the chiral symmetry is closely related to the Lorenz covariance, non-relativistic approaches, such as the harmonic-oscillator model, are not suitable. We use the fully relativistic Bethe-Salpeter approach and concentrate on the pseudo-scalar mesons: π, K and η'. We employ the improved ladder gluon exchange interaction 1, 2) and the 't Hooft-type three-flavor determinant interaction,

$$-(I_G)^2 \left\{ \det[\bar{\psi}(1 - \gamma_5)\psi] + \det[\bar{\psi}(1 + \gamma_5)\psi] \right\},$$

with the Gaussian form factor. The former reproduces the asymptotic behavior of the quark propagator and the latter brings a $U(1)_A$ symmetry breaking. The quark full propagator is obtained by the Schwinger-Dyson (SD) equation shown in Fig. 1. The bound state is obtained by the Bethe-Salpeter (BS) equation shown in Fig. 2. These coupled equations respect the chiral symmetry and its spontaneous symmetry breaking.

The results are given in Table 1 and Fig. 3. We choose the model parameters to bring out the strong chiral symmetry breaking by the gluon exchange interaction mainly. The scale parameter is fixed at $\Lambda_{QCD} = 600$ MeV. This value is somewhat larger than the standard value. This is because the lack of the infrared enhancement of the gluon propagator we employed. In our approach, the BS amplitude is obtained as a solution of the BS equation. Its flavor structure depends on both the relative and total momenta of the quark and anti-quark. We thus define the mixing angle from the decay constants, f_8 and f_0.

In the $SU(3)$ symmetry limit, no flavor mixing occurs. On the other hand, in the broken $SU(3)$ case with $I_G = 0$, η and η' are in ideally mixed states, i.e., $\theta_\eta = \arctan(-\sqrt{2}) = -54.7^\circ$. The mixing angles, θ_η and $\theta_{\eta'}$, increase as I_G becomes strong. Physically, the mixing angle for the η' meson, $\theta_{\eta'}$, is more than 5/3-times the calculated mixing angle for the η meson. This means that the momentum dependence of the flavor structures is not very small. In Fig. 3, the effect of the mixing of the u, d quark component seems to be negligible, and the η' meson mass grows rapidly from $I_G \sim 2.0 \text{ GeV}^{-1}$.

Table 1. The η'-meson solutions of the BS equation.

<table>
<thead>
<tr>
<th>$m_{q,R}$</th>
<th>$m_{\bar{q},R}$</th>
<th>I_G</th>
<th>$M_{\eta'}$</th>
<th>$f_{\eta'}$</th>
<th>$f_{\bar{\eta}'}$</th>
<th>$\theta_{\eta'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>86</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1.6</td>
<td>194</td>
<td>0</td>
<td>87</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2.0</td>
<td>350</td>
<td>0</td>
<td>88</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2.4</td>
<td>634</td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
<td>723</td>
<td>-101</td>
<td>72</td>
<td>-54.7°</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1.6</td>
<td>731</td>
<td>-99</td>
<td>76</td>
<td>-52.5°</td>
</tr>
<tr>
<td>0</td>
<td>2.0</td>
<td>764</td>
<td>-88</td>
<td>88</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2.4</td>
<td>1020</td>
<td>-41</td>
<td>118</td>
<td>-19.2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0.0</td>
<td>723</td>
<td>-101</td>
<td>72</td>
<td>-54.7°</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>1.6</td>
<td>732</td>
<td>-98</td>
<td>77</td>
<td>-51.8°</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>777</td>
<td>-86</td>
<td>90</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2.4</td>
<td>1060</td>
<td>-36</td>
<td>122</td>
<td>-16.4</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 3. I_G dependence of the mass of the η' meson with $m_{q,R} = 0$ and $m_{\bar{q},R} = 100$ MeV.

References

* Department of Physics, Tokyo Institute of Technology
Final Countdown to RHIC Spin Program

The relativistic heavy-ion collider (RHIC) will undergo its first collision in the year 2000. The RIKEN collaboration of this international project has resulted in strong enhancements to the collider, one of which is the upgrade of the collider for the acceleration of polarized protons and another is the upgrade of the PHENIX detector for the study of spin physics. The RHIC has become the machine with which to explore the fundamentals of quantum chromodynamics (QCD).

The superspectrometer, PHENIX, which we are working on, will play an important role in exploring such physics at RHIC. The collaboration includes 41 institutes and about 400 physicists and engineers. The spectrometer consists of two arms for electron and photon detection and another two for muon detection (see the figure below). The second muon arm was added to increase the spin physics capability of PHENIX. These probes (leptons and photons) are essential for the investigation of the state of nuclear matter in heavy-ion collisions, and also for the detection of possible spin carriers (gluons and antiquarks) to reconstruct the missing spin in a nucleon from individual constituents of a nucleon. The polarized proton collider will enable us, for the first time, to directly measure those spin carriers which remain unidentified in former experiments using polarized lepton scattering.

In 1999 we passed a very important milestone with the onset of RHIC operation with the successful storage of beam particles in the rings. The development of the RHIC polarimeter is one of our major contributions this year to the spin acceleration project at RHIC. Our recent work has established a novel technique using proton-carbon nuclear interference for the beam polarization measurements. The RHIC polarimeter design is now in progress based on this method.

The successful completion of the muon identifier construction, which was carried out in Japan and the USA, is now followed by efforts to make the detector operational in the collision hall. Since May 1999 we have been contributing to the muon tracking-chamber construction, another of the key detectors in the muon arms to be installed in the summer of 2000. The quality assurance of the produced chambers is one of our major responsibilities.

For the detections of electromagnetic probes it is essential to understand the calorimeter response for high-energy particles. A test experiment was carried out at CERN in 1998 and the analysis is essentially finalized. The outcome is very promising for the direct γ and the W → e + ν measurements which are the key channels of the spin program. The measured energy resolution of the calorimeter was dE/E = 1.9% + 8.2%/√E with a linearity better than 2% up to the energy of 80 GeV.

The new project of constructing a computing complex containing 300 Linux-based PCs at Wako was begun in 1999, and is the key project in the analysis of the data. The goal of the project is to reach 10 k SPECint95 by the end of 2001. Even in the preliminary stages of development in 1999, the simulation work has progressed significantly owing to this new computing project. A possible new probe, the coincidence signal of electron and muon, to detect gluon polarization was recently studied with the

[pp interaction, Struture function, Spin, Asymmetry, Polarized beam]

*1 Institute of Theoretical and Experimental Physics, Russia
*2 Oak Ridge National Laboratory, USA
*3 Brookhaven National Laboratory, USA
*4 Department of Physics and Astronomy, University of New Mexico, USA
*5 University of Muenster, Germany
*6 Los Alamos National Laboratory, USA
*7 Department of Physics, Yale University, USA
*8 Indiana University Cyclotron Facility, USA
*9 Kurchatov Institute, Russia
*10 Interphysica, Russia
*11 New Mexico State University, USA
*12 University of Tennessee, USA
*13 Tokyo Institute of Technology
*14 CEA, China
*15 Argonne National Laboratory, USA
*16 Department of Physics, Kyoto University
ulation, and proved to be sensitive to the gluon-gluon scattering which produces a heavy quark pair with an excellent signal-to-background ratio.9) Progress has also been made in the muon identification and muon tracking software10) through the full simulation of the detector response in the muon arms.

The final countdown to the first collision has begun. Although a lot of work remains to be accomplished by then, we enjoy marching towards the promised land of spin physics (Fig. 1).

References
Measurement of the Charged Pion Asymmetry and Beam Polarization in AGS E925

N. Hayashi, C. Allgower,*1 M. Bai,*2 V. Baturine,*3 N. Belikov,*4 G. Bunce,*2 A. Derevschikov,*4 H. En’yo,
V. Ghazikhanian,*5 Y. Goto, M. Grose Perdekamp, T. Ichihara, G. Igo,*5 T. Kasperzyk,*4 Y. Kondo,*6
K. Krueger,*1 H. Huang,*2 S.-Y. Lee,*7 Y. Matulenko,*4 Y. Makdisi,*2 Y. Nakada, M. Nakamura,*6
L. Nogach,*4 S. Nurushev,*4 N. Saito, H. Sakai, H. Sato, A. Taketani, A. Ogawa,*3 M. Okamura,
A. Pavlinov,*4 T. Roser,*2 H. Spinka,*1 M. Syphers,*2 S. Trentalange,*5 D. Underwood,*1

[RHIC, AGS, Spin, Asymmetry, Polarized beam, Polarimeter]

We have measured the inclusive charged pion asymmetry at the large-x_F and high-p_T region for 22-GeV/c transversely polarized protons scattered from carbon or liquid-hydrogen targets. This phenomenon has been considered in relation to such phenomena as hyperon polarization from unpolarized beams and the proton spin crisis. The mechanism may be studied via inclusive hadron production in polarized proton interactions.

The experiments were performed in November, 1997, with a carbon target and in March, 1999, with a hydrogen target. This paper presents the results of the carbon target; an analysis of hydrogen data using the same procedure is under way.

The polarized proton beam was extracted from the BNL AGS and its polarization, P, was measured by pp elastic scattering with a CH$_2$ target. In 1997 the polarization P was determined to be $P = 0.271 \pm 0.059$ (stat.) ± 0.028 (syst.). A detailed description can be found in a previous report. 2)

Inclusive measurements were carried out using an independent set of counters (BL1-4, BR1-4, FLA(B) and FRA(B)) for the elastic arm (see Fig. 1). Pion triggers from a 4.0-cm thick carbon target were defined as the combination of three counter hits (S1, S2 and S3) and three out of four hodoscopes (H1-4). The spectrometer magnet gave a transverse momentum kick, p_T, of about 1 GeV/c. Its magnetic field was reversed periodically to accept both positive and negative pions. From the position information in each hodoscope, the particle momentum as well as Feynman’s x_F and p_T were extracted. A threshold-type Cerenkov counter filled with about 2 bar of CO$_2$ was used to separate pions from other hadrons.

The asymmetry, A_N, of inclusive pions was measured as a function of x_F using

$$A_N = \frac{N^+ - N^-}{P[N^+ + N^- - 2N_B]}$$

where N^+ (N^-) is the normalized number of produced particles going to the right when the polarization of the beam is pointing up (down). N_B is the normalized number of estimated background events.

The obtained value of A_N is shown in Fig. 2 a). Here, they are compared with the results from experiment FNAL-E704 (Fig. 2 b)) (200 GeV/c polarized proton beam on a hydrogen target). It should be noted that the asymmetry is large and the x_F dependence similar to the E704 results in the large-x_F region, despite the large difference in the beam momenta and production targets. This feature could be exploited as a high-energy proton beam polarimeter for accelerators, such as RHIC or HERA.

References
Sensitivities of the Gluon Polarization Measurement at PHENIX

[RHIC, PHENIX, Spin, Asymmetry, Gluon polarization]

Polarized deep inelastic scattering experiments show that the fraction of the quark polarization in the proton is only about 30% of the proton spin. The remaining fraction needs to be explained by other sources. We plan to directly measure the gluon polarization in the proton at PHENIX using RHIC polarized-proton collisions. This will be carried out by utilizing gluon+quark and gluon+gluon reactions. At PHENIX, we have two kinds of detector systems to detect many channels of physics signals from these reactions. Two Muon Arms detect muons in the forward pseudo-rapidity region, 1.2 < |η| < 2.4. Two Central Arms detect photons, hadrons, and electrons in the central pseudo-rapidity region, |η| < 0.35. Each of these channels covers different kinematical range complementally. The range of the momentum fraction of the gluon in the proton, xg, extends from 0.005 to 0.3 totally.

The open and bound-state heavy-flavor production are to be identified by detecting lepton(s) using the Muon Arms and the Central Arms. Since these reactions are dominated by the gluon fusion process at RHIC energy, a measurement of the double-longitudinal spin asymmetry, A_{LL}, is sensitive to the gluon polarization, ΔG(x)/G(x), in the proton. We show three channels used to probe the heavy-flavor production: di-muon, high-PT single electron, and electron-muon pair. We have estimated the ratios of the signal and background events, and have investigated the sensitivities to the gluon polarization measurement in each channel.

Prompt photons and π^0s are detected in the Central Arms. The prompt photon production is theoretically a clean channel, because it is dominated by the gluon Compton process. By measuring A_{LL}, we can determine the gluon polarization by using knowledge of the quark polarization from the polarized deep-inelastic-scattering experiments and the calculable asymmetry of the gluon Compton process. A measurement of π^0 serves both as a background estimation of a prompt photon measurement, and as a measurement of the gluon polarization by itself.

We studied the sensitivities of our measurements using the PYTHIA event generator and the GRV-94LO parton distribution function for pp collisions. To evaluate A_{LL}, three models of the polarized parton distribution function (GS-A, GS-B, and GS-C) with different gluon polarization are used.\(^{1}\)

Table 1 summarizes the estimated statistical errors and predicted values of the A_{LL} and the x_g range to be covered by each channel. The statistical errors show the absolute values for 10% luminosity 32pb^{-1} for channels indicated by,\(^{2}\) and full luminosity 320pb^{-1} for other channels.

<table>
<thead>
<tr>
<th>Probes</th>
<th>A_{LL} Errors</th>
<th>A_{LL} Predictions</th>
<th>x_g</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/ψ → μμ</td>
<td>0.006</td>
<td>0.01 0.01 0.002</td>
<td>0.005 - 0.01</td>
</tr>
<tr>
<td>c̅c → eX</td>
<td>0.004</td>
<td>-0.02 -0.01 -0.0003</td>
<td>0.05 - 0.2</td>
</tr>
<tr>
<td>c̅c → eμX</td>
<td>0.006</td>
<td>-0.05 -0.02 -0.0001</td>
<td>0.05 - 0.2</td>
</tr>
<tr>
<td>b̅b → eμX</td>
<td>0.006</td>
<td>0.01 0.01 -0.0004</td>
<td>0.01 - 0.3</td>
</tr>
<tr>
<td>prompt γ</td>
<td>0.006</td>
<td>0.05 0.03 0.001</td>
<td>0.1 - 0.3</td>
</tr>
<tr>
<td>π^0</td>
<td>0.001</td>
<td>0.02 0.01 0.0001</td>
<td>0.05 - 0.3</td>
</tr>
</tbody>
</table>
measurement can be performed from 2000.

In summary, we can start the gluon polarization measurement from the first year of the RHIC polarized-proton run with many feasible channels.

References
Performance of the PHENIX Muon Reconstruction Software

[Reconstruction efficiency, Road finding, Track finding]

We have been developing and testing offline software to reconstruct muon events for the PHENIX experiment. The integrated muon offline software has been established, and has been used for various studies, such as Mock Data Challenge (MDC)1) and a study of the beam pipe shielding for south muon arm. Single-muon events were simulated and reconstructed to check the reconstruction efficiency of the software; single-pion events were simulated and passed to the whole analysis chain to see the hadron rejection capability as well. The performance of the software to analyze data in high multiplicity was also investigated by mixing J/ψ signal events with central Au-Au background events.

The complete data-simulation procedure is as follows: Generate events with a event generator, for example a PYTHIA event generator; pass the events to PHENIX Integrated Simulation Application (PISA) to simulate the detector response; convert the PISA output to PHENIX Raw Data Format (PRDF); reconstruct the PRDF events and save them as Data Summary Tape (DST). The PHENIX muon detector comprises two arms with a tracking part (MuTR) and an identification part (MuID) in each arm. The reconstruction of an event can be briefly described as: (1) find the clusters in each gap of the MuID; (2) find roads in the MuID based on the clusters; (3) pass the found roads to MuTr track finding; (4) apply a particle-identification algorithm with such information as the momentum and the depth in MuID of a found track.

We improved our road-finding algorithm2) during a study for beam shielding for the south muon arm. A new version of the road finder was optimized in order to satisfy the following requirements: a higher reconstruction efficiency and a smaller number of ghost roads by allowing a smaller cluster size and a larger search window and implementing a share-hit method to drop ghost roads. It is possible to study specific physics by setting the control parameters; for example, one can choose a narrow search window and a deeper depth if a high-momentum muon is interesting. One can also use a looser cut for p-p and a tighter cut for the Au-Au collision to drop ghost roads for the multiplicity is much less in the former case.

We analyzed 3000 single muon events and 30000 single pion events to check the muon software performance. The muons and/or pions were launched from the collision point with an emission angle of 135° ± 2° and an azimuthal angle of 155°. The results had, as shown in Table 1, a road-finding efficiency of about 99% and a track-finding efficiency of about 96–98% for muons in 2.5-5.0 GeV/c momentum region, while the pion-reduction rate was about 3.1×10^{-3} in the same momentum region. The efficiency loss was only a few percent after applying muon identification.

To check the performance in high multiplicity, we analyzed 2000 J/ψ mixed with Au-Au central events. Figure 1 shows the mass spectrum of the mixed events. The J/ψ resonance was clearly seen, even mixed with such strong background, the multiplicity being about 3000/event in a muon arm. The signal/noise ratio was about 15 : 1 in the J/ψ mass region. The number of reconstructed J/ψ muon pairs in Fig. 1 was consistent with the numbers in Table 1 after considering the efficiency loss due to the chamber framework of MuTR and the absorber of MuID.

As a result from our evaluation work as well as from our MDC1 and MDC2, we have confirmed that the muon offline software is in good shape, and is satisfactory for our current requirement. Some more refinements are necessary in the muon-identification module

<table>
<thead>
<tr>
<th>Momentum GeV/c</th>
<th>Road finder</th>
<th>Track finder</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>99.2%</td>
<td>95.7%</td>
<td>98.7%</td>
</tr>
<tr>
<td>3.0</td>
<td>99.7%</td>
<td>96.5%</td>
<td>99.8%</td>
</tr>
<tr>
<td>5.0</td>
<td>99.9%</td>
<td>98.2%</td>
<td>99.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pions reduction rate</th>
<th>2.5</th>
<th>3.5 × 10^{-3}</th>
<th>2.5 × 10^{-3}</th>
<th>2.2 × 10^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.0</td>
<td>5.1 × 10^{-3}</td>
<td>3.9 × 10^{-3}</td>
<td>3.2 × 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>5.0</td>
<td>8.5 × 10^{-3}</td>
<td>5.8 × 10^{-3}</td>
<td>3.8 × 10^{-3}</td>
</tr>
</tbody>
</table>

*1 Physics Division, LANL, USA
*2 Physics Department, University of Tennessee, USA

![Fig. 1. The reconstructed dimuon mass spectrum.](image-url)
to reject more hadrons and in the ghost track drop module to throw away more ghost tracks while keeping a relatively high muon reconstruction efficiency.

References
Precise Measurement of the Muon Lifetime

[Standard model, Fermi coupling constant, Muon lifetime]

The Fermi coupling constant \(G_F\) is one of the most basic parameters of the standard model. The standard model requires at least three electroweak parameters from the experimental measurements; usually \(\alpha\) (the fine structure constant), \(M_Z\) (the mass of \(Z\)) and \(G_F\) are used. The uncertainty of \(\alpha\), \(M_Z\) and \(G_F\) are, respectively, 0.045 ppm, 77 ppm and 17 ppm;\(^1\) thus, the \(M_Z\) uncertainty dominated until now. However, the recent preliminary LEP results yield an uncertainty of the \(Z\) mass of 20 ppm or less;\(^2\) the situation is changing.

The muon lifetime is directly associated with \(G_F\) by the muon lifetime formula.\(^3\) The input uncertainty of \(G_F\) is dominated by the muon lifetime \((\tau_M)\) uncertainty (PDG average 18 ppm). The uncertainty of the 2-loop electroweak calculation \((10-15\ \text{ppm})\) has also been limiting the accuracy of the theoretical application with \(G_F\) defined by the muon lifetime formula in the standard model. However, a precise 2-loop electroweak calculation was recently carried out\(^4\) with an accuracy of better than 1 ppm; thus, the accuracy of \(G_F\) is now limited by the uncertainty of the experimentally measured muon lifetime.

The last \(\mu^+\) lifetime measurements \((\sim 30\ \text{ppm accuracy})\) were performed more than 10 years ago at TRIUMF\(^5\) and Saclay,\(^6\) and no improvement has been made so far (Fig. 1). These experiments observed one muon decay in an observation time window to avoid any pileup detection of positrons which distorts the muon decay-time spectrum. With this method, because the data-acquisition rate is simply limited by the width of the time window, there exists a practical accuracy limit with a realistic beamtime. It is essential to develop a multi-decay per one time window method for more accurate muon lifetime measurements. We designed a new experimental setup\(^7\) (Fig. 2) and started to observe \(10^9-10^{10}\) muon decays at the RIKEN-RAL Muon Facility. We used a holmium plate as a muon stopping target to minimize the effect of the muon polarization. The target was placed in a helium bag to reduce the number of the muons stopped around the target. Multiwire proportional chambers (MWPC) were used as a positron timing and tracking device to realize a fine segmentation which reduces the pileup effect. A clock system with GPS (global positioning system) was newly developed to achieve very good differential and integral linearity. We will finish the first-stage data acquisition \((\sim 5 \times 10^9\ \text{muon decays} = 10-20\ \text{ppm})\) by the end of 1999; a preliminary analysis of the acquired data is now in progress.

Fig. 2. Setup of the \(\mu^+\) lifetime experiment placed at the port 2 beamline of the RIKEN-RAL Muon Facility. One set of the MWPCs for positron detection can be seen in front of the target, and the other set is hidden by the target and the helium bag.

Fig. 1. History of the \(\mu^+\) lifetime accuracy. The accuracy of the \(Z\) mass is also plotted as a reference.

References

*1 Department of Physics, Tokyo Institute of Technology
*2 Department of Physics and Astronomy, University of Victoria, Canada
Measurement of the Ortho-Para Effect in Muon-Catalyzed dd-Fusion

[Keyword J.LCF, Ortho-para effect]

This measurement will provide a new test of one of the most important theories in muon-catalyzed fusion (J.LCF), namely the resonant formation of a muonic molecule. It will also provide a critical test on the puzzling “solid state” effect in J.LCF.

The muon acts as a catalyst in the fusion process through forming a ddμ muonic molecule. Here, resonant formation of ddμ, μ + D2 → [(ddμ)dee] plays an important role. Because of the finite muon lifetime (2.2 μsec), the ddμ formation rate is quite important in achieving a high fusion yield. By artificially changing the initial molecular state, we expect to increase the formation rate, and thus enhance the overall fusion cycling rate. So far, there have been three parameters used to change the D2 state: (1) the temperature, (2) the phase, and (3) the density. This experiment aims to control the fourth parameter, namely the rotational state, which can be achieved by changing the ortho and para ratio of the deuterium.

Furthermore, some theories predicted that the ddμ formation rate decreases rapidly with reducing the temperature below 20 K, although the experiments measured no formation rate change below 20 K. At present, there are several possible explanations. The para deuterium plays an essential role in the current explanations for this discrepancy. Our measurement will test these mechanisms by reducing the para concentration.

In the experiment, we measured fusion protons, μ-decay electrons, and various muonic X-rays. We formed a solid deuterium target in a vacuum so as to minimize the material between the target and the proton detector. For fusion proton detection, we use a pair of silicon surface barrier (SSB) detectors. The 3 MeV proton passes the first SSB detector for ~E (25 μm²) and stops in the second one for E−ΔE (150 μm²).

The experiment is being carried out at the RIKEN-RAL Muon Facility in the UK. Figure 1 shows a scatter plot for the proton detectors. The top figure is for a normal deuterium target and the bottom figure is for an empty target. The horizontal axis is for the energy deposited in the first SSB (in keV) and the vertical is for the second SSB.

Fig. 1. Scatter plots for the proton detectors. The top figure is for a normal deuterium target and the bottom figure is for an empty target. The horizontal axis is for the energy deposited in the first SSB (in keV) and the vertical is for the second SSB.

Fig. 2. Fitting result of the fusion proton time spectrum.
plot of the two SSB detector's output pulse height. The fusion protons are clearly seen in the region around ADC1(ΔE) = 0.6 MeV and ADC2(E-ΔE) = 2.4 MeV. The ΔE-E particle-identification method greatly suppressed the background noise, such as by scattered muons and μe-decay electrons to achieve a sufficiently high S/N ratio(~5) of fusion protons; nevertheless, we placed the proton detectors near to the muon beam. Figure 2 shows a typical fusion proton time spectrum with fast and slow components. This spectrum also reflects the double-pulsed muon beam structure of the ISIS synchrotron. The dotted line corresponds to the background level, which was estimated from the data without the deuterium target. It is theoretically predicted that the slow component is less dependent on the ortho-para state of deuterium than the fast component; therefore, we compared 33% para(normal) data, 5% para data, and 0.8% para data by observing the fusion proton yield from the fast component. The detected fusion protons with a fast component normalized by detected electrons from μ-e decay in the deuterium target was 6.4(13) × 10^{-3} for normal deuterium, 5.6(16) × 10^{-3} for the 5% para case, and 5.8(24) × 10^{-3} for the 0.8% para case. We are planning further experiments under more sophisticated conditions to improve the statistics.

References
Study of Muon Catalyzed Fusion in Solid D-T Mixtures

Through the muon catalyzed fusion (μCF) studies at the RIKEN-RAL Muon Facility since 1995, we have obtained the muon cycling rate (λ_c) in solid/liquid deuterium and tritium (D-T) mixtures with various tritium concentration (C_t).

According to Vesman's mechanism, which is based on resonant $dt\mu$ formation through a two-body collision, i.e., $t\mu + D_2 \rightarrow [(dt\mu)\text{dee}]$, λ_c was expected as constant to the D-T mixture density. In order to remove any trivial density dependence, λ_c is already normalized by the target density. However, Jones et al. found an unexpected density dependence (Fig. 1). Our data also showed such a tendency, and they were comparable to data at above 100 K, although they were obtained at much lower temperatures, 20 K (liquid) and 16 K (solid). On the other hand, a theoretical calculation based on Vesman's mechanism indicated a steep decrease of λ_c with the temperature decreasing below about 100 K.

Menshikov and Ponomarev introduced the idea of three-body collision; $t\mu + D_2 + D_2' \rightarrow [(dt\mu)\text{dee}] + D_2'$, where the third particle, D_2', absorbs any excess energy in $dt\mu$ formation. This explains the high molecular-formation rate at low temperature; also, the density dependence is explained by the contribution of D_2'. Fukushima takes into account the effect of phonons in a solid, which play the role of a third particle. However, still, no theory can provide a quantitative understanding of the unexpected high λ_c at low temperature. Observing the temperature dependence of λ_c can supply new important information to the theory of $dt\mu$ formation.

In order to investigate this problem, we started a μCF study in a cryo-solid from 16 K to 5 K, and a preliminary analysis was performed. Figure 2 shows the temperature dependence of λ_c. For each C_t, λ_c decreases by about 15% with decreasing temperature. This can be explained by a decrease of the $dt\mu$-molecule formation rate in collision between $(t\mu)^{F=0}$ and $D_2 (\lambda_{dtu}^{F=0,D_2})$: $420 \mu s^{-1}$ (16 K) $\rightarrow 300 \mu s^{-1}$ (5 K), where F denotes the hyperfine level. However, there is a slight possibility that the change of a different parameter, such as the muon transfer rate from $(d\mu)_{1s}$ to $(t\mu)_{1s}$ (λ_{dt}), would cause a decrease of λ_c. By analyzing the C_t dependence of λ_c, λ_c can be dissolved into $\lambda_{dtu}^{F=0,D_2}$ and λ_{dt} terms. In the coming experiment, we will use a high-C_t target and determine the cause of the decrease of λ_c.

References

*1 Electrotechnical Laboratory (ETL)
*2 Rutherford-Appleton Laboratory (RAL), UK
Electron Scattering at MUSES/RIBF

T. Suda, K. Maruyama, and I. Tanihata

[Electron scattering, Charge form factor, Unstable nuclei]

The working group for the electron-nucleus (eA) collider of MUSES has been working to design an electron spectrometer. The main efforts have so far been paid to clarify the necessary performances which an electron spectrometer must have for measuring the elastic electron scattering cross section from unstable nuclei.

As is well known, the charge form factor of a nucleus is deduced from the elastic electron-scattering cross section. The charge distributions, such as radii and shapes, of many unstable nuclei will be determined by elastic electron scattering at MUSES. Simulations have shown that the charge radii can be determined for unstable nuclei whose luminosities \(L \) are greater than \(10^{25} \text{ cm}^{-2} \text{ s}^{-1} \), and that the shape of the charge distribution will be studied for \(L \geq 10^{27} \text{ cm}^{-2} \text{ s}^{-1} \). Many unstable nuclei, whose life time is longer than about 1 minute, are expected to be studied at MUSES.

To determine the shape of the charge distribution in unstable nuclei, the charge form factor must be measured over a wide momentum transfer \(q_{NR} \) range by the elastic electron scattering. Here, \(q_{NR} \) is defined in the nucleus-rest (NR) frame. Since the elastic cross section changes rapidly as a function of \(q_{NR} \), it is important to determine \(q_{NR} \) with high precision. In addition, a good energy-transfer resolution, \(\Delta \omega_{NR} \), is also necessary to identify the elastic-scattering process.

We set our goal concerning the charge form factor measurements at MUSES as follows:

1. \(q_{NR} \) range: \(q_{NR} = 100-400 \text{ MeV/c} \)
2. \(q_{NR} \) resolution: \(\Delta q_{NR}/q_{NR} \sim 10^{-3} \)
3. \(\omega_{NR} \) resolution: \(\Delta \omega_{NR} \leq 1 \text{ MeV} \)

The difficulties to design an electron spectrometer to carry out such measurements are related to the limited luminosities for unstable nuclei. Because the conventional electron spectrometers which have good momentum resolution (typically \(10^{-4} \)) but a small solid angle (\(\sim 30 \text{ msr} \)), can not be our solution, a large-acceptance spectrometer must be necessarily employed.

The performances that such a large acceptance electron spectrometer must have can be summarized as follows:

1. High momentum resolution: \(\Delta p/p \leq 10^{-3} \)
2. Accurate determination of the scattering angle: \(\Delta \theta \sim 10^{-3} \text{ rad} \).

Here, let us discuss an optimum electron beam energy \((E_e) \) for the charge form-factor measurements at MUSES. From the point of view of luminosity, a higher \(E_e \) is favorable. Higher energy is also better to suppress any multiple scattering effects of electrons in the materials of the spectrometer, such as trackers. In fact, suppressing the multiple-scattering effect is a key to achieving good momentum and angular resolution for scattered electrons.

On the other hand, the minimum electron scattering angle, corresponding to \(q_{NR} = 100 \text{ MeV/c} \), becomes large for lower \(E_e \). For example, they are 12, 8 and 6° for electron-beam energies of \(E_e = 500, 750 \) and \(1000 \text{ MeV} \), respectively, which are almost independent of the mass number, \(A \), and the energy of nuclear beam. A lower \(E_e \) frees us from serious interference between the spectrometer and the MUSES rings.

Simulations assuming a large acceptance magnetic spectrometer with tracking devices have shown that the optimum electron beam energy will be in the range of \(E_e = 500-750 \text{ MeV} \), and that the necessary performances of an electron spectrometer for this energy range are:

1. coverage of a polar angle of \(\theta = 8-40^\circ \)
2. coverage of an azimuthal angle of \(\phi = 2\pi \)
3. field integral greater than 2 Tm
4. total thickness of material, \(X \leq 0.3\% \) of radiation length

Currently, two types of magnetic spectrometers are being intensively discussed. They are spectrometers with a solenoid- and toroidal-magnetic field. Detailed simulations including various effects, such as beam emittance, and multiple scattering, are now under way.

In addition to the simulation, the detection of recoiled nuclei in the storage ring to identify the elastic scattering is also being discussed simultaneously with the design group of MUSES.

In summary, the eA working group has been focusing on designing an electron spectrometer, which will be used for elastic electron-scattering experiments at MUSES to determine the charge distribution of many unstable nuclei. The performances required of the spectrometer have been clarified, and detailed simulations for two types of large-acceptance magnetic spectrometers are in progress.
Measurement of the Polarization Transfer Coefficients, $K_{ij}^{\nu'}$, for d-p Elastic Scattering at $E_d = 270$ MeV

Measurements of the cross sections as well as the vector- and tensor-analyzing powers for deuteron-proton (d-p) elastic scattering at 270 MeV have been reported by Sakamoto et al.1) and Sekiguchi.2) The results are interesting because the observables are sensitive to the effect of the three-nucleon force (3NF).3 1 4) The differential cross sections are in excellent agreement with calculations including 3NF by Witala et al.3) Although the vector-analyzing powers are also in good agreement, that at the tensor-analyzing powers is rather poor.

As new research on 3NF, we measured the polarization transfer coefficients ($K_{xx}^{\nu'}, K_{yy}^{\nu'}, K_{zz}^{\nu'}$) and the induced polarization ($P_{\nu'}$) for d-p elastic scattering at 270 MeV. The measurement was performed using the spectrometer SMART and polarized deuteron beams. First, polarized deuterons were bombarded onto a polyethylene (CH\textsubscript{2}) target. Secondly, the emitted protons were scattered by a carbon target at the second focal plane of SMART. Finally, the scattered protons were detected by a focal-plane polarimeter DPOL, by which the polarizations of the emitted protons were measured.

The relation between the polarizations and the observables can be represented by

$$
P_{\nu'} \frac{\text{d} \sigma}{\text{d} \Omega} = \frac{\text{d} \sigma}{\text{d} \Omega} \left(P_{\nu'} + \frac{3}{2} P_{y'} K_{xx}^{\nu'} + \frac{2}{3} P_{z'} K_{zz}^{\nu'} + \frac{1}{3} \left(P_{xx} K_{xx}^{\nu'} + P_{yy} K_{yy}^{\nu'} + P_{zz} K_{zz}^{\nu'} \right) \right),
$$

where x, y and z are the coordinates of the incident deuterons; x', y' and z' are those of the emitted protons; and $\frac{\text{d} \sigma}{\text{d} \Omega}$ means the differential cross section with unpolarized beams.

The results of the measurement are plotted in Fig. 1. by the solid circles with statistical errors. The solid curves are theoretical predictions of the Faddeev calculation using the NN CD-Bonn potential without 3NF. The solid curves are those of a calculation which included the effect of 3NF.

As a result, $K_{xx}^{\nu'}$ and $K_{yy}^{\nu'}$ are rather consistent with the predictions with 3NF. However, $K_{zz}^{\nu'}$ is rather consistent with the predictions without 3NF.

It cannot be concluded from only this experiment whether the effect of 3NF was observed or not. Clear evidence may be obtained by an additional study at more forward angles, where the discrepancy between those with and without 3NF is much larger.

References
Measurement of the Cross Sections and Vector and Tensor Analyzing Powers for d-p Elastic Scattering at $E_d = 270$ MeV

NUCLEAR REACTIONS, $^1H(d, d)$, $E_d = 270$ MeV measured: $\sigma(\theta)$, $A_y(\theta)$, $A_{yy}(\theta)$, $A_{xx}(\theta)$, $A_{xz}(\theta)$

A study of the nucleon-deuteron system has made substantial progress both experimentally and theoretically. We have shown in Ref. 1 that there is a discrepancy in the cross section minimum between the data and the Faddeev calculations without the three nucleon force (3NF) at an intermediate energy. It was recently shown that this discrepancy can be explained by 3NF. 2,3)

We have made precise measurements of the cross sections and vector and tensor analyzing powers for d-p elastic scattering at $E_d = 270$ MeV. The angular range was $\theta_{c.m.} = 10^\circ$-180°. A CH$_2$ target with a thickness of 46.7 mg/cm2 was bombarded by a polarized deuteron beam, and either scattered deuterons or protons were momentum analyzed by the spectrograph SMART and detected at the focal plane, depending on the scattering angle.

The experimental results are shown with solid circles in Figs. 1 and 2. The errors are only statistical ones. The open circles are the measurement by Sakamoto et al. 1) Since the two independent measurements provide almost the same values in the overlapping region, the systematic errors seem to be small. The dashed and solid curves in Figs. 1 and 2 are results of the calculations with and without 3NF by Witala et al. 2,4) The CD BONN potential 5) is taken as NN interactions. Note that the Coulomb interaction is not included. The dotted curves are the Faddeev calculations without 3NF in which the Argonne v14 6) potential is used. 1) For the cross sections, the calculation with 3NF shows an excellent fit almost over all angles. Thus, the discrepancy in the cross section minimum is indeed reproduced by including 3NF. The observed vector analyzing power, A_y, is also in good agreement with the calculations with 3NF. However, none of the calculations shows superiority in describing the tensor analyzing powers (A_{yy}, A_{xx} and A_{xz}). It should be noted that the agreement is deteriorated when 3NF is included. These results indicate that there seems to be ambiguity of the spin-dependent parts of 3NF as well as NN interactions.

References

4) H. Kamada: private communications.
The high-momentum component of the deuteron wave function provides a unique opportunity to reveal the short-range behavior of the nucleon-nucleon (NN) interaction.\(^1,\)\(^2\) Especially, the D-state wave function, which arises from the existence of the tensor component in NN interaction, manifests its importance in the short-range (\(r < 1\ \text{fm}\)) or high-momentum (\(k > 1\ \text{fm}^{-1}\)) region.

The \(^3\text{He}(d,p)^4\text{He}\) reaction can be an effective probe to the deuteron D-state wave function because of its strong spin-selectivity.\(^3\) We measured, for the first time at \(E_d = 270\ \text{MeV}\) and \(\theta_{\text{lab}} = 4^\circ\), the polarization correlation coefficient, \(C_{II}\), which is proportional to the D-state density within the framework of one-nucleon-exchange (ONE) approximation. The result of \(C_{II}\) was found to be more than a factor of 2 smaller than the expected value calculated with the ONE approximation and the realistic NN potential model. It is important to investigate the relevance of the reaction mechanism in order to assess the deuteron D-state wave function by using the polarization observables.

Following this line, we have recently measured the cross sections and analyzing powers \(A_y, A_{yy},\) and \(A_{xx}\) for the \(^3\text{He}(d,p)^4\text{He}\) reaction in the angular range of \(\theta_{\text{lab}} = 0^\circ\)–25\(^\circ\) and at \(E_d = 140, 200,\) and 270 MeV. Details of the experimental procedure are described in Ref. 4.

In Fig. 1, polarization observables at three energies are plotted as a function of the scattering angle in the center-of-mass system. The solid lines represent the result of ONE calculations. The vector analyzing power, which is expected to be identical to zero in the ONE approximation, takes large negative values (\(-0.3\)–\(-0.6\)) at forward angles. It is also clearly seen that the magnitude of the tensor-analyzing powers is much smaller than the prediction of the ONE calculation. Thus, it is concluded that the ONE approximation is insufficient to describe the \(^3\text{He}(d,p)^4\text{He}\) reaction in these energy regions.

The tensor-analyzing power, \(T_{20} = -\sqrt{2}(A_{yy} + A_{xx})\), at zero degree is also compared with those for the \(d+p\) backward scattering and the deuteron inclusive breakup data (Fig. 2). The comparison exhibits the similarity among these reactions. This result indicates that the reaction mechanism of the \(^3\text{He}(d,p)^4\text{He}\) reaction is similar to those of the \(d+p\) backward scattering and the deuteron inclusive breakup, and therefore the reaction models which have been developed to describe the latter reactions can also be applicable to the \(^3\text{He}(d,p)^4\text{He}\) reaction.

References
Measurement of the Deuteron Spin-Flip Probabilities in the 28Si(d, d') Reaction at $E_d = 270$ MeV

Inelastic scattering of polarized deuterons provides a unique tool to study nuclear spin responses. Since it is able to transfer spin $\Delta S = 1$ without transferring isospin $\Delta T = 0$, the (d, d') reaction is an efficient probe of isoscalar spin excitations.\(^1\) In addition, being a probe with spin equal to one, the (d, d') reaction provides an opportunity to search for the possible existence of $\Delta S = 2$ excitations, such as the Double Gamow-Teller states.\(^2\)

We report here on a 28Si(d, d') forward-angle measurement of the cross section and eight polarization observables ($A_y, A_{yy}, P_y', P_{yy}', K_y', K_{yy}', K_y''$ and K_{yy}''), which aims to understand the isoscalar spin strengths in 28Si. For the deuteron two spin-flip probabilities (SFPs), S_1 and S_2 can be defined corresponding to a change of 1 and 2 units in the component of the deuteron's spin perpendicular to the scattering plane. The SFPs, S_1 and S_2, are expected to be useful signatures of the $\Delta S = 1$ and $\Delta S = 2$ excitations, respectively. These are expressed in terms of the polarization observables, as follows:

\[
S_1 = \frac{1}{5} (4 - P_y' - A_{yy} - 2K_{yy}''), \quad \text{(1)}
\]

\[
S_2 = \frac{1}{18} (4 + 2P_y' + 2A_{yy} - 9K_y' + K_{yy}''). \quad \text{(2)}
\]

The experiment was carried out using SMART. The 270 MeV vector and tensor polarized deuteron beams from the RIKEN Ring Cyclotron were focused on a 58.1 mg/cm2-thick 12C target (28Si: 92.2%). The beam swinger magnet was set at 5°, covering an angular range of $2.5° < \theta_{lab} < 7.5°$. The scattered deuterons were detected at the focal plane of SMART with a multiwire drift chamber backed with two plastic scintillation counters. The polarizations of the scattered deuterons were determined by a focal-plane deuteron polarimeter, DPOL. DPOL had a 2.5 cm-thick polyethylene block as the second scatterer, and made use of the 12C(d, d) and 1H(d, pp) reactions for the vector and tensor polarization measurements, respectively.\(^3\)

Figure 1 (a) shows the excitation energy (E_x) spectrum of the cross section. A known spin-flip 1^+ state at 9.50 MeV is clearly excited as well as non-spin-flip collective states, such as 4^* at 4.62 MeV, 0^+ at 4.98 MeV, 2^+ at 7.40 MeV and 7.93 MeV and 3^- at 6.88 MeV.

and 10.18 MeV. Figure 1 (b) shows the spectrum of S_1. The isoscalar 1^+ state at 9.50 MeV is enhanced in this spectrum, while other non-spin-flip states are all suppressed, in accordance with spin-flip nature of these states. One may also see slightly enhanced S_1 values relative to those for free deuteron-nucleon (d-N) scattering (shown by the dashed line) over the excitation energy $E_x \approx 11-18$ MeV region. It would be interesting to note that several $T = 0$, 1^+ states have recently been reported over the E_x region of 9.7–15.8 MeV.\(^4\)

Figure 1 (c) shows the S_2 spectrum. The S_2 values are found to be close to zero for all of the measured E_x region. Within the framework of PWIA, it is necessary to have $S_2 = 0$ if we assume a one-step reaction process without any contribution from the tensor terms in the d-N t-matrix.\(^5\) Such an assumption is expected to be valid in the low-momentum transfer kinematics of the present experiment.

References
Proton Spectra from the $^{208}\text{Pb} + ^{208}\text{Pb}$ Reaction at 15 A MeV

K. Yoshida, M. Shimooka, R. Wada, T. Nakagawa, K. Nakagawa, I. Tanihata, Y. Aoki, J. Kasagi, and W. Q. Shen*

The proton energy spectra have been measured for the $^{208}\text{Pb} + ^{208}\text{Pb}$ reaction at 15 A MeV to investigate the formation of a very heavy compound nucleus. Due to the strong Coulomb repulsion, it has been thought that the formation of a compound nucleus is strongly hindered in collisions between heavy nuclei, such as $^{208}\text{Pb} + ^{208}\text{Pb}$. However, recent theoretical calculations suggest that a heavy compound nucleus can be formed in heavy nucleus-nucleus collisions at sufficiently high incident energies to overcome the strong Coulomb repulsion. The proton energy spectrum is expected to be a good measure of the formation of the compound nucleus, since the large Coulomb barrier strongly affects the protons evaporated from the compound nucleus. In order to minimize the strong contribution from the deep inelastic scattering, protons were detected in coincidence with three large fragments, which were produced from the compound nucleus through ternary fission.

The experiment was performed at the RIKEN Ring Cyclotron. ^{208}Pb beams with an energy of 15 A MeV and an intensity of 0.1 pnA were bombarded onto a 99.9%-enriched ^{208}Pb foil of 1 mg/cm2 in thickness backed with 20 μg/cm2 collodion. Protons were detected with BaF$_2$ phoswich detectors, which covered 130–165° laboratory angles around the beam axis. A large PPAC/IC chamber was placed at 25–75° laboratory angles in order to measure the energies and velocities of the fission fragments.

The proton spectra have been deduced for two types of the spatial distributions of three detected fragments. One is the asymmetric one: one of the folding angles of the fragments is about 60°, and the others are about 150°. The other is a symmetric one: all three folding angles are nearly 120°. The correlation among the velocities of the fragments suggests that the former events come from the fission of the projectile or target nuclei after deep inelastic scattering, and the latter is associated with a simultaneous breakup of three fragments.

The proton spectra observed at two different laboratory angles are shown in Fig. 1 for two types of fragment distributions. As can be seen, the spectra for both cases are similar except for $E_p < 10$ MeV. Yields of the protons decreased exponentially with increasing their energies. Below 8 MeV, the yield decreased along with a decrease in the proton energy for the symmetric distribution, whereas the spectra for the asymmetric distribution remain almost constant.

Monte Carlo simulations were performed to investigate the proton spectrum expected from the statistical decay of the fragments. The code SIMON$^3)$ was employed to simulate the fission of the nuclei from the deep inelastic scattering; the results were compared with the spectrum for the asymmetric distributions. For symmetric distributions, a special code was developed to simulate the ternary fission following the complete fusion. The results are shown by the lines in Fig. 1. The observed spectra were reasonably reproduced by those simulations.

References
GDR γ-rays from the Binary Reaction of 209Bi + 209Bi at 12 MeV/u

Y. Aoki, J. Kasagi, K. Yoshida, T. Nakagawa, and K. Nakagawa

A study of the GDR built on highly excited nuclei is one of the interesting subjects to understand the properties of hot nuclei. There have been many studies concerning on the GDR of hot nuclei in the Sn region. These studies show that the width of the GDR increases with an increase in the nuclear temperature up to 3 MeV, and then saturates at higher temperature. For heavier nuclei, the experimental data are scarce. The GDR of hot 208Pb excited up to the nuclear temperature $T = 2$ MeV by α inelastic scattering1 shows that the width of GDR increases rapidly along with an increase of the temperature. In order to study the GDR of heavy nuclei at higher temperature, we measured GDR γ-rays from the 209Bi + 209Bi inelastic scattering.

The experiment was carried out at the ASCHRA chamber in the RIKEN RING Cyclotron. An accelerated 209Bi beam with an energy of 12 MeV/u and an intensity of 0.1 pnA irradiated a 1 mg/cm2 209Bi self-support target. The residual nuclei of the reaction were detected by 3 large PPAC+Ionization chambers. The Tof and position of the residues were measured by PPACs, and their energy was measured by ionization chambers. The masses of the residues were deduced from these information. The high-energy γ rays were measured by 2 sets of high-energy γ-ray detectors consisting of 7 BaF$_2$ scintillators. The multiplicities of the γ rays and the charged particles were also measured by a crystal ball consisting of 65 BaF$_2$-plastic phoswich detectors.

The γ ray spectra were obtained for the four excitation bins by selecting the observed masses larger than 175. The excitation energies were calculated from the angles and velocities of the detected residues by assuming 2-body kinematics. The excitation energies of the residues were ensured by the shape of the energy spectra of protons detected with the crystal ball. The observed spectra were well reproduced by statistical model simulations with the excitation energies being deduced from 2-body kinematics.

The γ-ray spectra were compared with statistical-model calculations using the code CASCADE. The GDR energies and widths were deduced from a χ^2 fitting of the calculated spectra and experimental spectra. In Fig. 1, the deduced GDR widths are plotted versus temperature along with the data from Ref. 1. As can be seen, the present result agrees with the data from Ref. 1. The GDR widths increase in proportion to T^2 in low excitation energies. At higher temperatures, however, the widths saturate at $\Gamma_G = 11$ MeV. The result agrees well with the theoretical work of Ormand et al.2 in all temperature regions.

References
Search for a $Z = 118$ Superheavy Nucleus in the Reaction of 86Kr with 208Pb

[NUCLEAR REACTION, Gas-filled recoil separator, Alpha-decays]

Recently, three decay chains for a reaction of 86Kr with 208Pb were reported by a Lawrence Berkeley Laboratory group. The observed chains are consistent with the formation of $^{293}118$ and its sequential α decays. However, the decay chains are not connected to any known nuclei. The observed production cross section is $2.2 (+2.6, -0.8)$ pb. This experiment was performed following a recent prediction of Smolanczuk, which indicates that the cross section of a cold-fusion reaction of 86Kr with 208Pb is 670 pb. This is a drastically larger value than scientists have thought.

In a private communication, T. Wada, M. Ohta, Y. Aritomo, and Y. Abe suggest that the cross section of 84Kr with 208Pb should be almost the same as that of 86Kr with 208Pb. If the cross section of 86Kr with 208Pb is confident, we have a chance to observe $^{291}118$ with decay chains connected to the known nuclei. From that view, we conducted an experiment to observe the superheavy nucleus $^{291}118$ produced in the reaction of 84Kr with 208Pb.

The experimental setup is shown in Fig. 1. The target thickness was 300 μg/cm2; it was evaporated onto the downstream side of a 100 μg/cm2 carbon foil. Six segments of it were mounted on a wheel that rotated at 600 rpm. The beam energy was 446 MeV, and the maximum beam current was 1000 particle nanoamperes. The incident beam energy at the center of the target was 442.2 MeV. To avoid the primary beam from impinging on the silicon detector in the event of a broken target, a carbon foil of 30 μg/cm2 thick was mounted as a charge stripper of primary beams. The beam intensity was monitored through elastic scattering by a silicon detector installed at 45 degrees with respect to the incident beam.

The reaction products recoiling out of the target were separated from the primary beam by using a gas-filled recoil separator, GARIS. The separator was filled with He gas at one torr. The optimal magnetic field setting was obtained by scaling the value from the measured focal plane evaporation residue distribution of 84Kr+107Ag. We have estimated the magnetic rigidity ($B\rho$) to be 2.2 Tm. After the separator the recoil particles were implanted in a position-sensitive silicon detector (PSD), which had an active area of 60 \times 60 mm with a depth of 300 μm. Passing-through light particles were anti-coincided with veto SSD mounted after the PSD. Total counting rate of the PSD was several counts/sec under the condition with 1000 particle nanoamperes beam intensity. The time-of-flight measurement was additionally performed using a micro-channel plate assembly (MCP) and the PSD.

We had two experimental machine times. The first experiment (4 days) was performed for a test of targets, an estimation of the magnetic rigidity ($B\rho$), calibrations of detectors and a check of the data-acquisition system. The second experiment (10 days) was performed to accumulate a dose of 2×10^{18} ions, but no candidate of the evaporation residue was found.

References
First Measurement of the $^{8}\text{B}(\text{p,}\gamma)^{9}\text{C}$ Reaction by the Coulomb-Dissociation Method

[\text{Pb}(^{9}\text{C,}^{8}\text{B p})\text{Pb, Coulomb dissociation, Astrophysical S-factor for}^{8}\text{B}(\text{p,}\gamma)^{9}\text{C}]}

The first experimental study of the $^{8}\text{B}(\text{p,}\gamma)^{9}\text{C}$ reaction was performed with the Coulomb-dissociation method. This reaction at low energies is one of the key processes in the hot pp mode nuclear burning.¹ At very high temperatures of around 10^8 K and high densities of $\rho > 10^5$ g/cm³ in a hydrogen-rich circumstance, the proton capture of ^{8}B becomes faster than the β^+ decay of ^{8}B. The reaction is also related to the ^{7}Li production in novae.² No experimental information is available so far for the $^{8}\text{B}(\text{p,}\gamma)^{9}\text{C}$ reaction, because its direct-capture experiment is very difficult due to the short half life of ^{8}B. Though experiments in inverse kinematics, where a radioactive ^{8}B beam bombards a hydrogen target, is in principle possible, the Coulomb-dissociation method has an advantage of high experimental efficiency caused by the larger cross section and the allowance of using a much thicker target.

The RIPS system provided radioactive ^{9}C beams at 65 A MeV using the projectile fragmentation of a 135 A MeV ^{12}C beam with a 1.64 g/cm² ^{9}Be target. The secondary ^{9}C beam bombarded a 100 mg/cm² lead target set at the final focal point of the RIPS. The outgoing proton and ^{8}B were detected in coincidence by a plastic-scintillator hodoscope of 1×1 m² area in a vacuum chamber, the details of which have been reported elsewhere.³ From the measured time-of-flight and hit positions of the two fragments, their relative energy, which corresponds to the center-of-mass energy for the $^{8}\text{B}(\text{p,}\gamma)^{9}\text{C}$ reaction, was obtained. The extracted Coulomb-dissociation yield is plotted in Fig. 1 as a function of the p-^{8}B relative energy. The histogram represents the result of a simulation calculation that accounts for the detector response, which is affected by the uncertainties of the angle- and energy-determination in the hodoscope and the coincidence efficiency for the pair of fragments. A constant astrophysical S-factor of 100 eV·b was assumed for the $^{8}\text{B}(\text{p,}\gamma)^{9}\text{C}$ reaction in the simulation. The data were reasonably well reproduced by the simulation, except for the excess of the yield at around 1 MeV, originating from the first excited state in ^{9}C at $E_x = 2.218$ MeV, corresponding to the relative energy $E_{rel} = 0.922$ MeV.

The present result suggests that the S factor for the $^{8}\text{B}(\text{p,}\gamma)^{9}\text{C}$ reaction for the continuum region is approximately 100 eV·b. This value is closer to a prediction of Descouvemont⁴ of about 70 eV·b than that of Wiescher et al.,¹ who estimate an averaged S factor of 210 eV·b for $E_{cm} < 0.8$ MeV. Further analysis including an evaluation of the nuclear contribution is in progress.

References

*¹ Accelerator Engineering Corporation
*² Department of Physics Ewha Womens University, Korea
*³ National Institute of Radiological Sciences
*⁴ Faculty of Engineering, Yokohama National University
Development of a Li-Ion Isotope Separation and Counting System for a Precise Measurement of the ^{11}Li Charge Radius

T. Onishi, H. Wang, M. Wakasugi, K. Katori, and I. Tanihata

[Neutron halo, Isotope shift]

In collaboration with GSI, we are planning an experiment for a precise measurement of the charge radius of the halo nucleus ^{11}Li and two other unstable lithium isotopes by means of an “isotope shift” observation. To determine the charge radius of ^{11}Li with 0.1 fm accuracy, the $2^2S_{1/2} \rightarrow 3^2S_{1/2}$ atomic transition energies of lithium isotopes within the range of 10^{-9} eV is needed. The experimental requirements for this purpose are:

1. high production efficiency (> 1000 particle/s) of ^{11}Li nuclei;
2. high stability and Doppler-free measurement of the transition energies by exciting lasers within a range of 0.1 MHz in frequency of a laser; and
3. high-signal-to-noise counting of ^{11}Li ions ionized by the laser.

In this report, we present the development of Li-ion isotope separation and detection systems, which represents our work concerning the third part of these requirements.

To perform a charge radius measurement, the following three parts are necessary in an experimental setup. The functions of the first and second parts are to produce a neutral ^{11}Li atom thermal beam and to ionize the ^{11}Li atom with lasers. The third part, which is the main part of this report, is used to detect ionized ^{11}Li, which is extracted from the laser ion source, separating them from background nuclei and counting by β-ray detectors.

For the ion separation and counting systems, the following conditions are indispensable:

1. The system be sufficiently compact to easily settle at the final focal point of RIPS;
2. High transport efficiency from the ion source to a beam catcher; and
3. High efficiency and low background β-ray counting at the final catcher.

To meet these requirements, we designed and con-

Fig. 1. Schematic view of Li ion separation and the counting systems. The beam-transport line consists of

- a Li (stable) ion source for tests,
- one set of electrostatic deflectors,
- an electrostatic Q doublet,
- a beam viewer and a Faraday cup as beam monitors at the first focal point,
- an electrostatic Q singlet,
- a 38-degree bending dipole magnet,
- a collimator with a Faraday cup,
- an electron multiplier as a beam catcher at the second (final) focal point, and
- a plastic scintillation counter telescope for β-ray counting.

Collaborators in GSI for the final experiment are Reinhard Kirchner, Andreas Dax, Frank Schmitt, Thomas Kuehl, and H. -Juergen Kluge
constructed an ion separator and a set of β-ray counters.

A schematic drawing of the separation and counting systems is shown in Fig. 1. This beam line has two foci. One dipole magnet is used to separate ^{11}Li (or other lithium isotopes) from other species of ions. The Li-ion counting system around the final focus (Fig. 1) is shown in Fig. 2. A ceratron (channel type electron multiplier) is placed in a plastic scintillation counter telescope as a beam catcher. The plastic scintillation counters are suitable for one-by-one counting of the β rays emitted from ^8Li, ^9Li or ^{11}Li nuclei, which stop in the catcher, while the ceratron is used as well for the detection of Li isotope ions through the current of secondary electrons which they produce. The plastic scintillation counter telescope consists of three layers, i.e., inner, middle and outer layer, which cover about 2π of the solid angle around the catcher. The inner counter is made with 8 scintillator plates combined as an octagon prism. The middle counter consists of two parts, which covers the upper and lower half (π solid angle) of the catcher. Both parts are made with 4 plastic scintillator plates, and are constructed with the same configuration as the inner counter. The outer counter has the same structure as the middle counter. The signals from two middle (and the outer) counters are used to produce anticoincidence logic signals to reduce the background from cosmic rays.

At present, the construction of this system has been completed, and its beam-transport efficiency is to be measured by using stable Li ions. The stable Li beam had been introduced to the first focal point until November, 1999; the lithium beam for this test will be transported to the final catcher soon.
Coulomb Dissociation of 12N and 13O

The Coulomb breakup technique was employed to determine the radiative width of excited levels in 12N and 13O, which dominate the low-energy cross sections of the 11C(p,γ)12N and 12N(p,γ)13O reactions. These reactions are important in the hot pp mode nuclear burning in hydrogen-rich massive objects. Under a high-temperature and high-density condition, these capture reactions become faster than the β^+ decay of 11C and 12N. However, these 11C(p,γ)12N and 12N(p,γ)13O reactions are difficult to study experimentally because the life times of 11C and 12N are too short to prepare them as targets.

For the present 12N-dissociation experiment, the relative-energy resolution is better than that in the experiment at GANIL, and a lower background was realized compared with our previous measurement at RIKEN. The latter improvement was achieved by installing the entire detector in a vacuum chamber. In the energy region of astrophysical interest, two resonant states are known for 12N, 2^+ at $E_{\text{ex}} = 0.960$ MeV and 2^- at $E_{\text{ex}} = 1.19$ MeV, corresponding to the $p_{_{^{11}}C}$ center-of-mass energy, $E_{\text{cm}} = 0.359$ MeV and 0.589 MeV, respectively. For 13O, only one resonant state is known at the $p_{_{^{12}}N}$ center-of-mass energy $E_{\text{cm}} = 1.23$ MeV, corresponding to the excited state at $E_{\text{ex}} = 2.75$ MeV, whose spin has not been confirmed.

The experiments have been performed at RIKEN using the secondary beam line, RIPS. A 77.0 MeV/nucleon 12N beam and a 83.5 MeV/nucleon 13O radioactive beam were produced through fragmentation reactions of a primary 135 MeV/nucleon 16O beam. A 30 mg/cm2 208Pb target was bombarded by a secondary 12N beam, and a 55 mg/cm2 208Pb target was bombarded by a secondary 13O beam. The breakup fragments, 11C and a proton or 12N and a proton, were detected in coincidence after traveling through a 5.1 m flight-path by a plastic scintillator hodoscope. From the fragments' velocities, measured by their time-of-flight and their hit positions in the hodoscope, we could reconstruct the $p_{_{^{11}}C}$ and the $p_{_{^{12}}N}$ relative energies.

The $p_{_{^{11}}C}$ relative-energy spectrum obtained in the 12N-dissociation experiment is shown in Fig. 1(a). The open circles represent the data obtained in this work. The solid curve shows the result of a Monte Carlo simulation assuming three contributions, two resonances at $E_{\text{ex}} = 0.960$ MeV and 1.19 MeV, and a direct proton capture, whose magnitudes were treated as fitting parameters. As can be seen in Fig. 1, the bump observed at around 0.6 MeV is found to be mainly due to the β^+ transition from the 2^+ ground state to the 2^- state at $E_{\text{ex}} = 1.19$ MeV. The γ-width of the 2^- state is extracted from the fit to be $\Gamma_{\gamma} \approx 20$ meV, which is in between the two different predictions by Wiescher et al. (2 meV) and Descouvemont and Baraffe (140 meV), and disagrees with the results of the GANIL experiment (6.5$^{+3.9}_{-1.5}$ meV).

For 13O dissociation, the experimental relative-energy spectrum shown in Fig. 1(b) exhibits a bump. It might contain some extra strength in addition to the E_1 strength to the resonance at $E_{\text{ex}} = 2.75$ MeV. The sum of these strengths corresponds to $\Gamma_{\gamma} \approx 3$ eV, which is much higher than expected in Ref. 4 (Wiescher). A more complete analysis of the data, including a correction due to the 12N \rightarrow p + 11C* and 13O \rightarrow p + 12N* channels, is under way.
References
The Coulomb dissociation method has been successfully applied to various astrophysical (p, γ) reactions. However, the validity of the method has not been tested to high precision. For that purpose, we studied the Coulomb dissociation of 13N and 14O. The 12C$(p, \gamma)^{13}$N reaction, which corresponds to 13N dissociation, has been well studied, and its cross section is known to good accuracy. Experiments concerning 13N and 14O dissociation have already been performed at RIKEN. Dissociation of 14O has also been studied at GANIL. The results of these experiments agree with a direct measurement performed at Louvain-La-Neuve within the errors. However, these agreements are confirmed at accuracies of around 30%. The present experiment is aimed at improving the experimental accuracy by reducing the systematic uncertainties with a lower background and a higher relative energy resolution.

Beams of 13N and 14O were produced by using the projectile fragmentation of a 135 MeV/nucleon 16O beam on a 1480 mg/cm2 9Be target. These beams were separated by the RIPS from other fragments, and were focused on a Pb or a C target with the thickness of 55 or 37 mg/cm2, respectively. The thickness of the Pb target was about seven-times as thin as that used in a previous experiment. This reduced multiple scattering of the products, and hence improved the angular resolution. The averaged energies were 76 MeV/nucleon and 85 MeV/nucleon, respectively, for 13N and 14O at the middle of the target. Outgoing charged particles were detected by a ΔE-E hodoscopes. The velocities of the particles were determined by their time-of-flight (TOF) for a path length of 5 m. The momentum vectors of the particles were determined by combining their velocities with the hit positions on the hodoscope, and were used to calculate the relative energies of the breakup fragments measured in coincidence. Together with an improved energy resolution, resulting from the TOF measurement, a better relative-energy resolution was possible compared with that in a previous experiment.

Figure 1 shows the relative energy spectra for the correlated p^{12}C and p^{13}N pairs generating, respectively, from the Coulomb dissociation of 13N and 14O. The prominent peaks around at 500 keV correspond to the lowest E1 resonances in 13N and 14O. It is known that the (p, γ) processes through these resonances dominate in stellar burning. Therefore, any comparison to the direct-capture data should be made concerning their yield. The widths (FWHM) of the peaks in the observed spectra were 310 keV (14O) and 250 keV (13N). These resolutions are better by a factor of two than those in the previous experiment at RIKEN. This is because of the better angular and energy resolutions of the present measurement.

An accurate determination of the Γ_γ values of the E1 transitions, which determine the (p, γ) reaction rates, is now in progress.

References
Isobaric Analog State of 14Be

NUCLEAR REACTIONS: 14Be(1H,1B*), 74A MeV; Charge exchange reaction; Isobaric analog state; Neutron halo

The Isobaric Analog State (IAS) of the neutron halo nucleus, 14Be, has been investigated using the charge-exchange reaction 14Be(p,n)14B* in inverse kinematics at $E^{(14}$Be$)=74$ A MeV. The present study was aimed at determining the energy of IAS(14B*), and understanding the neutron halo structure of 14Be. The charge-exchange reaction is useful to study IAS, and was successfully applied in a recent study on the neutron halo nucleus 11Li. 1,2) The IAS of 14Be is characterised by its isospin of $T=3$, while other populated states are mostly of $T=2$, and it decays to the 12Be+p+n channel ($T=3$ and 2) because of isospin conservation. Thus, the IAS can be revealed by detecting a 12Be, proton and neutron in coincidence.

A secondary 14Be beam was produced by using the projectile fragmentation of a 100 A MeV 18O beam at a 1110 mg/cm2 18O target and focused on *(CH$_2$)$_n$ and C targets. The decay particles from 14B* were detected by ΔE and E hodoscopes, which were located 492 cm downstream of the target; the time-of-flight (TOF) from the target to the hodoscopes and the hit position were measured. The momentum vectors of the decaying particles were determined by combining their velocities and hit positions on the hodoscope.

The extracted momentum vectors were used to construct the decay energy spectrum of the 12Be+p+n system, which is the difference between the invariant mass and the threshold energy, $\Sigma_i M_i$ (total rest mass of all decay particles):

$$E_d = M^{(14}B*) - \Sigma_i M_i.$$ (1)

Figure 1 shows the decay energy spectrum of the 12Be+p+n system for the (p,n) reaction, which was obtained by subtracting the spectrum of the C target from that of the (CH$_2$)$_n$ target. A sharp peak is observed at $E_d \approx 0.3$ MeV, which is not observed in the C target spectrum. Most of the events consisting of the peak were derived from the Fermi transition which was suppressed in a reaction using a C target. The peak was fitted with a Gaussian function; the effects of the E_d resolution and the detector acceptance were taken into account in the fitting procedure. The energy of the IAS was deduced to be 0.29\pm0.03 MeV, where the error was derived from the uncertainty in the absolute magnitude of the TOF. Using a threshold energy of 16.77 MeV for 12Be+p+n channel, the excitation energy of the IAS was determined to be 17.06\pm0.03 MeV with respect to the ground state of 14B.

The angular distribution of 14B* (IAS) is shown in Fig. 2, where the events in the IAS peak are plotted as a function of the angle of the center-of-mass for the 12Be+p+n system. The distribution is forward peaking and can be approximated by a Gaussian function centered at 0 degree. Such an angular distribution is characteristic of the $\Delta L = 0$ angular momentum transfer, which is required for Fermi transitions. Thus, the observed forward peaking angular distribution supports the assignment of the peak in Fig. 1 to the IAS of 14Be populated by the Fermi transition.

References

Fig. 1. Decay-energy spectrum of the 12Be+p+n system. The solid line shows the detector acceptance.

Fig. 2. Angular distribution of 14B*. The solid line represents a Gaussian distribution.
Coulomb Excitation of 15O

[NUCLEAR REACTIONS: 208Pb(15O,15O*), 100 MeV/u; Coulomb excitation reaction, Nuclear astrophysics]

The CNO cycle has a certain effect on the rate of nuclear burning in the sun. At solar temperatures, the reaction 14N(p,γ)15O determines the rate of the main CNO cycle, because its reaction rate is almost 100-times slower than the other CNO reactions. The behavior of the 14N(p,γ)15O cross section at energies close to the threshold is not fully understood. Especially, a significant contribution to the ground-state capture from the subthreshold resonance at 504 keV below the p + 14N threshold, which corresponds to the $3/2^+$ state at 6.79 MeV in 15O, has been pointed out, but has not been studied experimentally. The present study was aimed at measuring Γ_γ of 15O in order to clarify the role of this subthreshold state by the Coulomb excitation method.

A beam of 15O was produced by using the projectile fragmentation of a 135 MeV/u 16O beam incident on a 9Be target, and selected by the RIKEN projectile-fragment separator (RIPS). The 15O beam was focused onto a 1480 mg/cm2 208Pb target at 300-400 kcps. The average beam energy was 85 MeV/u at the middle of the target. A 1.0 mm thick plastic scintillator was located at the first achromatic focal plane of RIPS (F2). Particle-identification of the 15O beam was carried out by a time-of-flight measured between F2 and the cyclotron RF signals. A plastic scintillator hodoscope consisting of ΔE and E walls was placed 499 cm downstream from the target to detect the scattered 15O, which was identified by measuring the energies deposited in the ΔE and E detectors together with the time-of-flight. An array of 64 NaI(Tl) scintillators set around the target was used to detect γ-rays with an efficiency of 20% for 6.79 MeV photons from 15O nuclei in flight with $\beta = v/c \approx 0.4$. The Doppler effects were corrected by the γ-ray emission angle determined for each crystal.

The histograms in Fig. 1 show the Doppler-corrected γ-ray spectra measured in coincidence with inelastically scattered 15O at $\theta = 63^\circ$ and 86°, respectively. No distinct peak can be observed at 6.79 MeV, suffered by the background photons originating from the target excitation. The distributions exhibiting peaks in Fig. 1 represent the spectra expected for two different Γ_γ values, 0.87 eV3 and 6.3 eV.1 The detector response was calculated by a Monte-Carlo simulation. Apparently, the larger value of 6.3 eV can be excluded by a comparison with the data, whereas the lower estimate, $\Gamma_\gamma = 0.87$ eV, is compatible with the data. Thus, the present results suggest that $\Gamma_\gamma \leq 1$ eV, pointing to only a minor effect of the 6.79 MeV state in 15O on the low-energy 14N(p,γ)15O cross section.

References
Coulomb Excitation of ^{28}Ne and $^{32,34}\text{Mg}$

The first experiment involving the Coulomb excitation of ^{32}Mg has demonstrated the usefulness of the intermediate-energy Coulomb excitation technique for studies of low-lying states in nuclei far from the stability line.\(^1\) Experimental studies with this technique have revealed that some neutron-rich nuclei, such as ^{32}Mg and ^{44}S, have large quadrupole collectivity in spite of the neutron-shell closures at intermediate-energy Coulomb excitation. Here, we report on the experimental arrangement.

The nuclei studied in the present work were produced by fragmentation of a 95 MeV/u ^{40}Ar beam impinging on a 463 mg/cm2 ^9Be target. The reaction fragments were collected and analysed by the RIKEN projectile-fragment separator (RIPS)\(^3\) operated at maximum values of the momentum acceptance and solid angle. A thick aluminum wedge was used to allow a unique isotopic identification of the fragments. The obtained intensities for secondary beams were typically 100 s$^{-1}$ (^{28}Ne), 1000 s$^{-1}$ (^{32}Mg), and 4 s$^{-1}$ (^{34}Mg). Particle identification of the incident beam was carried out event-by-event using the time-of-flight (TOF)-ΔE method. The TOF was determined by the hit positions in the two PPAC's at F3 and the first silicon detector.

De-excitation γ rays were measured in coincidence with the scattered particles. A granular array of NaI(Tl) scintillators was placed around the target and used for γ-ray detection. Each scintillator crystal had a rectangular shape with a size of $6 \times 6 \times 12$ cm3 coupled with a 5.1 cm φ photomultiplier tube. The energy and efficiency calibrations of each NaI(Tl) detector were made by using standard ^{22}Na, ^{60}Co, ^{88}Y, and ^{137}Cs sources.

Our data include the first measurement of the $B(E2)$ value for the 2^+_1 state in ^{34}Mg. The number of accumulated events for the ^{28}Ne and ^{32}Mg measurements in the present experiment was 3–10 times more than those in previous experiments;\(^1,4\) more detailed information on the collective behaviour in these nuclei is to be obtained. An analysis of the data is now in progress.

References
Population of Excited States in Unstable Nuclei Produced by the Fragmentation of 36Si

[NUCLEAR REACTION: 9Be(36Si,X), $E(^{36}$Si) = 50 A MeV; Measured(fragment)gamma-

We measured γ rays in coincidence with fragments produced by the 36Si+9Be reaction at 50 A MeV. From the measured yield of γ-ray lines we extracted the population ratios of excited states in several unstable nuclei. They are related to the reaction mechanism of the projectile fragmentation, and provide useful information for exploring the possibility of spectroscopic studies of unstable nuclei.

The experiment was performed in the RIPS beam line. The setup is described in Ref. 1. Figure 1 shows typical γ-ray energy spectra with a Doppler-shift correction obtained for 18O, 22Ne, and 28Mg. Two lines are observed in each spectrum. They correspond to the known $2^+ \rightarrow 0^+$ and $4^+ \rightarrow 2^+$ transitions.

The population ratio for an excited state can be expressed as

$$P = \frac{N_\gamma}{\varepsilon(E_\gamma) N_f}$$

where N_γ represents the peak yield of the γ-ray; $\varepsilon(E_\gamma)$ the photo peak efficiency as a function of the γ-ray energy, and N_f, the number of identified fragments. We obtained $P(2^+)$ when we counted the peak yield corresponding to the $2^+ \rightarrow 0^+$ transition, and $P(4^+)$ for the $4^+ \rightarrow 2^+$ transition.

In Fig. 2, the preliminary results of $P(2^+)$ and $P(4^+)$ obtained for even-even isotopes with $Z = 8-12$ are plotted as a function of the number of nucleons removed from the projectile (ΔA). The solid curve represents predictions for $P(2^+)$ within the framework of the abrasion-ablation model, and the dashed curve for $P(4^+)$. From the experimental data, we found that the population ratios increase when ΔA increases; this tendency is in accord with the theoretical one. As can be seen in Fig. 2, the population ratio reaches 10% at $\Delta A \approx 5$ for 2^+ and $\Delta A \approx 10$ for 4^+.

References
Gamma-Ray Spectroscopy of the Very Neutron-Rich Nucleus 34Mg

We have observed the γ-ray transitions in the very neutron-rich nucleus 34Mg for the first time. The excited 34Mg nuclei were created by the projectile fragmentation reaction induced by a 50 MeV/nucleon radioactive beam of 36Si.

The experiment was carried out at RIPS. A primary 40Ar beam of 95 MeV/nucleon with a typical intensity of 60 pnA bombarded a 9Be production target with 462.5 mg/cm2 thickness to obtain a radioactive beam of 36Si. The 36Si nuclei in the beam were separated event by event from the main contaminant 37P using time-of-flight (TOF) information between two plastic scintillators. The purity of the 36Si beam was approximately 80% and the intensity was around 2×10^4 s$^{-1}$.

A secondary target of 385 mg/cm2 9Be was placed at the focal plane of RIPS. The beam lost its energy in the target from 50 MeV/nucleon to 30 MeV/nucleon. The reaction products from the 36Si + 9Be fragmentation were detected by four sets of counter telescopes in a 2×2 matrix placed 56 cm away from the target. Each telescope consisted of three layers of ion-implanted silicon detectors of 50 \times 50 mm2 effective area and 350 μm thickness, followed by a 1 mm thick Si(Li) detector with the same size to identify unwanted light particles that punched through the three ion-implanted detectors. Particle identification was achieved by the $\Delta E-E$ information from the the first three detectors, combined with the TOF information between the secondary target and a parallel-plate avalanche counter (PPAC) located 48 cm downstream of the target. A good resolving power of the detectors enabled us to identify A and Z for reaction products with $Z = 8-12$.

Sixty-six NaI(Tl) scintillators surrounded the target to detect γ rays emitted from the excited fragments. Each scintillator crystal was of rectangular shape with a size of $6 \times 6 \times 12$ cm3 coupled with a 5.1 cm ϕ photomultiplier tube. Their energy resolution was typically 7.5% for a 662 keV γ ray. The high granularity of the setup allowed us to measure the angle of the γ ray emission with approximately 20$^\circ$ accuracy, enabling us to correct for the large Doppler shift of $\gamma / c \approx 0.3$ according to the detector angle with respect to the beam direction. The total full-energy peak efficiency was calculated to be 18% for a 1 MeV γ ray. A lead shield with 5 cm thickness surrounded the NaI(Tl) for background reduction.

Figure 1 shows the γ ray energy spectrum associated with 34Mg identified in the detectors. It was obtained as a sum of each Doppler-corrected spectrum of all the NaI(Tl) scintillators. As one can see in Fig. 1, two full-energy peaks were observed. The energies were preliminarily determined to be 670 keV and 1430 keV. The first peak can be tentatively assigned to be corresponding to the $2^+ \rightarrow 0^+_n$, transition, since it is the strongest and its energy is the lowest in the spectrum. The energy resolution deduced by fitting the first peak is 80 keV (FWHM), which is mainly due to Doppler broadening with the finite angular resolution of each NaI(Tl) crystal.

The energy 670 keV is very low compared with those of the first 2^+ states in the neighbouring nuclei. Using an empirical formula for the relation between the excitation energy and the deformation parameter, $^{1)}$

$$E(2^+) = 1224(\langle \beta^2 \rangle A^{7/3})^{-1},$$

the energy of 670 keV leads to a large deformation of 34Mg with $\beta \approx 0.7$. Within the framework of the shell model, the excitation energies of the
first 2^+ and the first 4^+ state were recently calculated to be 620 keV and 2460 keV, respectively,\(^2\) which agree well with the energies extracted in the present work (670 keV and 2100 keV), if one assumes that the second γ-ray peak corresponds to deexcitation from the first 4^+ state to the first 2^+ state. Furthermore, the energy ratio $E(4^+)/E(2^+)$ is deduced to be 3.1, which is close to the 3.3 expected for the rotational band of deformed nuclei.

References
Half-Life Determination of 44Ti Using a Radioactive Beam Technique

Zs. Fülöp, Y. Wakasaya, C. Bordeanu, M. Golovkov, R. Goswami, T. Kato, K. Kimura, H. Kudo,*1
R. N. Boyd, A. Krasznahorkay,*2 and E. Somorjai*2

[Half-life, Nucleosynthesis]

In addition to studies of exotic nuclei, radioactive ion beam (RIB) technique also proved to be a useful tool to determine the half-life of 44Ti when a relative method is used.1) Here, we propose a novel method to the fast and reliable absolute half-life determination and apply it to the same isotope. In order to perform a meaningful analysis of the observed results of the $E_y = 1157$ keV line —characteristic to the decay of 44Ti—in the Cassiopeia A supernova and the recently discovered RX J0852.0-4622/GRO J0852-4642 supernova remnant,3) an accurate determination of the half-life of 44Ti is necessary.

Because of the relatively long half-life of 44Ti (~ 60 y), several years are needed to follow its decay until the desired accuracy in half-life can be reached. According to recent measurements,4,5) 2–5 years of data-taking resulted in 1–3% relative errors when the 44Ti half-life was determined relative to that of sources as 60Co, 22Na, and 207Bi. However, for an absolute measurement,5) where the absolute activity of a sample has been determined several times, a period of 20 years was needed to reach a similar error level. The availability of 44Ti as RIB offers an alternative method to determine the half-lives via implanting a known amount of 44Ti into a stopper, and to measure the activity relevant to the decay of 44Ti. Görres et al.1) measured the half-life of 44Ti relative to that of 22Na, emphasizing that it is questionable to apply the RIB technique to absolute half-life determination because of the low expected count-rates and the systematic errors.

Our aim was to establish a method that allows an absolute half-life determination with minimum systematic error and maximum versatility. It is also desirable that the measurement should give a reasonable error without years of data-taking. In our approach, the secondary beam is optimized not for the highest available intensity, but to reach an isotopic ratio where the time-of-flight (TOF) technique is enough for the separation. Since plastic scintillators can be used for TOF, the isotopic ratio can also be monitored under high-intensity irradiation. Details about the preliminary tests, secondary beam production, the irradiation and the off-line activity measurement setup have already been published elsewhere.8) The 44Ti was produced by fragmentation of 90 A MeV 46Ti on a beryllium target.

Through appropriate settings of the fragment separator we achieved a secondary beam intensity of 2×10^5 s without implanting isotopes contributing to the gamma activity of the stopper. Also, we kept the content of 42Sc (same A/Z as 44Ti, i.e. TOF determination is not enough to separate this isotope from 44Ti) to a minimum ($\leq 0.5\%$).

The separated fragments were implanted into a mm thick plastic scintillator stopper, allowing a loss-free determination of the number of implanted ions. Behind the stopper, an additional plastic scintillator served to check the presence of ions penetrating the stopper. We also investigated the effect of the breakup of the already separated 44Ti ions.

The γ-activity of the implanted sample has been investigated by a well-shielded high-efficiency HPGE gamma detector. There is no contamination observed in the gamma spectra of the irradiated sample. The efficiency determination has been carried out by using 65Zn and 60Co sources, and the effect of extended sources has also been investigated.

In summary, we have implanted 2.7×10^9 44Ti ions into the stopper, and during the off-line measurement the count-rate in the detector relevant to the 1157 keV (44Ti-related) peak was 50 counts/hour. On the other hand, the measured photopeak efficiency is 1.3×10^{-2} in the used source-detector geometry. Our preliminary half-life value for the 44Ti is 62.1 ± 1.6 y. The relative error of this method is comparable to the previous measurements, although only one day of irradiation and two weeks of activity measurement were necessary. Preliminary studies showed that the presented method can be applied to isotopes 39Ar and 32Si.

References

*1 Niigata University
*2 ATOMKI, Hungary
Collective States of Neutron-Deficient Doubly Even Barium Isotopes

K. Uchiyama, H. Sakamoto,* and K. Furuno

The experimental \(B(E2; 0^+ \rightarrow 2^+) \) values in the neutron-deficient doubly even Xe and Ba isotopes show a significant increase in the midshell region without any concomitant change in the energies of the low-lying states.\(^1\)\(^-\)\(^2\) Recently, for Ba isotopes, improved experimental results have been reported, and an old compilation of experimental data\(^3\) includes a questionable result, which is described below. To provide the systematic behavior correctly, we recompiled the experimental \(B(E2; 0^+ \rightarrow 2^+) \) values of Ba isotopes, and then compared these experimental data with new results from a microscopic calculation using the normal-ordering linked-cluster boson expansion theory.\(^4\)

All available experimental data and our adopted values are given in Table 1. We should mention that the value 0.504(71) \(e^2b^2 \) reported by Towsley et al. in Ref. 5 has been ignored, because the description in Table 1. Experimental \(B(E2; 0^+ \rightarrow 2^+) \) values in Ba isotopes.

<table>
<thead>
<tr>
<th>Nuclide (Ba)</th>
<th>B(E2) (e2b2)</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>126Ba</td>
<td>2.70(23)</td>
<td>Delayed Coincidence</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>124Ba</td>
<td>1.34(12)</td>
<td>Delayed Coincidence</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>125Ba</td>
<td>1.31(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>127Ba</td>
<td>2.04(15)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>128Ba</td>
<td>1.29(21)</td>
<td>Recoil Distance</td>
<td>PNC146(1991)106</td>
</tr>
<tr>
<td>130Ba</td>
<td>1.13(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>132Ba</td>
<td>1.08(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>134Ba</td>
<td>1.06(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>136Ba</td>
<td>1.04(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>138Ba</td>
<td>1.02(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>140Ba</td>
<td>1.00(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>142Ba</td>
<td>0.98(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>144Ba</td>
<td>0.96(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>146Ba</td>
<td>0.94(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>148Ba</td>
<td>0.92(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>150Ba</td>
<td>0.90(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>152Ba</td>
<td>0.88(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>154Ba</td>
<td>0.86(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>156Ba</td>
<td>0.84(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
<tr>
<td>158Ba</td>
<td>0.82(10)</td>
<td>Recoil Distance</td>
<td>PRC146(1991)106</td>
</tr>
</tbody>
</table>

Ref. 5 contradicts itself; it is thus impossible to judge whether this value is the result for either 134Ba or for 136Ba. Indeed, this value had been referred to as the result for 134Ba in Ref. 3; on the other hand, it had been used as the result for 136Ba in Ref. 6. Although our newly adopted value of 130Ba is about 9% smaller than our previous one,\(^2\)\(^7\) the new value is more desirable from a systematic point of view. The difference between the newly adopted values and the previous ones is less than 2%, except for 130Ba, as mentioned above.

The experimental data and calculations based on the boson expansion theory are shown in Fig. 1. The interaction strengths were changed for each nuclide, but a common effective charge of 0.550 was adopted for all of the Ba isotopes considered. The calculations are in fairly good agreement with the experimental data without any serious problems which had appeared in other calculations.\(^1\)\(^7\) In addition, it is worth noticing that the experimental $B(E2)$ values of the $4_1^+ \rightarrow 2_1^+$ and $6_1^+ \rightarrow 4_1^+$ transitions for $^{124-128}$Ba could be reproduced with some parameters. The detailed results of these new calculations will be described elsewhere.

References

* Faculty of Engineering, Gifu University
Production Cross Sections of Light Neutron-Rich Nuclei from 40Ar Fragmentation

NUCLEAR REACTIONS; 40Ar + Be, $E \sim 1$ A GeV; Secondary beams; Production cross-sections

Since the pioneering experiments at Berkeley,¹ projectile fragmentation has been widely used to produce radioactive isotopes far from stability. Measurements of the production cross sections (σ_F) are important to assess the feasibility of secondary-beam experiments with them. This work represents the first measurements of σ_F from 40Ar fragmentation at relativistic energies which extend far into the region of neutron-rich isotopes.

We measured σ_F from 40Ar fragmentation by using the FRagment Separator (FRS) facility at GSI. A primary beam of 40Ar with an energy of ~ 1 A GeV impinged on a Be target with typically 4.0 g/cm² thickness. A secondary electron transmission monitor was used to determine the primary-beam intensity. At the first focus at FRS, we placed a scintillation counter to start the TOF. This detector was also used as an active monettum slit ($\Delta p/p = \pm 0.6\%$). At the intermediate focus, we placed a scintillation counter stack comprising five scintillation counters. One of them served as a stop signal of the TOF. The corrected pulse-height data of the counters gave ΔE for the fragments. The magnetic field in the second dipole gave Bp for the fragments. Thus, we applied the $Bp-\Delta E$-TOF method in order to identify the fragments.

In order to determine σ_F, the counting rates of different isotopes obtained from the particle identification spectra were corrected for any transmission losses in the FRS, for losses due to secondary interactions in the target as well as in the detectors and for the dead time of the data acquisition. The transmission losses and secondary interaction losses were estimated from a Monte-Carlo type calculation, a code called MOCADI,² where we assumed a Gaussian curve for the momentum distributions of the fragments. The obtained σ_F are shown in Fig. 1.

In Fig. 1, the experimental results are compared to those previously measured with a C target at relativistic energies at LBL.³,⁴ Both results are very consistent. In Fig. 1, our experimental results are also compared with those from the the empirical parametrization EPAX.⁵ For nuclei near to the line of beta-stability, these quantities are in good agreement. However, for more neutron-rich nuclei, the measured σ_F are smaller than those from the EPAX prediction. Very recently, K. Summerer and B. Blank have suggested a modified EPAX formula.⁶ The modified version predicts the measured σ_F with better accuracy than the original version.

References

*¹ Kurchatov Institute, Moscow, Russia
*² GSI, Darmstadt, Germany
*³ Comenius University, Bratislava, Slovak Republic
2. Atomic and Solid-State Physics
Theoretical cross sections for elastic scattering of positrons from Ne, Ar, CH$_4$, and SiH$_4$ targets are reported. The latter two molecules belong to the Td point group, and the effects of molecular anisotropy in these collision systems are minimal. The present work was inspired partly by the experimental elastic differential cross sections (DCSs) recently reported for CH$_4$ and Ar over a large range of scattering angles of 30°–135°. The present work is based on the fixed-nuclei approximation. The interaction potential between a positron and a target is represented in the form of a local potential that consists of electrostatic and polarization components. For the latter component, a parameter-free model potential is adopted for the small values of the positron-target distance (say, less than several a.u.). This model potential is associated with the asymptotic form of the dipole polarization potential at the position where the two kinds of potentials first cross. The wave function of the scattered positron satisfies a set of coupled differential equations derived from the Schrödinger equation for the total collision system. By solving these equations, the scattering matrix is obtained from the asymptotic form of the wave function, and is transformed into the cross sections. Throughout the present calculation, no positronium (Ps) formation channel is taken into account. Therefore, the present calculations are only carried out below the Ps formation threshold energy (E_{Ps}).

The theoretical elastic integrated cross section (ICS) from the present calculation for Ne is in very good agreement with the measured total cross section (TCS) (see Fig. 1). As the quantity E_{Ps} of each system becomes smaller, however, a disagreement between the theoretical elastic ICS and the experimental TCS becomes larger. The result suggests that the effect of the Ps formation channels on the cross sections is strong, particularly when the E_{Ps} is small. As for Ne, a minimal ICS called the Ramsauer-Townsend minimum, is seen at around 0.8 eV and is caused by a phase shift for a dominant partial wave component being close to an integral multiple of π. The minimum disappears as the absolute value of the dipole polarizability of the target becomes larger, i.e., in the order of Ne, Ar, CH$_4$, and SiH$_4$, because the effect of the dominant partial wave component becomes more ambiguous due to a superposition of higher partial wave components. The present elastic DCS for each target has a notable minimum at around 40°–50° (see Fig. 2). For Ar and CH$_4$, the shapes of the theoretical DCSs are generally in good agreement with the measured ones, which are normalized to the elastic DCSs from the present calculations at a scattering angle of 90°.

We have also found a similarity between the theoretical DCSs for CH$_4$ and Ar not only in terms of shape but also magnitude. This may be attributed to a quantitative similarity between the interaction potentials for the two systems at intermediate and asymptotic values of the positron-target distance. A theoretical study on the positron-hydrogen molecule collision taking Ps formation channels into account is under way.

References
Total Cross Sections for Electron and Positron Collisions with CF$_3$I Molecules

O. Sueoka,* A. Hamada,* M. Kimura, and I. Shimamura

Because of the basic importance of the fundamental understanding of electronic and molecular structures, and scattering processes, for applications in various fields, particularly to plasma processing, a study on the total, elastic and inelastic processes of electron scattering from CF$_3$I has attracted much interest in recent years. Due to its short lifetime in the stratosphere, this molecule has potential for application in plasma processing as a next-generation process gas. Therefore, it is essential to establish all cross-section data for the electron scattering of this molecule by compiling the existing experimental and theoretical results. Furthermore, a comparative study of electron and positron scattering is expected to provide deeper insight to the fundamental aspects of atomic and molecular dynamics in hydrocarbons and the interaction mechanisms. To the best of our knowledge, no complete study of total cross sections (TCSs) based on both electron and positron scattering has yet been carried out. Hence, we have initiated the present joint experimental and theoretical investigations on these processes for CF$_3$I to provide comprehensive TCSs for assessing the magnitudes of other weak inelastic channels, as well as dynamical information to derive a guiding principle for applications to other plasma etching gases. The experimental apparatus and the measurement method of TCSs have been reported earlier. In brief, a 22Na radioisotope of 90 µCi and baked tungsten ribbons were used as the positron source and the positron moderator for low-energy positrons, respectively. For the electron source, slow electron beams were produced after secondary electrons were moderated by multiple scattering in the tungsten ribbons. A retarding potential unit was combined with the TOF system for elimination of elastically and inelastically scattered projectiles. The theoretical approach employed is the continuum multiple-scattering (CMS) method, which is a simple but efficient model for treating electron scattering from polyatomic molecules. Figure 1 presents the TCSs for both electron and positron impacts with CF$_3$I, from 0.7 eV to 600 eV. Novel results can be summarized as follows: (1) The cross section following electron impact has two small, conspicuous peaks at 8 and 40 eV due to shape resonances, while that of positron impact shows clear structures above 6 eV due to positronium formation, followed by direct ionization. (2) Neither cross sections appear to merge, even beyond 500 eV.

References

Faculty of Engineering, Yamaguchi University
Simulation of a Diatomic Molecule Colliding with Surfaces

M. Kimura and I. Shimamura

Collisions of an O₂ molecule with a Ni surface are studied using a simulation based on the classical motion of equations. Taking the Morse potentials among all the colliding particles, i.e., atom-atom in the molecule, molecule-surface, and surface atom-surface atom, the simulation is carried out by changing the parameters of the surface temperature, kinetic energy, and rovibrational state of the molecule. It is clearly seen for various cases that: (1) the incoming molecule collides with the surface and bounces back, (2) the molecule collides and is adsorbed on the surface by giving off its kinetic energy and creating surface phonons, (3) the molecule fragments on the surface upon collision, (4) the molecule penetrates inside the solid, and (5) upon collision, the quantum state (rovibrational state) of the incoming molecule changes. Study of the vibrational excitation dynamics on surfaces has been an area of active research in the field of surface sciences as well as in applied fields. Vibrational excitation is governed sensitively by the characteristics of the potential energy surface and by the energy transfer between the electronic and vibrational degrees of freedom. Since the quantum of the internal vibrational excitation of O₂ is approximately threefold the Debye energy of Ni, the scattering of O₂ of the Ni surface is akin to the scattering of a hard ball on a soft wall. This leads to phonon creation at the surface in the scattering event, but not to O₂ stretch vibrations. The experimental results indicate that vibrational heating occurs: The ratio of the excitation intensity for v = 1 to that for v = 0 is approximately a factor of three above the simple Boltzmann factor. We present representative examples of the simulation for this collision system. (Figs. 1 and 2)
Radiative Electron Capture of Swift Heavy Ions into the Continuum State

In heavy-ion-solid collisions, target bound electrons have a chance of being captured into the continuum state of projectiles satisfying energy and momentum conservation by emitting photons. This process is called “radiative electron capture into the continuum state (RECC)” as an analogy to radiative electron capture into the discrete bound state (REC), where discrete X-rays are emitted. The RECC process is accompanied by the emission of continuum X-rays with a maximum edge energy corresponding to the energy of electrons of the same velocity as the projectiles. The resultant electrons in the continuum state travel in the forward direction, and a portion of them are expected to emerge as “convoy” electrons with a cusp-shaped energy peak after passing through the solid target. Understanding of the convoy electron formation following the RECC process is very limited, although it is a fundamental process. We investigate it through the coincidence measurement of the spectra of emitted X-rays and cusp electrons.

Bare Kr$^{36+}$ ions of 36 and 70 MeV/nucleon passed through a carbon foil tilted by 45° from the beam direction. Emitted X-rays at the collisions were observed either by a HPGe or Si(Li) detector located at an angle of 90° from the beam direction. Secondary electrons were measured using a compact magnetic analyzer coupled with a channeltron-type electron detector. The charge distribution of emerged projectiles was measured using a combination of a magnetic analyzer and position sensitive detectors at the downstream end of the beam. The signals from the charge distribution of the projectiles, X-rays, and secondary electrons were accumulated in a list mode.

The X-rays emitted from REC into the K- and L-shell, the continuum X-rays from RECC, and the characteristic X-rays of the projectiles on the shoulder of the curve for the RECC component were observed as shown in Fig. 1. The characteristic X-rays are emitted following capture of target electrons into the L or higher states of the projectiles. Although the cross sections of all processes decrease with higher projectile energy, V_p, the intensities of REC and RECC decrease more slowly ($\propto V_p^{-5}$ and $\propto V_p^{-2}$) than those for non-REC processes ($\propto V_p^{-11}$). Therefore, X-rays emitted from REC and RECC are more clearly observed in the spectra for higher projectile energies. Concerning the secondary electron spectra, we clearly observed a binary encounter electron peak for both projectile energies. A cusp peak at the equivelocity of the projectiles is noticeable only for 36 MeV/nucleon Kr$^{36+}$ ions, as shown in Fig. 2, due to the larger capture cross section.

Considering the projectile energy dependence for X-rays and cusp electrons, the coincidence experiments are suitable at the projectile energy of 36 MeV/nucleon. We are now preparing to carry out coincidence measurements by applying a large acceptance angle Si(Li) detector to obtain a higher coincidence rate.
Fullerene-like Fragment Ion Production in Fast Ion-C\textsubscript{60} Collision

Y. Nakai, T. Kambara, A. Itoh, H. Tsuchida, and Y. Yamazaki

A number of studies of C\textsubscript{60} fragmentation have been performed with various excitation probes.1-7 The distribution of product ions strongly depends on the energy deposit, that is the internal energy of the precursor of fragmentation. We reported that high-energy deposition by fast heavy ion impact causes only multifragmentation.1 On the other hand, in low-energy deposition by electrons, atoms and collisions with the surface, C\textsubscript{60} emits small neutral clusters in a few microsecond or longer time scale after excitation.2-5 In the latter case, the activation energy and the kinetic energy release associated with C\textsubscript{2} evaporation were estimated.

The time-of-flight (TOF) peak profile for each product ion contains information of fragmentation, that is, the kinetic energy release and lifetime. However, a part of such information is often lost due to poor experimental resolution. We have developed a high-resolution TOF mass spectrometer under the Wiley-McLaren spatial-focusing condition to obtain information on the fragmentation mechanism.

A beam of 10 MeV He2+ and 25 MeV C6+, provided by the RILAC, passed through a C\textsubscript{60} vapor target. The electrons extracted from the collision region were used as the start signal of the TOF measurement. The TOF spectra were obtained using a multi-hit time-to-digital converter. We can separate the peaks of C\textsubscript{60}q (q = 1,2,3) which contain different amounts of 13C as shown in Fig. 1.

In Fig. 1, TOF peaks of C\textsubscript{60}q (q = 1,2,3) generated in the collision with the He2+ beam are shown. These peaks are asymmetric. We also show the TOF spectra obtained by Monte Carlo simulation for C\textsubscript{60}q \rightarrow C\textsubscript{58}q + C\textsubscript{2} (q = 1,2,3) with a lifetime of fragmentation and a 0.4 eV kinetic energy release.7 These tails at longer TOF are reproduced by simulation with a fragment lifetime of 2.0 \mu s, 1.75 \mu s, and 1.1 \mu s, respectively. This indicates that the internal energy of delayed-fragment precursors increases with increase of the charge state because the activation energies of the emission of C\textsubscript{2} from C\textsubscript{60}q (q = 1,2,3) do not depend on the charge state within the experimental uncertainty.1 However, the peak shape in the shorter TOF region cannot be reproduced by simulations with a single lifetime component.

The peak intensities for doubly and triply ionized fragment ions decrease more rapidly towards a smaller fragment ion in the collision with He2+ than C6+ whereas the intensity ratios for singly ionized fullerene-like fragment ions are almost constant. The asymmetric peak shape of fullerene-like fragment ions are observed in both cases. These results indicate that the internal energy distributions of the parent C\textsubscript{60} ion of multiply ionized fullerene-like fragments are different between He2+ impact and C6+ impact, but that their production mechanisms are similar.

References
Isotope Shifts between He-like 12C and 13C Ions

S. Ozawa, T. Ariga, N. Inabe, M. Kase, I. Tanihata, M. Wakasugi, and Y. Yano

With the ultralow-background photon detection system which we previously designed,1,2) we measured the isotope shifts between He-like 12C and 13C ions in the 1s2s 3S_1-1s2p 3P_0,1,2 transitions.

A NEOMAFIOS 8 GHz ECR ion source which was placed in the RILAC terminal produced positive carbon ions. 12C ions were accelerated to 0.9 MeV/nucleon by RILAC and stripped by a carbon foil with a thickness of 10 μg/cm2. 13C ions were accelerated to 0.6 MeV/nucleon before being stripped by the carbon foil. Then 4+ charge state ions were directed to the experimental area. One percent of all He-like ions are in the 3S_1 metastable state and have a 200 ms lifetime. The level scheme of He-like carbon ions is shown in Fig. 1. A laser beam excites ions in the 3S_1 state and induces fluorescence from the 3P_0,1,2 states. To reduce the uncertainty in the absolute ion beam velocity, each transition energy was measured by two laser beams which propagate in the directions parallel and anti-parallel to the ion beam. For the wavelength calibration of the laser beam, the absorption lines in Te$_2$ were measured simultaneously.

According to the Doppler-shift formula, the absolute energies E_0 for each transition are determined as $E_0 = \sqrt{E_p E_{ap}}$, where E_p and E_{ap} are the resonance energies for the parallel and anti-parallel laser beams, respectively. The relationships between the resonance wavelength by the parallel and anti-parallel laser beams are shown in Fig. 2. Figure 2 also illustrates the isotope shift. The measured absolute energies and the isotope shifts in each transition are shown in Table 1.

Table 1. Transition energies from 3S_1 to each level of 12C and 13C. Values in parentheses indicate 1σ.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Transition</th>
<th>Energy (cm$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12C$^{4+}$</td>
<td>0</td>
<td>43899.749(30)</td>
<td>43899</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>43887.173(19)</td>
<td>43886</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>44023.404(13)</td>
<td>44022</td>
</tr>
<tr>
<td>13C$^{4+}$</td>
<td>0</td>
<td>43901.556(41)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>43889.133(26)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>44025.207(18)</td>
<td></td>
</tr>
</tbody>
</table>

Isotope shift

<table>
<thead>
<tr>
<th>Isotope</th>
<th>0</th>
<th>-1.807(51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12C-13C</td>
<td>1</td>
<td>-1.960(32)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-1.805(22)</td>
</tr>
</tbody>
</table>

He-like ions are in the 3S_1 metastable state and have a 200 ms lifetime. The level scheme of He-like carbon ions is shown in Fig. 1. A laser beam excites ions in the 3S_1 state and induces fluorescence from the 3P_0,1,2 states. To reduce the uncertainty in the absolute ion beam velocity, each transition energy was measured by two laser beams which propagate in the directions parallel and anti-parallel to the ion beam. For the wavelength calibration of the laser beam, the absorption lines in Te$_2$ were measured simultaneously.

According to the Doppler-shift formula, the absolute energies E_0 for each transition are determined as $E_0 = \sqrt{E_p E_{ap}}$, where E_p and E_{ap} are the resonance energies for the parallel and anti-parallel laser beams, respectively. The relationships between the resonance wavelength by the parallel and anti-parallel laser beams are shown in Fig. 2. Figure 2 also illustrates the isotope shift. The measured absolute energies and the isotope shifts in each transition are shown in Table 1.

References
Foil Ageing Problems in Beam-Foil Spectroscopy Continued

R. Hutton, Y. Zou, S. Huldt, I. Martinson, K. Ando, and H. Oyama

In a previous article\(^1\) we discussed an effect which seems to have overlooked detailed study but, however, which is very important to the methods of beam-foil spectroscopy. The effect is the change in light intensity in a given spectral line as a function of the exposure time of the foil. This effect had been discussed previously by Soerensen.\(^2\) It has been long known that the charge state fraction after the foil interaction changes as function of time, due to foil thickening for example. However we observe that the light intensity in certain spectral lines changes at a rate much faster than the change in the charge state balance, see Fig. 1. This has been found to depend on the particular ion and energy being stripped/excited by the foil. In the previous report we discussed a limited amount of data, i.e. 0.4 MeV/u Ne and 0.4 and 2.5 MeV/u Mg. In this report we will discuss new data showing the foil ageing effect to be more difficult to deal with than previously thought. The number of elements for which data is available has been increased to cover Ne, Mg, Al, Fe, Kr and Nb. In Fig. 1 the effects of foil ageing on lines from 0.8 and 2.5 MeV/u Al are illustrated. The Li-like resonance lines, \((2s^2S_{1/2}-2p^2P_{1/2,3/2})\), decrease in intensity at both beam energies, however the decrease is slower for the lower energy beam. This is opposite to what one may expect, for example the foil will break quicker at the lower beam energy. Also shown in Fig. 1 is the line resulting from 5-6 transitions in the He-like ion. This is only seen for the 2.5 MeV/u beam as there is a very small fraction of He-like ions at the lower energies. Here a slight increase in line intensity is observed. Similar, but on a much weaker scale, was seen for 2.5 MeV/u Mg. For the heavier beams studies so far, (Fe, Kr and Nb), there has been little or no noticeable effect of the foil age on the light intensity. The effect of light intensity changing as a function of foil exposure time has been confirmed by data obtained at the university of Lund using much lower energy beams and thinner foils.\(^3\) Thus with the existing amount of data it is not possible to know in what experiments foil ageing will be a problem, much more data is needed.

Fig. 1. This figure shows that although the Li-like \(2s-2p\) resonance line intensity decays as a function of the foil exposure time the intensity of the \(5g-6h\) He-like transition increases (at least at 2.5 MeV/u). Also seen is that the \(2s-2p\) intensity decays slower for the lower energy beam, maybe in contradiction to what one may imagine as foils usually last longer for higher beam energies. The "h" refers to hours of foil expose to the beam and comes from a single exponential fit to the data, this fit is done only for purposes of comparing numbers and has no physical significance as far as we know. The light intensity has been normalised to charge collected in a given time.

References
3) I. Kink: private communication.
Time Delayed Spectral Lines in Beam-Foil Spectroscopy

R. Hutton, Y. Zou, S. Huldt, I. Martinson, K. Ando, and H. Oyama

It has long been known that spectral lines can be observed at large distances behind the exciter foil used in beam-foil spectroscopy. This has been observed most drastically for Li- and Na-like ions. However, the limit as to how far spectral lines could be followed has been set by the noise of the detector. This is still true in the spectra to be discussed here, except we are now using a low noise CCD detector system and have been able to follow spectral lines over a time scale of 100 lifetimes, or more, of the radiating level. Of course the fact that radiation can still be observed is due to cascade re-population of the upper levels. This illustrates the already known fact that very high \(n, l \) states are populated by the beam-foil interaction mechanism. In Fig. 1 we compare data taken for a beam of 2 MeV/u Nb after ionisation/excitation by a thin carbon foil. The spectra are recorded with 0 and 200 mm separations between the spectrometer entrance slit and the foil position. These separations correspond to time delays of 0 and 10 ns respectively. We should point out here that the lifetime of the \(3p^2P_{3/2} \) level for Na-like Nb is only 0.029 ns.\(^1\) For the \(2P_{3/2} \) level 10 ns represents a time delay of 340 lifetimes, however, it is clear that it is still possible to observe this line, at 135.14 Å, of course this is because of cascade re-population of the upper level from the high \(n, l \) states. Also seen is the \(3p^2P_{3/2}-3d^2D_{5/2} \) line at 131.7 Å. However, the interesting thing now is that lots more lines are seen in the delayed spectra and not all of these can be assigned to allowed transitions. It may now be possible to identify slow decaying lines like E2 and M1 transitions in beam-foil spectra due to the low noise offered by the CCD detector. Moreover the well known allowed transitions can be used to calibrate the spectrometer.

Fig. 1. Beam-foil spectra for 2 MeV/u Nb ions take with two different time delays, 0 (foil zero) and 10 ns. It is seen that lines beyond around 150 Å are much more prominent in the delayed spectra. The 10 ns delayed spectrum was recorded with a much longer time integration (4 hours) than the foil zero spectrum (1 minute), and the data intensity normalized for display purposes, hence different intensity scales.

References
Spectroscopy of High Z Spin-Aligned States

R. Hutton, Y. Zou, S. Huldt, I. Martinson, K. Ando, and H. Oyama

The structure of spin-aligned states is best known for fairly low Z Li-like ions where the \(1s2s2p^4P_{3/2} \) level is metastable against X-ray decay and Coulomb auto-ionisation. However, there is a Breit induced part to the autoionisation which is quite strong even for moderately charged ions in the Li I sequence.\(^1\) There is a similar situation in Na-like ions where the \(2p^53s3p^4D_{7/2} \) level is also metastable. In this case the Breit induced autoionisation is not so dominate as in the Li-like case and the \(2p^53s3p^4D_{7/2} \) level remains long lived even for very highly charged ions,\(^2\) e.g. the \(^4D_{7/2} \) lifetime for Na-like Xe is predicted to be 2.32 ns.\(^2\) The metastability of this level was demonstrated using electron spectroscopy\(^3\) however as yet no lifetime measurement exists. In a recent work the \(2p^53s3d^4F_{9/2} \) level was studied for a number of elements in the Na I sequence using VUV photon spectroscopy. This level is also metastable with regards to X-ray and auger decay but it has an allowed El transition to the metastable \(2p^53s3p^4D_{7/2} \) level. After the identification of the \(2p^53s3p^4D_{7/2}-2p^53s3d^4F_{9/2} \) transition a number of other VUV transitions within the core-excited complex were identified for Na-like S and Cl.\(^5\)

In this work a few transitions within the core-excited configurations of Mg-like ions will be examined for a number of elements in the Mg I sequence. The ions investigated here are S V, Cl VI, Ar VII, Ti XI, Mn XIV, Fe XV, Co XVI, Ni XVII and Cu XVIII. The data for Ti, Fe and Ni have been recorded at RIKEN using the RILAC accelerator. The other data come from various other beam-foil laboratories (Lund, Bochum and Argonne National Lab.) and a fuller report is being prepared for publication.\(^6\) The transitions of interest are between the \(2p^53s3p^2 \) and \(2p^53s3p3d \) configurations, where again the maximum j level is the one giving rise to a VUV decay channel.

References

High-resolution Soft X-ray Study of Ne Hollow Atoms Created by a Microcapillary Target

S. Thuriez, Y. Iwai, Y. Kanai, H. Oyama, R. Hutton, H. Masuda,* and Y. Yamazaki

This work presents the first high-resolution soft X-ray study of the interaction of highly charged ions with microcapillary targets. A micro-capillary target consists of many 100-nm-diameter and 700-nm-long capillaries. For this experiment we used a beam of 5 keV/q Ne$^9+$ ions from a 14.5 GHz ECR ion source (Caprice).

Figure 1 shows the spectrum obtained after 0.2 ns from the capillary target as compared with a typical spectrum obtained when Ne$^9+$ ions impinge on a flat surface. When we changed the target from a flat surface to a bundle of capillaries, a drastic change in the X-ray spectra and thus in the electronic population of the excited state is observed. Such a shift toward high energies for the microcapillary target is consistent with an interaction above the surface. 1)

Figure 1 shows three peaks which are observed in the energy range of our spectrometer, after the beam has interacted with the microcapillary target. The maximum of the main peak between channels 48 and 49 has an energy of 913.3 ± 1.3 eV. It may correspond to the pure helium-like $1S_0-3P_1$ transition at 914.9 eV, which may be shifted in energy by the effect of spectator electrons.

The peak maximum at channel 46 (Fig. 1) of energy 919 ± 1.3 eV may correspond to the He-like $1S_0-1P_1$ (922.1 eV), again possibly shifted by the effect of spectator electrons.

The peak maximum at channel 56 corresponds to an energy of 894.4 ± 1.3 eV. For Ne$^7+$, $1s^22s^22p^4$P states have a long lifetime: 0.4 ns for $4P_{1/2}$, 0.6 ns for $4P_{3/2}$ and 12 ns for $4P_{5/2}$. The dominant decay channels are $4P_{1/2} \rightarrow 1s^22s \ 2S_{1/2}$ and $4P_{3/2} \rightarrow 1s^22s \ 2S_{1/2}$ with the emission of a 895.0 eV photon. 2) The line that we measured may originate from this decaying scheme. It is also consistent with the fact that the observation point is within 0.2 ns of the target end.

We have also measured the total photon emission as a function of the distance from the target (Fig. 2). The time resolution, T_0 (Fig. 2) of the spectrometer is 0.2±0.01 ns. We observe different lifetime components, one of which is very long (longer than about 1.4 ns). This is consistent with previous measurements performed at low resolution. 2)

References
Angular Dependence of Scattering Intensity in $C^4^+ + He \rightarrow C^2^+ + He^2^+$ at Collisional Energy of 120 eV/q

M. Hoshino, M. Kitajima, Y. Nakai, Y. Kanai, and Y. Yamazaki

Very slow collisions in ion-atom and ion-molecule systems are interesting because the angular differential cross sections are more sensitive to the shapes of active potential curves at lower collision energies. Since it is difficult to produce a very slow and well-collimated highly charged ion beam below about 200 eV/q, where q is the charge state of the projectile ion, experimental studies in this energy range have been fairly limited. Recently, we have developed a crossed-beam experimental setup for angle resolved energy gain spectroscopy in very slow collisions between highly charged ions and atoms or molecules. We utilize the ion beam from the 14.5 GHz Caprice electron cyclotron resonance (ECR) ion source at RIKEN.

Figure 1 shows the angle-dependent scattering intensity for double electron capture for 120 eV/q $C^4^+ (1s^2) + He \rightarrow C^2^+ (1s^22s^2) + He^2^+$. Only small contributions from other final states of $C^2^+ + He^2^+$ have been observed in the energy gain spectrum. Energy and angular resolutions are estimated to be 0.75 eV/q and 0.5°, respectively. It is estimated that the statistical uncertainty for each scattering intensity is less than 10%. Weak Stueckelberg angular oscillations, which result from interference between several outgoing waves with different scattering paths, are seen in the experimental data.

Charge exchange processes in $C^4^+ + He$ collisions have been widely studied above 200 eV/q. All of the experimental and theoretical studies have shown that the most dominant process above 200 eV/q is the $C^4^+ (1s^2) + He \rightarrow C^2^+ (1s^22s^2) + He^2^+$ process, which was explained by a two-state curve crossing model. Barany et al. have measured differential cross sections for $C^4^+ (1s^5) + He \rightarrow C^2^+ (1s^22s^2) + He^2^+$ at a collision energy of 380 eV/q, which enabled Boyed et al. to determine the diabatic coupling potential for the double electron capture process in this system. We have applied this two-state diabatic coupling potential for our experimental condition and calculated the differential cross section. The results are shown in Fig. 1 by curves. It is found that the results of calculations derived from the potential estimated at 380 eV/q do not reproduce the present experimental results at 120 eV/q. This shows that potential curves derived from experimental data at higher energies are not accurate enough. It should be noted that not enough is known about interaction potentials between highly charged ions and atoms even in the case of extensively studied systems, such as the $C^4^+ + He$ system. Experimental studies over a wide collisional energy region, especially at very low energies, are expected to reveal further information on collisions between highly charged ions and atoms or molecules.

References
Acoustic Emission Following Fast Heavy-Ion Irradiation of Solids

T. Kambara, Y. Kanai, T. M. Kojima, Y. Nakai, Y. Yamazaki, and K. Kageyama

We observed, for the first time, acoustic emission up to about 2 MHz from solid materials (metal, oxide and alkali-halide) after short pulses of high-energy heavy ions. The objective of this work was to study in real time the transient deformation caused by fast heavy ions, which deposit kinetic energy in the material by electronic stopping. A Xe-ion beam was accelerated by the RILAC and the RIKEN Ring Cyclotron up to 26 MeV/u and was guided to an experimental beam line. The beam was chopped after being extracted from the 18-GHz Electron Cyclotron Resonance (ECR) ion source to short pulses whose width was shorter than 1 μs. Since the elastic vibrations in our samples lasted as long as a few milliseconds, the interval between the beam pulses was chosen to be longer than 10 ms. The shortest pulse which we obtained consisted nearly of a single bunch with a length of about 3 ns. The number of ions in each pulse was 10⁴ - 10⁵ depending on the pulse width. Details about the short-pulse generation are described elsewhere.¹

The beam was then guided to a vacuum chamber where the irradiated sample was mounted. The beam spot size on the sample was about 4 mm x 4 mm. The sample materials were single crystals of Al₂O₃, KCl, and metallic polycrystalline Al with a common dimension; 40 mm long, 10 mm wide and 5 mm thick. According to calculations with the TRIM code,² the range of the ions in the samples is between 170 μm and 380 μm, which is much smaller than the sample size. Therefore all of the ions were stopped in the material near the incidence surface.

The ultrasonic signals were detected by two piezoelectric ultrasonic sensors equipped with head amplifiers (Fuji Ceramics, M304A). The sensor³ is highly sensitive to longitudinal waves up to about 2 MHz and exhibits the highest sensitivity at about 300 kHz. The ion beam was incident perpendicularly to the 40 mm x 10 mm face of the sample, and two sensors at both ends of the sample detected the acoustic signals propagating perpendicularly to the beam direction. A digital oscilloscope recorded the waveform of the acoustic signals for each pulse of the incident beam.

Figure 1 shows the acoustic signals from a single crystal of Al₂O₃. The acoustic signals have oscillatory structures whose frequencies distribute up to about 1.3 MHz. The frequency distribution is affected by the resonant vibration frequencies of the material and the characteristics of the sensors. The acoustic signals of the Al₂O₃ have an amplitude lower than that of metallic Al, while those of KCl have the highest amplitude. The signal-propagation velocity in the sample was estimated from the arrival-time difference between the two sensors as a function of the irradiation position. The result for Al₂O₃ single crystal was about 10⁴ m/s which was in good agreement with the speed of the longitudinal wave estimated from the modulus of elasticity.

We have studied the frequency spectra of the acoustic signals from the Al₂O₃ sample as a function of the ion-pulse intensity. The amplitude spectrum has peaks around 0.3, 0.4 and 0.6 MHz. The amplitude of the Fourier component is plotted in Fig. 2 as a function of the ion-pulse intensity. The amplitudes of the Fourier components are found to be nearly proportional to the ion-pulse intensity, indicating a linear increase with the total energy deposited in the material.

Fig. 1. Acoustic waveform of a single-crystal Al₂O₃ sample irradiated by a nearly single-bunch pulse of the ion beam. The displayed waveform is an average over 100 pulses.

Fig. 2. Amplitudes of the Fourier components of the acoustic signals observed for an Al₂O₃ single crystal plotted as a function of the intensity of the ion pulse.

References
Defect Production via Electronic Excitation in Oxide Superconductors Irradiated with High Energy Heavy Ions

N. Ishikawa, Y. Chimi, A. Iwase, N. Kuroda, O. Michikami,* H. Wakana,* and T. Kambara

When oxide superconductors are irradiated with high-energy heavy ions, and the energy transferred to the electrons of the target is high enough, columnar defects are created along the ion paths. The creation of such defects results in an increase in electrical resistivity, and this increase strongly depends on the size of the columnar defects and the inside resistivity (resistivity inside the columnar defects). In order to investigate the defect production mechanism, the resistivity has been measured for ion-irradiated oxide superconductors. Oxide superconductor EuBa₂Cu₃O₇₋ₓ (EBCO) thin films were prepared by the rf magnetron sputtering method and were irradiated with various ions in the energy range from 125 MeV to 3.8 GeV. The irradiating ions were 125 MeV ²⁷Br¹⁰⁺ produced from a tandem accelerator at JAERI-Tokai (Japan Atomic Energy Research Institute, Tokai Establishment), and 0.7 GeV ⁸⁴Kr¹¹⁺, 3.5 GeV ¹³⁶Xe³¹⁺, and 3.8 GeV ¹⁸¹Ta³⁷⁺ from the RIKEN Ring Cyclotron. All irradiations were performed at a fixed temperature of 100 K. The values of \(\frac{\Delta \rho}{\rho_0} \) were measured in situ as a function of ion fluence, \(\Phi \), at 100 K by the standard four-probe method, where \(\Delta \rho \) is the change in resistivity and \(\rho_0 \) the resistivity before irradiation. Generally the electronic stopping power, \(S_e \), which is defined as the energy transferred from the irradiating ion to the target electrons per unit path length, is accepted as one of the characterization parameters of the defect production process. However, in the previous study, ion-velocity dependence in defect production has been observed even for the same \(S_e \) value. In this report, we propose an alternative parameter for describing defect production; the primary ionization rate is represented by \(\frac{dJ}{dx} \), where \(J \) is the number of target atoms primarily ionized by the irradiating ion and \(x \) is the path length of the irradiating ion. Figure 1 shows the change in resistivity as a function of ion fluence in EBCO irradiated with ions with the same \(\frac{dJ}{dx} \) value. Irradiation with the same \(\frac{dJ}{dx} \) value results in almost the same resistivity-fluence curve. Therefore, the primary ionization rate, \(\frac{dJ}{dx} \), is a much better parameter than the electronic stopping power, \(S_e \), for describing the defect production process. This result is consistent with the results of a previous study of lattice parameter change in ion-irradiated EBCO. These results suggest that the atomic displacements are triggered by Coulomb repulsion between primarily ionized atoms.

References

* Faculty of Engineering, Iwate University
Effects of Defect Morphology on the Vortex Dynamics in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Irradiated with GeV Heavy Ions

Previous experiments on swift heavy-ion irradiation of high-T_c superconductors show that the morphology of defects depends strongly on electronic stopping power S_e.1 When S_e is less than about 2 keV/Å, elliptical defects are formed at intervals along an ion path, whereas, when S_e greater than about 2 keV/Å, a continuous columnar defect (CD) is formed. We have studied the effects of defect morphology on the vortex dynamics in a Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (Bi-2212) high-T_c superconductor.

Bi-2212 single crystals ($T_c \approx 90$ K) were irradiated with the heavy ions 0.7 GeV 84Kr, 3.5 GeV 136Xe, 3.8 GeV 181Ta, and 3.1 GeV 209Bi, at the RIKEN Ring Cyclotron. In order to characterize the morphology of irradiation-induced defects, transmission electron microscopy (TEM) observations were carried out parallel to the ion path which was also parallel to the c-axis of the samples. The TEM micrographs were taken at the Foundation for Promotion of Material Science and Technology of Japan (MST). Figure 1 shows the statistical distribution of the radii of defects in the ab-plane for 0.7 GeV 84Kr ($S_e \approx 1.4$ keV/Å), 3.5 GeV 136Xe ($S_e \approx 1.7$ keV/Å), 3.8 GeV 181Ta ($S_e \approx 3.1$ keV/Å), and 3.1 GeV 209Bi ($S_e \approx 4.1$ keV/Å). The defect radius increases with increasing S_e of the irradiating ion. For Kr irradiation with the smallest S_e, the radii of defects in an ab-plane are more widely distribute than for Bi irradiation with the largest S_e. This shows that the defect radius strongly fluctuates along the ion path for Kr irradiation.

The vortex dynamics was investigated from the ac susceptibility. We obtained the relation between the frequency f and the loss-peak temperature T_p, at which the imaginary part of the ac susceptibility showed a maximum. The ac susceptibility was measured under the ac field of 0.5 Oe and the dc field of 0.3 T. Both magnetic fields were applied along the c-axis of the sample and were much lower than the dose-equivalent field B_{eq} of 0.8 T (fluence = 4 x 1010/cm2). As is excpected for a glass transition, the power law behavior $f \sim (T_p - T_g)^n$ can be observed, where T_g is the glass temperature. The exponent n is 3.2 ± 0.3 ($T_g = 67.0 \pm 0.4$ K) for Xe irradiation, 3.9 ± 0.4 ($T_g = 67.5 \pm 0.4$ K) for Ta irradiation, and 4.3 ± 0.3 ($T_g = 68.7\pm0.3$ K) for Bi irradiation, showing a universal power law of the Bose-glass transition which results from the production of CDs. For the Bose-glass transition, the value of the exponent n is expected to be 3.5–4.5.2 For Kr irradiation with low stopping power, however, a much larger exponent than for other irradiations, $n = 9.6 \pm 1.9$ ($T_g = 60.2 \pm 1.8$ K), was obtained. In the Kr irradiation with $S_e \approx 1.4$ keV/Å, complete CDs are not produced, thus the vortex dynamics is different from that in Xe, Ta, and Bi irradiations.

References

* Cryogenics Center, University of Tsukuba
The interactions between energetic particles and an iron target have been studied. Polycrystalline iron thin films (~200 nm thick) were irradiated at a low temperature (~77 K) with 0.5–2.0 MeV ions using a 2 MV Van de Graaff accelerator, with 84–200 MeV heavy ions using a 20 MV tandem accelerator, both at JAERI-Tokai (Japan Atomic Energy Research Institute, Tokai Establishment) and with 3.1–3.8 GeV heavy ions using the RIKEN Ring Cyclotron. Defect accumulation behavior during irradiation was observed by measuring the increment in electrical resistivity of the specimen as a function of ion fluence. The defect annihilation cross section, σ_r, for each irradiation was derived from the decrement in electrical resistivity, i.e., annihilation of defects during irradiation.

Compared with ~1 MeV ion irradiation, we have observed strong radiation annealing for ~100 MeV and GeV heavy-ion irradiations. In these cases, the elastic collision not only is not dominant for defect annihilation, but is negligible. We plotted σ_r for ~100 MeV and GeV ion irradiations in Fig. 1 against the electronic stopping power, S_e, which is the energy transferred through electronic excitation per unit length along the ion path. The value of σ_r is nonlinearly correlated with S_e ($\sigma_r \sim S_e^{2.3}$). However, σ_r's for some ions are different even at the same S_e. This result shows what is called the velocity effect. The slower ions are more efficient for defect annihilation. The velocity effect indicates that S_e is not the most appropriate parameter for describing this phenomenon. The excited state of secondary electrons and the energy spectrum of excited electrons are different for different ion velocities even at the same S_e. A similar ion velocity effect on damage creation has also been observed in bismuth. It is insisted that the experimental track radii agree with the theoretical ones estimated in the framework of the thermal spike mechanism. It is noted that in an oxide superconductor a primary ionization rate, dJ/dx, is the dominant parameter for describing atomic displacements. The value of dJ/dx indicates the number of atoms ionized by an incident ion per unit length along the ion path. Therefore, the result of irradiation experiments in the oxide superconductor implies that defect production, especially track formation, can be explained by the ion explosion mechanism proposed by Fleischer et al. In the case of iron, we also have to find a pertinent parameter, other than S_e, for describing this phenomenon. For defect production in iron irradiated with GeV heavy ions, Dunlop et al. suggest the parameter $\eta = Z_i^+ v_0/v$, where Z_i^+ is the ion effective charge, v_0 the Bohr velocity and v the ion velocity. They claimed that the Coulomb explosion causes defect production in iron. However, it remains uncertain whether or not the parameters dJ/dx and η can be applied to the radiation annealing process.

References

Radiation Annealing Induced by Electronic Excitation in Iron†

Y. Chimi, A. Iwase, N. Ishikawa, N. Kuroda, and T. Kambara

Infrared Spectroscopy Study on Vacancy-Oxygen Pairs in CZ-Si Irradiated by 3.5 GeV Xe Ions

Irradiation effects have been extensively studied for decades, especially for electrons, neutrons and low-energy ions.1–3 Defects are always produced and electronic properties are modified by irradiations or deliberate implantations. However, little is known so far about the irradiation effects of high-energy GeV heavy ions in Si.

In the present investigation, Czochralski-grown (CZ) silicon was chosen as a target because it contains a rather high concentration of oxygen, i.e., around 10^{18} atoms/cm^3, and therefore, the oxygen atoms can act as sensitive probes to detect defects in infrared spectroscopy of Si. In addition, a conventional micro-FT-IR spectrometer would make it possible to observe the defect distribution directly along the ion tracks with a resolution of 20 μm, since the ion range reaches up to several hundreds of mm in GeV ion irradiation.

Both CZ-Si and floating zone (FZ)-Si samples were irradiated with 3.5 GeV Xe ions at total doses of 1.0 × 10^{13} Xe/cm^2 and 1.0 × 10^{12} Xe/cm^2. The irradiations were performed from the (100) direction of the Si crystal at room temperature. After the irradiation, the sample irradiated with the higher Xe dose was prepared for micro-FT-IR measurements. All IR spectra were measured at room temperature.

The infrared spectra of both nonirradiated and irradiated CZ-Si are shown for the different Xe doses in Fig. 1. After irradiation, clear bands were found at 830 and 1107 cm\(^{-1}\), which can be assigned to vacancy-oxygen (VO) pairs and interstitial oxygen, respectively. The VO pairs were first observed in electron-irradiated CZ-Si.1) In FZ-Si, on the other hand, we did not find these oxygen bands. By comparing the interstitial oxygen concentration before and after the irradiation, the production rate of VO pairs was determined to be \(\eta = 2.9 \times 10^2 \) pairs/ion.

The depth dependence of the infrared spectra in the ion incident direction was obtained using a micro-FT-IR spectrometer with a 20 × 600 μm aperture, and the results are shown in Fig. 2. The 830 cm\(^{-1}\) band is clearly detected in the depth range between 0 and 350 μm. The intensity of the band varies depending on the depth. In the shallow region near the surface, the band shows a broad tail, possibly due to other defects, which may be produced by a primary reaction between Xe ions and the Si surface. In the region deeper than 350 μm, the band at 830 cm\(^{-1}\) completely disappears. This indicates that the ions did not penetrate beyond a depth of about 350 μm, which is in good agreement with the ion penetration range evaluated by the “TRIM” calculation. Because the electronic stopping power dominates the slowing down process for the GeV region, the nuclear collisions are thought to contribute to the energy loss only at the ends of the ion tracks. Accordingly, the present results strongly suggest that the VO defect was created by the energy loss due to electronic excitation processes.

Fig. 1. IR spectra of CZ-Si irradiated with 3.5 GeV Xe at total doses of (a) 1.0 × 10^{13} Xe/cm^2, and (b) 1.0 × 10^{12} Xe/cm^2.

Fig. 2. Depth dependence of the IR spectra of CZ-Si irradiated at the dose of 1.0 × 10^{13} Xe/cm^2.

References

* Shizuoka Institute of Science and Technology
Evaluation of SEB in Power MOSFETs Caused by Heavy Ions

Semiconductor devices used for artificial satellites and spacecrafts are affected by radiation in space. It is well known that the incidence of high-energy heavy ions into semiconductor devices causes four kinds of anomalies: single-event upset (SEU), single-event latchup (SEL), single-event burnout (SEB) and single-event gate rupture (SEGR). Among them, SEB was identified as a possible catastrophic failure mode for power MOSFETs with a double-diffused MOS (DMOS) structure. To date, numerous tests on SEB of power MOSFETs have been performed, and its mechanism is becoming clear. SEB is triggered when a heavy ion passes through a power MOSFET biased in the OFF state. Transient currents generated by the heavy ion turn on a parasitic bipolar transistor (BJT) inherent to the device structure. Due to a regenerative feedback mechanism, a second breakdown sets in, creating a short circuit between the source and drain which destroys the device.

Therefore, it is necessary to increase SEB tolerance in power MOSFETs to enable space application. National Space Development Agency of Japan (NASDA) has studied SEB in power MOSFETs caused by heavy ions from the RIKEN Ring Cyclotron. Previously, the 250V-class power MOSFET, 2SK3041, for space application was developed. Currently, we are trying to improve SEB tolerance in power MOSFETs using new methods. We have performed irradiation tests with a beam of Ni$^{25+}$ at 25 MeV/u (total energy of 1450 MeV) on several types of samples and have studied the breakdown voltage data associated with SEB. Because the Ni-ion beam passes through the atmosphere, the energy of the ion at the sample was degraded to approximately 286 MeV. Therefore, the linear energy transfer (LET) of the ions at the sample surface (Si) was about 26.7 MeV/(mg/cm2) and the range was about 44.7 μm.

First, we study the effect of the diffused self-alignment (DSA) process on SEB tolerance. Generally, the DSA process has been used for commercial devices. Usually, many different lithography processes are needed to form IC patterns, but the DSA process makes it possible to reduce the number of processes. The advantage of the DSA process is to make the channel length short, thus it can be expected to improve the electrical characteristics.

Four types of samples of 250V-class power MOSFETs were prepared. Three types of samples were fabricated using different DSA processes (DSA-1,2,3) and one sample was the reference sample (non-DSA process). We performed irradiation tests for these samples. Figure 1 shows the test results of the DSA process effect on the SEB threshold. In Fig. 1, the SEB threshold of the DSA sample is higher than that of the reference sample (non-DSA process). It is clear that the DSA process is effective in improving SEB tolerance. Among the three DSA processes, the DSA-2 process is the most effective, however, its mechanism is not yet clear.

Second, we study the effect of the lifetime of carriers in power MOSFETs on SEB tolerance. It is known that the voltage drop generated by the current along the body layer cause the activation of the parasitic BJT as a trigger of SEB. Thus it can be expected that SEB tolerance increases as the number of holes injected into parasitic BJT (decreasing the lifetime of carriers) decreases. To control the lifetime of the carriers, we performed electron irradiation for power MOSFET, called “Lifetime Control” (LTC). The lifetime of carriers is governed by the electron dose and the annealing conditions.

Many LTC samples were prepared. These samples were based on 2SK3041 (250V-class power MOSFET) which NASA had developed previously. To evaluate the lifetime of the carriers, the reverse recovery time
(t_{rr}) of these samples was measured. A short t_{rr} means a short lifetime of carriers. It is expected that the SEB tolerance increases as t_{rr} decreases. Irradiation test results are shown in Fig. 2.

In Fig. 2, the SEB threshold V_{DS} does not depend on t_{rr}, contrary to our expectation. The reason is not yet clear, but it is apparent that LTC has no effect on SEB tolerance. We expect that such test results will be applicable to improve SEB tolerance in power MOSFETs.

References
Dynamic Behavior of a Nuclear Probe $^{57}\text{Mn}/^{57}\text{Fe}$ in Si after Projectile-fragment Separation and Implantation

An on-line isotope separator after projectile nuclear fragmentation (RIPS) can be applied to produce a radioactive isotope for ^{57}Fe Mössbauer spectroscopy, that is, ^{57}Mn decaying to ^{57}Fe with a half-life of 1.45 min. The highly energetic particles with several GeV from the separator can be implanted even in the depth range of several hundreds μm from the surface, providing atomistic information on both the local surroundings and the dynamics of the probe atoms at the final lattice sites through hyperfine interactions. It is therefore appealing that this method opens a new possibility for nanometer-scale materials science particularly in bulk materials, which would be complementary to high-resolution electron microscopy for thin samples, or scanning probe microscopy for surface.

The ^{57}Mn beam was separated using RIPS after the projectile fragmentation of ^{59}Co nuclei with a Be target with a thickness of 185 mg/cm2. The energy and intensity of the primary ^{59}Co beam were 80 MeV/nucleon and approximately 300 eA (\sim12 pA), respectively. In order to stop all the ^{57}Mn nuclei in the sample, the beam energy had to be suppressed by using a 470-μm-thick Al plate as a degrader. Finally, the implantation energy was several MeV/nucleon, leading to the implantation depth of 100 ± 10 μm. The intensity of the ^{57}Mn secondary beam was typically 2×10^5 particles/s.

In order to investigate the dynamical behavior of ^{57}Fe atoms in the Si matrix, we used two different floating-zone (FZ) Si wafers for two different experimental periods; a (100) oriented Si wafer and a (111) oriented Si wafer with thicknesses of 530 μm and 525 μm, respectively. These samples enabled us to measure Mössbauer spectra from different orientations. The resistivities of the samples were 100 and 10 Ωcm, respectively, corresponding to boron concentrations of 2×10^{16} and 2×10^{15}/cm3. The 14.4-keV γ-rays from $^{57}\text{Fe} /^{57}\text{Mn}$ were monitored by a CdZnTe detector. Mössbauer spectra were measured by a parallel-plate avalanche counter with a stainless-steel absorber, which was 95% enriched by ^{57}Fe. This counter was mounted on the velocity transducer. The measuring time and the total implantation dose of ^{57}Mn necessary for one spectrum were approximately 10 hours and 10^{10} ^{57}Mn, respectively.

Figure 1 shows the Mössbauer spectra of $^{57}\text{Mn}/^{57}\text{Fe}$ in FZ-(111) oriented Si, which were measured between 350 and 650 K. The spectrum at 350 K can be fitted by two components corresponding to interstitial Fe on the left-hand side ($\delta = -0.76(2)$ mm/s) and substitutional Fe on the right-hand side ($\delta = 0.02(5)$ mm/s), which are in good agreement with those obtained at 300 K in the first experiment on FZ-(100)Si. As the temperature is elevated, the area intensity of the interstitial line decreases, while the substitutional line increases and is accompanied by broadening in both lines. In addition, the interstitial fraction decreases above 500 K.

In order to interpret the dynamical behavior observed in the present study, we must consider two characteristic times, namely 100 s and 100 ns due to the lifetime of ^{57}Mn and ^{57}Fe, respectively. It is expected from the tracer diffusivity of Fe in Si that the jump frequency of interstitial Fe atoms reaches 2×10^3 and 2×10^6 at around 400 K and 600 K, respectively. This would lead to a kinetic reaction, on one hand, between Fe interstitials and vacancies produced by the slowing-down process of ^{57}Mn, and on the other hand, diffusional line broadening accompanied by a relaxation effect on the isomer shift. Details will be discussed elsewhere.

References
Atomic-Force-Microscopy Observations of FZ-Si after GeV-57Mn Implantation Using RIKEN Projectile Fragment Separator (RIPS)

X. Diao, Y. Yoshida, Y. Kobayashi, A. Yoshida, Y. Yano, K. Hayakawa,* and F. Shimura*

It is known that ion tracks can be introduced in the wake of high-energy ions passing through solid materials, and to date they have been found in mica, graphite, some metal alloys and most insulators.1,2 However in Si, no one has observed the ion tracks after monoatomic GeV-heavy-ion irradiation. In the present investigation, atomic force microscopy (AFM) is used to search for ion tracks in a cleaved Si surface.

Two floating-zone (FZ) Si (100) samples were obtained after in-beam Mössbauer-spectroscopic experiments, which achieved the implantation of 3.2-GeV-57Mn into FZ-Si using an on-line isotope separator of projectile fragments (RIPS) and simultaneously, Mössbauer measurements were made of 57Fe decayed from 57Mn. The results are also presented in this report.3 The first sample was obtained from low-temperature measurements at 30, 100, 150, 250 and 300 K, and the second sample from high-temperature measurements at 300, 500, 600 and 700 K. The total implantation dose of 57Mn ions for both samples was around 5.0×10^{10} Mn/cm2. In order to observe the ion tracks, the implanted sample was cleaved in the (110) plane and was immediately placed in the AFM vacuum chamber. Pumping to 1.0×10^{-6} mbar requires around 15 minutes.

Typical AFM micrographs of the first sample are shown in Fig. 1. The implantation was performed from the (110) direction of the Si crystal, i.e., incident at 45° to the (100) Si surface. The present geometry enables us to observe the region from the surface to the ion range, which is also illustrated in Fig. 1. Two types of swellings are clearly observed on the cleaved surface with diameters of approximately 100 μm and 20 nm. The larger mountainlike bumps are distributed among the smaller bumps with monodispersed sizes. The number of smaller bumps is approximately 1.5×10^{10} cm$^{-2}$, which is close to the total implantation dose. The swellings disappear around the ion range with a sharp boundary. Figure 2 shows an AFM micrograph observed in the second sample. Only pin-shape bumps can be seen with a diameter of approximately 30 nm, but the number of the bumps is about 1.5×10^{9} cm$^{-2}$, one order of magnitude lower than the total implantation dose. This suggests that the swellings are annihilated considerably at high temperatures.

The swellings observed in the present investigation are believed to be related to the ion tracks. However, the formation mechanism of the swellings from the ion tracks is still not clear after the samples were cleaved, and further experiments are necessary.

References
A New Spin Polarimeter Proposed for Spin-Polarized Slow Positron Beams

Y. Nagai,* J. Kim, Y. Nagashima, Y. Itoh, and T. Hyodo

A new spin polarimeter for the spin-polarized slow positron beam is proposed. The Doppler broadening method with an a-SiO₂ sample is utilized. The polarization is determined from the magnetic field dependence of the S-parameter, i.e., the ratio of counts in the central portion of the annihilation photopeak of the Doppler broadening spectra to the total counts in the peak.

The S-parameter is related to the fraction of the positronium (Ps) which self-annihilates into 2γ IPs, as

\[S = \alpha F_{o} + \beta, \]

where \(\alpha \) and \(\beta \) are constants. \(I_{P} \) is represented by

\[I_{P} = \frac{\gamma_{o} y^{2} \Gamma_{o'}}{1 + y^{2}} F_{o'} + \frac{\gamma_{o} y^{2} \Gamma_{p'}}{1 + y^{2}} F_{p'}, \]

where \(F_{o'} \) and \(F_{p'} \) are the fractions of the perturbed ortho-Ps and the perturbed para-Ps formed in a magnetic field \(B \);

\[F_{o'} = \frac{1}{8(1 + y^{2})} [(1 + y)^{2}(1 - P) + (1 - y)^{2}(1 + P)] \]

and

\[F_{p'} = \frac{1}{8(1 + y^{2})} [(1 - y)^{2}(1 - P) + (1 + y)^{2}(1 + P)]. \]

\(y \) is given by \(y = x/[(1 + x^{2})^{1/2} + 1] \) with \(x = 4\mu B/\hbar \omega_{0} \), and \(P \) is the positron spin polarization along \(B \) at the instant of the Ps formation. \(\mu \) is the magnetic moment of the electron and \(\hbar \omega_{0} \) is the hyperfine structure splitting between the ortho-Ps and the para-Ps in vacuum. \(\kappa \) is the electron-positron contact density of Ps in the sample relative to that in vacuum. \(\Gamma_{o'} \) and \(\Gamma_{p'} \) are the annihilation rates of the perturbed ortho-Ps and the perturbed para-Ps in the sample and are given as follows

\[\Gamma_{o'} = \frac{\gamma_{o} + y^{2} \gamma_{p} \Gamma_{o}}{1 + y^{2}} + \gamma_{\text{pickoff}} \]

and

\[\Gamma_{p'} = \frac{\gamma_{o} + y^{2} \gamma_{p} \Gamma_{p}}{1 + y^{2}} + \gamma_{\text{pickoff}}. \]

\(\gamma_{o} \) and \(\gamma_{p} \) are the self-annihilation rates of ortho-Ps and para-Ps in vacuum, respectively, and \(\gamma_{\text{pickoff}} \) is the Ps pickoff annihilation rate in the sample. Figure 1 shows the dependence of \(I_{P} \) on \(B \). The asymmetry around \(B = 0 \) is ascribed to the positron spin polarization along the magnetic field. The polarization can be determined if the magnetic field dependence of \(I_{P} \) or S-parameter is measured for materials with a suitable pickoff rate. One of the best materials for this purpose is a-SiO₂, not only because the pickoff rate is suitable but also because the Ps formation efficiency is very high (∼80%).

The polarization of the spin-polarized slow positron beam has so far only been measured using the lifetime method using a channel electron multiplier array. The data analysis of the lifetime spectra is complicated because Ps thermalizes slowly. The method proposed here provides a much simpler way to measure the polarization of the beam.

In order to examine the sensitivity of this method, we have measured the polarization of the positrons from \(^{22}\text{Na} \). An \(^{22}\text{Na} \) source of 8 μCi was deposited between two identical Kapton foils of 7.5 μm thickness. The source was held between an a-SiO₂ sample and a stack of 15 Kapton foils of 0.125 mm thickness. Positronium is not formed in Kapton. Magnetic fields up to 20 kG were applied using an electromagnet. \(\gamma_{\text{pickoff}} \) was determined using the conventional positron lifetime method. The optimized value of polarization is 0.327 ± 0.015.

If we assume that the reflection of positrons from a stack of Kapton foils and the absorption of positrons in the Kapton foil holding the source are negligible, the theoretical value of the polarization is 0.5(\(\bar{v} \)/c), where \((\bar{v} / c) = 0.67 \) is the longitudinal polarization averaged over the \(\beta^{+} \) spectrum of \(^{22}\text{Na} \). The polarization determined above is consistent with this value within the

* Institute of Materials Research, Tohoku University

Fig. 1. Theoretical values of \(I_{P} \) for samples with \(\kappa = 1 \) as functions of the magnetic flux density.
range of statistical error.

References
It has been demonstrated that heavier inert gas atoms (Ar, Kr and Xe) implanted into metals at room temperature precipitate into a solid phase at high implantation doses. These are often referred to as solid inert gas bubbles or solid inert gas inclusions. In fcc metals, they have an fcc structure which is crystallographically well aligned with the matrices. Although the growth of such bubbles has been extensively studied by transmission electron microscopy (TEM), there have been only a few studies on their nucleation and formation processes. For studies such as that of the nucleation of bubbles in the initial stage of implantation, which is unobservable by conventional TEM, the channelling method is very useful because it gives information on the lattice locations of implanted atoms.

In previous channelling studies on Kr-implanted Al (fcc), the nucleation of Kr bubbles and their solidification processes have been extensively studied. In the present study, to observe the difference in the state of heavier inert gas atoms in the initial stage of implantation between fcc and bcc metals, channelling experiments are performed on Xe-implanted α-Fe (bcc) and the initial stage of Xe bubble formation is discussed.

Xe$^+$ ions were implanted into Fe single crystals at room temperature at an energy of 150 keV at four different doses 10^{14}, 4×10^{14}, 10^{15} and 10^{16} Xe ions/cm2. Channelling angular scans were performed at room temperature for the (100), (110), (111) and (100) channels by means of the Rutherford-backscattering method with a 1.5 MeV He$^+$ beam provided by a tandem accelerator.

The channelling angular profiles of the yields of He ions backscattered by Fe atoms (the He angular profile) and those by Xe atoms (the Xe angular profile) for the 10^{14} and 4×10^{14} Xe ions/cm2-implanted specimens are shown in Fig. 1. In the 10^{14} Xe ions/cm2-implanted specimen, the Xe angular profile exhibits a shallow dip, which has a fine structure, with a relative depth of about 50% of that of the Fe angular profile (the Fe dip) and with approximately the same angular half-width as that of the Fe dip for all the channels investigated. On the Xe dip, a small central peak is superimposed for the (100) and (110) channels and small double peaks around $\pm 0.15^\circ$ for the (111) channel. In the 4×10^{14} Xe ions/cm2-implanted specimen, the Xe dips become shallower. On the Xe dip, small off-centre peaks are superimposed around $\pm 0.2^\circ$ for the (100) channel and a small narrow dip for the (111) channel. For the (110) channel a fine structure is not clearly observed. With increasing implantation dose, the Xe dips become much shallower and the fine structures are no longer clearly observed.

These results suggest that the majority of the Xe atoms are distributed over substitutional (S) sites and random (R) sites. The remainder are located at the sites responsible for the fine structures, which are considered to be tetrahedral (T) interstitial sites in the 10^{14} Xe ions/cm2-implanted specimen and the (111)-displaced (D) site, i.e., the site displaced from an S site in the (111) direction in the 4×10^{14} Xe ions/cm2-implanted specimen.

The lattice locations of the Xe atoms and their distribution were determined by comparing the observed Xe angular profiles with those calculated taking into account the four kinds of sites, i.e., the S, R, T and D sites, for various distributions and various magnitudes of displacement of the D site. For the 4×10^{14} Xe ions/cm2-implanted specimen the Xe angular profiles can be successfully reproduced by taking the magnitude of displacement of the D site to be 0.085 nm from the S site and for a distribution of Xe atoms of 40–43% at S, 50–53% at R and 5–10% at D sites. For the 10^{14} Xe ions/cm2-implanted specimen, they can be reproduced for the distribution of 47–50% at S, 35–38% at R, 9–12% at T and 3–6% at D sites. With increasing implantation dose, the S-site occupancy decreases, whereas the R-site occupancy increases. The changes of T- and D-site occupancies are more complex, but generally tend to decrease with increasing dose.

The S, D, T and R site occupancies are ascribed to isolated Xe atoms at S sites, Xe atoms associated with one vacancy (XeV) at one of their nearest neighbour sites as a result of a strong interaction between Xe atoms and the vacancies (V) introduced during Xe implantation. Xe atoms associated with four vacancies (XeV$_4$) and Xe atoms associated with a much larger number of vacancies, respectively.

From the above discussion, it is concluded that at the initial stage of Xe implantation in Fe, Xe-vacancy complexes, i.e., XeV, XeV$_4$ and Xe atoms associated with a larger number of vacancies are formed, and they act as nucleation centres for the subsequent growth of Xe inclusions (bubbles). For the sake of comparison,
it should be noted that in the case of Kr in Al (fcc) also, the Kr-vacancy complexes, i.e., KrV₄, KrV₆ and Kr atoms associated with a larger number of vacancies act as nucleation centres. A more detailed description is given in Ref. 10.

References
Observation of Ion Current in Superfluid Helium

Q. Hui and Y. Matsuo

During the past two decades, laser spectroscopic studies of impurities trapped in liquid helium have provided much insight into the quantum liquid. Although the first experiment of this kind was performed with Ba\(^+\) trapped in superfluid helium in 1986 by the Heidelberg group,\(^1\) later studies were carried out exclusively on neutral species. Recently, in our experimental and theoretical studies on neutral Ag and light alkaline earth atoms such as Be and Mg, we have found that a stronger attractive force between the excited state of these atoms and helium atoms results in dynamics totally different than those of other atoms which have a weaker attraction to helium. Metal-helium exciplexes have been found to be formed when the Ag, Be and Mg atoms were excited to a p-orbital.\(^2\) Singly changed alkaline earth ions have a strong attraction to helium atoms and suitable transitions in UV and visible regions, and are very good candidates for studying dynamics of the exciplex formation process. We are currently preparing experiments with Ca\(^+\) and Sr\(^+\) in superfluid helium. In this paper we will report our recent progress.

The experimental setup is illustrated in Fig. 1. A metal cryostat (Oxford) with quartz windows was filled with He II. A quartz cell was placed above the liquid and the cell itself was also filled with He II. A metal sample was suspended about 1 cm above the quartz cell. An ablation laser beam (532 nm, \(\approx 20 \text{ mJ/pulse}\)) was focused onto the sample through one of the windows. Three electrodes were immersed in the liquid in such a way that the upper one remained just 1–2 mm below the liquid surface. The upper electrode (extractor) was typically at +100 V and the middle one at about +20 V. The third electrode (collector) was grounded through the impedance of a digital oscilloscope. The sample was at about +200 V. The distance between the extractor and collector was 1–2 cm. The positively charged ions produced via the laser ablation were extracted into He II by the electric field and the ion current was monitored on the digital oscilloscope. When the setup is complete, a CW laser beam (under preparation) will be used to intersect the ions below the extractor and excite the ions. The laser induced fluorescence (LIF) emitted by the ions will be detected at a right angle by a photomultiplier (PMT) through a monochromator.

We have observed the ion current produced by laser ablation on a Sr sample. To increase sensitivity, the impedance of the digital oscilloscope was set to 1 MΩ. The pulsed current signal was composed of two parts. Immediately after the laser pulse, a relatively sharp peak appeared which was assigned to electrons. The current signal corresponding to positively changed Sr\(^+\) ions appeared about 1 \(\mu\text{sec}\) after the laser pulse and extended to about 1 msec. The intensity of the signal was found to depend sensitively on the laser power and the surface condition of the sample. A rough estimation showed that about \(10^6\) to \(10^8\) Sr\(^+\) ions were produced in the liquid by each laser pulse. An LIF experiment using a CW laser and a photon-counting method will be performed very soon.

References
Observation of a Full Dispersion Curve for the Low Energy Excitation in a Spin Ladder

M. Matsuda, K. Katsumata, R. S. Eccleston,*1 S. Brehmer,*2 and H.-J. Mikeska*2

Low-dimensional antiferromagnets show novel phenomena originating from quantum fluctuations. The spin ladder system is interesting as a system between one- and two-dimensions. Extensive theoretical and experimental studies have been performed on spin ladder systems.1) La6Ca8Cu24O41 consists of both chains and two-leg ladders of copper ions. The structure of the Cu2O3 ladder is shown in Fig. 1. The Cu2O3 ladder is a good example of an $S = \frac{1}{2}$ Heisenberg two-leg ladder.

Neutron scattering experiments were carried out in single crystals of La6Ca8Cu24O41 on the high energy transfer (HET) chopper spectrometer on the ISIS pulsed neutron source at the Rutherford Appleton Laboratory.

Figure 2 shows the experimental ω-Q dispersion relation for the two-leg spin ladder in La6Ca8Cu24O41. As is evident from this figure, we were successful in observing a full dispersion curve from the spin-ladder. As far as we are aware, this is the first experimental observation of a full dispersion curve. The standard analysis of experimental data for spin ladders uses only the two parameters J_{leg} and J_{rung}, assuming the simplest symmetric structure of the two legged ladder. For this model we have calculated the dispersion of the lowest triplet excitation using the Lanczos method for ladders with 12 rungs (i.e. 24 spins) and periodic boundary conditions. We obtained the best fit to our data for $J_{\text{rung}} = 65$ meV and $J_{\text{leg}} = 111$ meV ($J_{\text{leg}}/J_{\text{rung}} = 1.7$). These values are not consistent (1) with the expectation from a geometrical consideration that the Cu-O-Cu exchange on legs and rungs should be approximately equal and (2) with the results of an exact diagonalization calculation for the electronic state of cuprates performed by Mizuno et al., which gives $J_{\text{leg}}/J_{\text{rung}} = 1.1$.2)

We then calculated the dispersion with an additional ring exchange J_{ring}, which was recently proposed by Brehmer et al.3) It was shown that the ring exchange reduces the gap energy at $Q = \pi$ considerably, thereby requiring larger values for J_{rung} and J_{leg}. The dotted curve in Fig. 2 is the theoretical one with $J_{\text{rung}} = 102$ meV, $J_{\text{leg}} = 112$ meV, and $J_{\text{ring}} = 10.2$ meV. These results suggest that a moderate amount of ring exchange around the basic ladder plaquettes (about 10% of the main Cu-O-Cu bilinear exchange) should be included into the Hamiltonian of the two leg ladder, which is quite consistent with recent theoretical calculations.4)

References

*1 ISIS Facility, Rutherford Appleton Laboratory, UK
*2 Institut für Theoretische Physik, Universität Hannover, Germany
μSR Study on the 1/8 Effect in the Bi-2212 System

I. Watanabe, M. Akoshima,* Y. Koike, and K. Nagamine

The "1/8 effect" is now one of the most important problems in the study of the mechanism of high-Tc superconductivity (SC). Recently, anomalous suppression of the SC around the hole concentration \(p = \frac{1}{8} \) per Cu was observed in a Zn-substituted Bi-2212 system by Akoshima et al.\(^5\) We carried out muon spin relaxation (μSR) measurements of Zn-substituted \(\text{Bi}_2\text{Sr}_2\text{Ca}_{1-x}\text{Y}_x(\text{Cu}_{1-y}\text{Zn}_y)\text{O}_{8+\delta} \) in order to examine the existence of the 1/8 effect in the Bi-2212 system.\(^6,7\)

Samples of \(\text{Bi}_2\text{Sr}_2\text{Ca}_{1-x}\text{Y}_x(\text{Cu}_{1-y}\text{Zn}_y)\text{O}_{8+\delta} \) were prepared by the conventional solid-state reaction method.\(^5\) μSR measurements were carried out at the RIKEN-RAL Muon Facility in the UK. A spin-polarized pulsed surface muon beam with a momentum of 27 MeV/c was used.

Figure 1 shows the temperature dependence of the zero-field (ZF) μSR time spectrum of the Zn-substituted sample with \(x = 0.3125, y = 0.025 \) in which the high-Tc SC is anomalously suppressed.\(^5\) The absence of the statically ordered state of the Cu spins in the Bi-2212 system is contrary to the case of the La-124 systems in which long-range magnetically ordered states have been observed.\(^2-4\)

Figure 2 shows the \(x \) dependence, namely, \(p \) dependence of the depolarization rate of the Zn-substituted samples at 0.30 and 1.8 K. Large depolarization rates at \(x \geq 0.5 \) are due to the appearance of a magnetically ordered state of the Cu spins in the underdoped region. The depolarization rate decreases rapidly with increasing \(p \) and increases anomalously around \(p = \frac{1}{8} \) per Cu. This result indicates that the Cu-spin fluctuations slow down around \(p = \frac{1}{8} \) per Cu. This relationship between the slowing-down behavior of the Cu spins and the suppression of SC is analogous to that of the 1/8 effect established in the La-124 systems.\(^3,4\)

Therefore, in conjunction with the results of the transport measurements,\(^5\) we can conclude that the 1/8 effect is likely to exist in the Bi-2212 system as well. This conclusion supports the suggestion that the 1/8 effect is a common feature in the high-Tc SC oxides which have a CuO₂ plane.

References

* Graduate School of Engineering, Tohoku University

Fig. 1. Temperature dependence of the zero-field μSR time spectrum of \(\text{Bi}_2\text{Sr}_2\text{Ca}_{1-x}\text{Y}_x(\text{Cu}_{1-y}\text{Zn}_y)\text{O}_{8+\delta} \) with \(x = 0.3125, y = 0.025 \) where the high-Tc superconductivity is anomalously suppressed.\(^5,7\)

Fig. 2. \(x \) dependence of the zero-field muon spin depolarization rate of \(\text{Bi}_2\text{Sr}_2\text{Ca}_{1-x}\text{Y}_x(\text{Cu}_{1-y}\text{Zn}_y)\text{O}_{8+\delta} \) with \(y = 0.025 \) at 0.30 and 1.8 K. Dotted lines show the \(x \) dependence of \(T_c \) with \(y = 0.025 \) determined by Akoshima et al. from the transport measurements.\(^5\)
LF-μSR Studies of the Vortex State in Bi$_2$Sr$_2$CaCu$_2$O$_x$

N. Nishida, W. Higemoto, I. Watanabe, R. Kadono, K. Nagamine, T. Mochiku, K. Hirata,*1 R. Sugano,*2 and T. Onogi*2

The behavior of flux and vortex lines in high-temperature copper-oxide superconductors (HTSC’s) have been intensively studied from both academic points of view and the viewpoint of practical application purposes. In HTSC’s, due to their short coherent length, the two-dimensional nature of their superconductivity and the high superconducting transition temperature, thermal fluctuation effects are remarkable and $H_c2(T)$ cannot be well defined, unlike conventional type-II superconductors. In Bi$_2$Sr$_2$CaCu$_2$O$_x$ (Bi-2212), the Josephson coupling between superconducting CuO$_2$ layers is so weak that in magnetic fields higher than 0.03-0.05 T, the interlayer Josephson coupling is destroyed and a “pancake” vortex is formed in each layer, as schematically illustrated in Fig. 1. The pancake vortices attempt to find stable places in each CuO$_2$ layer, interacting magnetically with each other. As a result, the flux lines tend to bend in Bi-2212. The Josephson plasma resonance experiments have revealed the degree of this bending of flux lines.\textsuperscript{1) Below 20-30 K, the pancake vortices are static and exhibit a vortex glass state. At higher temperatures, the vortices become mobile and a vortex liquid state has been proposed on the basis of transport and magnetization measurements. This behavior has been studied by the tranverse magnetic field μ^+ spin rotation methods (TF-μ+SR) by Lee et al.\textsuperscript{2) It is important and interesting to measure the characteristic time of flux line motion in the vortex liquid state. However, the TF-μ+SR method is not able to determine whether the origin of transverse μ^+ spin depolarization is due to the static inhomogeneity of internal magnetic fields or due to the dynamic fluctuations. We have calculated the transverse component, B_{ab}, of the internal magnetic fields in Bi-2212 in the vortex state, as depicted in Fig. 1 in the magnetic fields of 0.03 T and 0.05 T applied perpendicular to the c-plane at various temperatures by computer simulation. The average B_{ab} values have been calculated as $4 \sim 9 \times 10^{-4}$ T with increasing temperature from 4.2 K to 80 K. If this magnitude of B_{ab} exists and fluctuates dynamically, then the characteristic fluctuating time can be determined by the longitudinal magnetic field μ^+ spin relaxation method (LF-μ+SR) from an exponential damping of the μ-e decay asymmetry. Thus, we performed LF-μ+SR on single crystals of underdoped Bi-2212 ($T_c = 83$ K) with high statistics ($\sim 10^8$ events in each μ^+SR spectrum) at the RIKEN-RAL Muon Facility. Figure 2 shows the time evolution of the muon spin polarization under a LF of 0.02 T at 100 K and 60 K.

0.02 T at 100 K (normal phase) and 60 K (superconducting phase and immediately above the vortex lattice melting temperature, T_m). The T_m is determined to be 55 K at 0.02 T by the magnetization measurement. We observed no significant differences between the data. This implies that the timescale of the vortex dynamics is beyond the time range of the LF-μ+ measurements, that is, the fluctuating time is either fast or static. A detailed analysis is now in progress.

References

*1 NRIM
*2 Advanced Research Laboratory, Hitachi Ltd.
Current-Induced Vortex Motion in Type-II Superconductors

W. Higemoto, I. Watanabe, K. Nagamine, S. Kuroda,* and K. Takita*

One of the central issues with regard to type-II superconductors is the structure and dynamics of the flux-line lattice (FLL). In the mixed state of type-II superconductors, an external applied electric current imposes the Lorentz force on flux lines, and the motion of the FLL is inhibited by the randomly distributed pinning potential of material defects. Beyond a critical current density, FLL can become free of its pins and flow. This process is complex and its microscopic nature is not well understood. In particular, little is known about the detailed structure and dynamics of FLL as it becomes depinned and flows in response to applied current. Theoretically, the moving glass state is predicted under an external driving force. For example, Koshelev and Vinokur predict the existence of a dynamic phase transition at a characteristic current \(j = j_t \) from the motion of the amorphous vortex configuration ("plastic flow") at \(j < j_t \) to the motion of the vortex crystal at \(j > j_t \) ("elastic flow").

We report the muon spin rotation experiment on high-quality single crystals of \(2H-NbSe_2 \). The \(\mu^+\)SR experiment was carried out at Port 2 of the RIKENRAL Muon Facility in the UK. Current flow was synchronized to the pulsed muon beam to prevent an excess Joule heating.

Under the current of 500 A/cm\(^2\), we did not observe any significant effect of the current in \(\mu^+\)SR spectra for the normal phase of \(2H-NbSe_2 \). Thus, we consider that the magnetic field induced by a current of 500 A/cm\(^2\) is negligibly small for our measurements of \(2H-NbSe_2 \).

Figure 1 (a) and (b) show the \(\mu^+\)SR spectra under a field of 100 G of \(2H-NbSe_2 \) in the absence of current. As shown in Fig. 1 (a) (normal phase) and (b) (superconducting phase), fast dumping of the muon spin rotation amplitude was observed only in the superconducting phase due to a field distribution in the vortex state. We have fitted the data by the following simple muon spin relaxation function:

\[
P(t) = (A \exp(-\sigma^2 t^2) + B) \cos(\omega t + \phi) \quad (1)
\]

The solid lines in Fig. 1 are fitting results. By fitting the data, we obtained an asymmetry value of sample A \(\sim 0.013 \) and one of background B \(\sim 0.010 \). In the superconducting phase, we found that the relaxation rate under a current of 500 A/cm\(^2\), \(\sigma_{ON} = 0.78(5) \mu s^{-1} \), did not differ from that without current, \(\sigma_{OFF} = 0.80(5) \mu s^{-1} \), within the error. This result indicates that the structures of FLL are nearly the same and the flow velocities of FLL are slower than 1 m/s.\(^2\) Elastic flows of FLL have been observed under a current greater than \(\sim 30 \) A/cm\(^2\) in \(2H-NbSe_2 \) by Yaron et al.\(^3\)

If we assume that our experiment is also in the elastic flow region and that the velocity of FLL is slow, the structure of FLL under the current was not significantly different from that without current.

In conclusion, our result shows no significant difference in the structure and dynamic behavior of FLL between the presence and absence of an external current in the time window of \(\mu^+\)SR in \(2H-NbSe_2 \).

References
μSR Study on the Spin Dynamics of Kagomé Antiferromagnet, m-MPYNN·BF₄

I. Watanabe, N. Wada, K. Awaga,* S. Ohira, and K. Nagamine

The two-dimensional organic antiferromagnet, m-MPYNN·BF₄, has a radical with $S = \frac{1}{2}$ on each unit molecule which forms the Kagomé lattice.¹) Two radicals form a dimer spin state with $S = 1$ through the intradimer ferromagnetic interaction $2J_0/k_B = 23.3$ K and two dimer spins couple through the interdimer antiferromagnet interaction $2J_0/k_B = -3.1$ K.²) Wada et al. suggested, based on a susceptibility measurement, that the dimer spin system showed a spin-gap state with a nonmagnetic ground state.³) We have carried out μSR measurements at the RIKEN-RAL Muon Facility in the UK using an intense pulsed muon beam in order to investigate the magnetic properties of the dimer spins.

Figure 1 shows the zero-field μSR time spectrum of m-MPYNN·BF₄ obtained at 0.30, 165 and 270 K. The total number of muon events was 100 million. The recovery of the asymmetry parameter is clearly observed at around $t = 8 \mu$s at low temperatures. This indicates that the muon spin mainly depolarizes due to randomly distributed static internal fields.

The time spectrum was analyzed using the function $e^{-\lambda t} \times G_Z(t, \Delta)$. The first term represents the influence of the dynamically fluctuating dimer spin. The second term is the static Kubo-Toyabe function which represents the muon-spin depolarization due to nuclear dipole fields.⁴)

Figure 2 shows the temperature dependence of the dynamic muon spin depolarization time, τ. The depolarization time is constant below about 20 K where two radicals form a dimer spin state, showing that the dimer spin fluctuation frequency becomes also constant below this dimerization temperature. The depolarization time exhibits an almost linear temperature dependence above 20 K.

After the dimer spin state is formed, quantum spin fluctuation due to the intradimer ferromagnetic interaction between two radicals is expected. This fluctuation frequency depends upon the exchange energy $2J_0$, according to the wave function of quantum mechanics. Since the ferromagnetic exchange energy is $2J_0/k_B = 23.3$ K,²) the quantum fluctuation overcomes the thermal fluctuation of the radical spins below the dimerization temperature. When the ferromagnetic quantum exchange fluctuation is dominant, the fluctuation frequency of the dimer spin is ruled by this quantum fluctuation and is expected to be independent of temperature. Therefore, the constant fluctuation frequency observed below about 20 K indicates that the dimer spin fluctuation is dominated by the intra-dimer ferromagnetic quantum fluctuation.

References
Radio-frequency Muon Spin Resonance of a Haldane-gap System NiC$_2$O$_4$ 2·(2-methylimidazole)

A. Fukaya, I. Watanabe, S. Ohira, and K. Nagamine

Low-dimensional quantum spin systems with antiferromagnetic interactions, e.g., the Haldane-gap and spin ladder systems, have attracted much attention. Since these systems possess a nonmagnetic singlet ground state with an energy gap, it is expected that muon spin relaxation cannot be observed at low temperatures. In many compounds, however, an enhancement of muon spin relaxation was observed at low temperatures. In order to clarify the origin of this anomalous enhancement, it is important to examine the spin susceptibility at the muon stopping site. If implanted muons do not affect the magnetic property of a sample, the spin susceptibility at the muon site should follow the bulk susceptibility. We have measured the muon spin resonance with a radio-frequency field (RF-μSR) for a Haldane gap system NiC$_2$O$_4$ 2·(2-methylimidazole) in which the anomalous enhancement of muon spin relaxation was observed at low temperatures.1

We used the powder sample of NiC$_2$O$_4$ 2·(2-methylimidazole). RF-μSR measurements were performed using a pulsed surface muon beam at the RIKEN-RAL Muon Facility in the UK. We fixed the frequency at 52.800 MHz and swept the longitudinal field (LF). The resonance amplitude is defined as $A_{\text{on}}/A_{\text{off}}$, where $A_{\text{on,off}} = (N_{\text{F,off}} - N_{\text{B,off}})/(N_{\text{F,off}} + N_{\text{B,off}})$. $N_{\text{F,off}}$ and $N_{\text{B,off}}$ denote the integrated positron-count rate in forward and backward directions, respectively, with the RF power on or off.

The LF dependence of the resonance amplitude (resonance curve) is shown in Fig. 1 (a). As a reference, the temperature dependence of the bulk susceptibility, χ, is shown in the inset. χ includes the Curie-Weiss term due to impurities; the bulk susceptibility corrected by the Curie-Weiss term, χ_{corr}, is shown by the solid curve. The width of the resonance curve increases and the amplitude decreases with decreasing temperature. It is known that the presence of longitudinal or transverse relaxation increases the width and reduces the amplitude of the resonance curve. The change of the width and amplitude at low temperatures suggests that the longitudinal or transverse relaxation is enhanced with decreasing temperature, which is consistent with the previous results of muon spin relaxation measurements.1 We fitted the LF dependence of the resonance amplitude by a Lorentzian function. The shift of the resonance field, K, obtained by fitting, is shown in Fig. 1 (b). K is negative. With decreasing temperature, K increases and shows a peak around 50 K.

If we assume the existence of a temperature-independent shift of $\sim-0.025\%$, K seems to show a linear relation with χ_{corr}, as shown in the inset of Fig. 1 (b). This means that K follows the bulk susceptibility. However, the temperature independent shift of $\sim-0.025\%$ is much higher than the well-known chemical shift. The origin of the shift has not yet been clarified.

In order to clarify the whole picture of the anomalous enhancement of muon spin relaxation of quantum systems, further study is necessary.

References

Muon Spin Resonance Study on an Organic Radical TEMPO Derivative

S. Ohira, T. Ishida,* T. Nogami,* I. Watanabe, and K. Nagamine

Organic radical magnets with a 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO) group have been developed, and their magnetic properties have been studied by various methods.1,2) The crystal structures of these systems are known to have a strongly two-dimensional (2D) arrangement of nitronyl radicals, which are localized on each N-O site and contribute to the magnetism.

We have previously carried out muon spin relaxation (μSR) studies on some TEMPO derivatives in order to microscopically observe magnetic transition and critical phenomena.3,4) However, the μSR time spectra of organic materials are sometimes difficult to interpret because it is suggested in general that a muonium or muonium-like radical state tends to form in molecular-based materials, namely, muons experiencing large hyperfine fields exist. These components are the so-called paramagnetic muons. In order to clarify the muon sites in the TEMPO derivatives and to observe behavior for just a diamagnetic muon by distinguishing it from the paramagnetic one, a muon spin resonance study with a radio-frequency field (RF-μSR) was carried out on 4-(p-chlorobenzylideneamino)-TEMPO (Fig. 1).

The experiment was carried out at the RIKEN-RAL Muon Facility in the UK. Single crystals were prepared and mounted on a mylar sheet so that the a-axis was perpendicular to the longitudinal field, \(H_0 \), which was applied along the initial spin direction of the muon. The RF field was applied perpendicular both to \(H_0 \) and to the a-axis with a frequency of 52.8 MHz.

The muon spin resonance in a diamagnetic environment was observed in the time evolution of the muon spin polarization. Figure 2 shows the resonance curves at 2.5 K, 5 K and 270 K. The double ratio is defined as \(A^{\text{on}}/A^{\text{off}} \), where \(A^{\text{on}} \) and \(A^{\text{off}} \) are the asymmetries under the conditions where the RF power is on and off, respectively. One resonance peak was observed at each temperature, and a shift of the peak position was observed. The shift provides information about the hyperfine field at the muon site, \(A_{\mu} \). Although some possible positions of the diamagnetic muon are suggested from theoretical calculations,5) no fine structures were observed in the resonance curves. The observed shift is expected to be a paramagnetic shift. The hyperfine field at the muon site was found to be approximately 115 G/\(\mu_B \) from the plot of the shift against the susceptibility (K-\(\chi \) plot). The order of the hyperfine field is comparable with the internal magnetic field observed in our previous ZF-μSR (≈230 G),3) though the hyperfine field value is half that of the internal field value.

References

* University of Electro-Communications
Intra- and Inter-molecular Electron Transfer in Cytochrome c and Myoglobin Observed by the Muon Spin Relaxation Method

Electron transfer processes in macromolecules, such as the transfer in proteins, are an important part of many biological phenomena. In order to understand the details of electron transport it is very important to use methods that provide information at a microscopic level.

Among various types of proteins, cytochrome c has attracted much attention, since it plays an essential role in the respiratory electron transport chain in mitochondria, occupying a position next to the final process of the cycle, in which it transfers electrons to the surrounding oxidase complexes. Also, myoglobin is known to serve an important role in oxygen transport and it has a basic molecular structure similar to an electron-transfer protein.

In order to obtain microscopic information on electron transfer in the macromolecule, the muon spin relaxation (μSR) method offers great potential. During the slowing process, the injected μ^+ picks up one electron to form a neutral atomic state called muonium, which is in many ways analogous to a hydrogen atom. The muonium is then thermalized followed by chemical bonding to a reactive site on the molecule. Then, depending upon the nature of the molecule, the electron brought-in by the μ^+ can take on several characteristic behaviors, including localization to form a radical state and/or a linear motion along the molecular chain. These behaviors, by setting a time origin of electron movement, can be detected most sensitively by measuring the spin relaxation process of the μ^+, which occurs through a magnetic interaction between the μ^+ and the moving electron produced by the μ^+ itself, using the μSR method.

Progress has been made in the theoretical understanding of this paramagnetic relaxation process by Risch and Kehr who considered the direct stochastic treatment of the random walk process of a spin which is rapidly diffusing along a topologically one-dimensional chain. An error-function-type longitudinal relaxation function (hereafter called the R-K function), $G(t) = \exp(\Gamma t) \text{erfc}(\Gamma t)^{1/2}$, was proposed for $\lambda t_{\text{max}} \gg 1$, where λ is the electron spin flip rate, t_{max} the experimental time scale and Γ a relaxation parameter. In this theoretical treatment, Γ is proportional to $1/B_{\text{ext}}$.

Experiments on the μ^+ relaxation in cytochrome c and myoglobin have been conducted using an intense pulsed beam (70 ns pulses at 50 Hz repetition rate) of 4 MeV μ^+ at the RIKEN-RAL Muon Facility at the Rutherford Appleton Laboratory, UK. The cytochrome c used here is Fe(3+) type in a polycrystalline powder form extracted from horse heart (Wako Chemical product), while myoglobin was extracted from horse muscle (Sigma Co., Ltd.).

At each of the measurement temperatures, the μ^+ relaxation function was found to have an external field dependence in the cases of cytochrome c with Fe(3+) and myoglobin. The observed relaxation functions $G(t)$ were fitted with the R-K function, and the longitudinal relaxation parameter Γ obtained at various temperatures were seen to decrease monotonically with increasing B_{ext}. On closer inspection of the B_{ext} dependence of Γ, there were two components: (1) a region of weak field dependence (lower field) and (2) a $(B_{\text{ext}})^{-1}$-dependent region (higher field). The latter region exhibits the characteristic μ^+ spin relaxation behavior due to the linear motion of a paramagnetic electron. The critical field (hereafter, we refer to this as the cutoff field) where the second region takes over from the first region has a significant temperature dependence; the cutoff field is seen to reduce with decreasing temperature.

![Fig. 1. The upper plot shows the temperature dependence of the parallel diffusion rate of an electron in cytochrome c and myoglobin derived from the B$^{-1}$-dependent part of the relaxation parameter. The lower plot shows the perpendicular diffusion rate, derived from the cutoff field, plotted against inverse temperature.](image)
All of these results lead to the following microscopic picture of the electron transfer process for the muon-injected electron in cytochrome c and myoglobin.

1) Topologically linear motion exists along the chain of the cytochrome c.

2) The intersite diffusion rate along chain D\textsubscript{||}, which can be obtained from the measured \(\Gamma \) and the hyperfine coupling constant (500 MHz) estimated from the recovery curve of the initial asymmetry, becomes of the order of \(10^{12} \) rad/s and almost temperature independent (Fig. 1).

3) The cutoff process represents departure on a long time scale from the topologically one-dimensional diffusion which occurs on a short time scale. Depending upon the temperature region, the obtained \(D_\perp \) in cytochrome c is dominated by two different processes, as seen in the temperature dependence (Fig. 1); the characteristic change at 200 K of the \(D_\perp \) seems to be related to the well-known structural change of some proteins, which has been suggested to be a glass-like transition. On the other hand, \(D_\perp \) in myoglobin shows only one component, reflecting the different protein dynamics of this molecule for interchain electron transfer.

The most important unknown pieces of information are the distribution of the locations of the \(\mu^+ \) bonding sites and the corresponding electronic structure around the \(\mu^+ \) at the site where the electron begins its linear motion. For this purpose, as reported later, muon spin RF resonance has been conducted on the \(\mu^+ \) in both cytochrome c and myoglobin.

References

3. Radiochemistry and Nuclear Chemistry
In-beam Mössbauer Study of 57Mn/57Fe in Si Following Projectile Fragmentation and Implantation

A radioactive isotope beam (RI beam) produced as a secondary beam after projectile fragmentation of nuclei is becoming very attractive in materials science research. The combined on-line technique of ion implantation using an energetic RI-beam and Mössbauer spectroscopy provides unique features in contrast to conventional-implantation Mössbauer-effect studies and in-beam Mössbauer spectroscopy. The implantation energy of the secondary RI-beam reaches GeV levels, i.e., several orders of magnitude higher than those used in conventional implantation. Thus, it is possible to implant Mössbauer probes into hundreds of μm depth with a straggling range of a few μm. In addition, we may be able to vary the range of the measuring time after implantation using different nuclear probes. In the case of 57Mn, for instance, which decays to 57Fe with a half-life of 1.45 min, a Mössbauer measurement can be started about 2 minutes after implantation.

In the present study, 57Mn ions were implanted into a lightly B-doped FZ-Si crystal. We have succeeded in obtaining well-resolved Mössbauer spectra of 57Fe in Si following the decay of 57Mn between 30 and 296 K.

A secondary RI-beam of 57Mn was produced by a projectile-fragmentation reaction between a 59Co primary beam and a 1-mm-thick Be production target. The energy and intensity of the primary beam were 80 MeV/nucleon and about 200 enA, respectively. The 57Mn beam was directly implanted into the Si sample after passing through an Al degrader. The total dose was about 2×10^{10} 57Mn ions. Two parallel-plate avalanche counters (PPAC) with 57Fe-enriched stainless-steel foil, which were mounted on the Mössbauer transducers, were used for γ-ray detection.

According to TRIM calculation, the projected range of 57Mn nuclei was estimated to be 150 μm from the surface. The vacancy concentration was 6.7×10^{-4}/Å/ion, which was much lower than that in the case of the low-energy implantation. 57Fe Mössbauer spectra in Si were measured at different temperatures between 30 and 296 K, as shown in Fig. 1. All spectra could be fitted by two singlets of components (A) and (B). The component (A) at 296 K, which has an isomer shift of 0.86(2) mm/s and an area fraction of 0.59, can be assigned to interstitial Fe atoms in Si. The same component was also observed in an in-beam experiment using Coulomb excitation and recoil implantation. On the other hand, the component (B) has an isomer shift of -0.05(4) mm/s, which can be attributed to Fe atoms at the substitutional sites in Si by the calculation of

δ(Fe_{sub.}) = -0.064 mm/s. The area fraction of the component (A) did not change at temperatures below 296 K. This means that 60% of the 57Fe atoms were ultimately at the interstitial sites in Si and 40% at the substitutional sites.

The FWHM of component (B) increased with decreasing temperature below 150 K, so it was considered to have a tendency to be a doublet at low temperatures due to the interaction with vacancies introduced by irradiation with 57Mn ions. It is interesting to note that none of the spectra measured in the present study contain the doublet corresponding to an "amorphous" state observed in a former study (δ = 0.23(1) mm/s, $\Gamma = 0.74(2)$, $E_Q = 0.83(1)$ mm/s at 300 K). The difference seems to be either due to the different time range of measurement after the implantation or due to different defect structures around the probes.

Since a secondary RI beam produced via a projectile-fragmentation reaction still maintains a large momentum from the energetic primary beam, one might think that the measured spectrum would be strongly affected by the radiation damage produced.

* Shizuoka Institute of Science and Technology
during the slowing process of such energetic ions in the probes. However, we observed well-resolved spectra, which can be analyzed in terms of two components corresponding to the Fe atoms at the interstitial and substitutional sites. Accordingly, this method offers easy analysis to a wide variety of Mössbauer spectroscopic probes, which provide atomistic information regarding physical quantities at different types of sites of the probe atoms in a lattice immediately after implantation.

References
Biological Transport of the Various Trace Elements in the Pregnant Rats and Fetus

S. Enomoto, R. Hirunuma, H. Tamano, and Y. Kawamura

The placenta functions as a barrier between fetus and mother, providing regulation of heat exchange, respiration, nutrition, and excretion for the fetus. There is limited information on the transport of trace elements from the mother to the fetus.

The multitracer technique is useful tool for metabolic studies of trace elements and can contain many isotopes simultaneously. In this paper, the multitracer technique was applied to study the maternal transfer of trace elements via the placenta to the fetus.

The radioactive multitracer solution was prepared from an Ag target irradiated with a 135 MeV/nucleon 12C, 14N, or 16O beam accelerated in the RIKEN Ring Cyclotron. After chemical separation, the multitracer physiological saline was injected to 17 days pregnant Wistar rats. The pregnant rats were sacrificed under ether anesthesia at 3, 12, 24 and 48 hours after injection. The maternal bloods, placentas, fetuses, fetus brains, and amniotic fluids were taken out from the rats and collected. The radioactivities were determined by γ-ray spectrometry using pure Ge detectors.

In this experiment, the multitracer solution contained the following nuclides: 7Be, 22Na, 46Sc, 48V, 52Mn, 59Fe, 56Co, 65Zn, 67Ga, 74As, 75Se, 84Rb, 85Sr, 87Y, 88Zr, 90Tc and 103Ru. We examined the time dependence of the uptake of various elements. From these results, we observed a significant difference in time dependency between each element. The elements were divided into three groups (Fig. 1). In the first group, Be, V, As, Ru, Y, Zr and Tc were transported to the placenta from the maternal blood and only accumulates in the placenta. In the second group, Na, Sc, Co, Ga, and Sr were transported to the placenta from the maternal blood and accumulates in the placenta, fetus, and amniotic fluid. In the third group elements, Mn, Fe, Se, Zn, and Rb were transported to the placenta from the maternal blood and mainly accumulates in the fetus. Based on the above results, it was considered that the placenta is highly selective because essential elements such as those in the third group are readily transported across placenta/membranes to the growing fetus, whereas nonessential metals such as those in the first group hardly penetrated the placental barrier that protects the fetus from toxic effects.

Fig. 1. Transport of trace elements from the maternal blood to the placenta and fetus. Chemical forms of various tracers in saline are indicated.
Zinc is an important nutrient for both normal and malignant tissues. The growth of malignant tissue is effectively inhibited by zinc deprivation. Therefore, a host response of zinc mobilization might influence the proliferation of malignant tissue, and a competition for zinc might occur between host and malignant tissue. Clarification of the zinc mobilization pattern after tumor transplantation is important for an understanding of zinc homeostasis. In the present study, the zinc uptake in tumor-bearing murines was examined. Furthermore, uptakes of other trace elements in tumor-bearing mice were also examined by the multitracer technique.

Male rats of the Donryu strain (160-180 g) were subcutaneously (s.c.) transplanted with ascitic fluid from rats with hepatoma \(1 \times 10^7/\text{ml}, 0.2 \text{ ml/rat}\) and male mice of the ddY strain (25-30 g) were s.c. transplanted with Ehrlich carcinoma cells \(1 \times 10^7/\text{ml}, 0.2 \text{ ml/mice}\). Ten days after the tumor transplantation, radiolabeled zinc chloride \(^{65}\text{ZnCl}_2\) purchased from Du Pont/NEN Research products, Boston, MA in 0.1 M acetate buffer (pH 4.0) was intravenously (i.v.) injected into the control and tumor-bearing murines. One hour after the injection, blood was drawn and the tissues to be studied were excised. The radioactivity level of the specimens was determined using a \(\gamma\)-counter. As shown by the data in Fig. 1, one hour after the i.v. injection, the \(^{65}\text{Zn}\) uptake by the tumor was lower than that by liver, kidney and pancreas. On the other hand, the hepatic \(^{65}\text{Zn}\) level in tumor-bearing rats was significantly higher than that in control rats, while the blood \(^{65}\text{Zn}\) level in the former was significantly lower than that in the latter. Similar results were also observed in tumor-bearing mice.

The uptake of other radioactive metals, which were prepared as a multitracer solution, was determined in Ehrlich carcinoma-bearing and control mice (7 days after transplantation) 3, 24 and 48 hours after the injection. The multitracer solution contained radioactive Be, Sc, Zn, Rb, Y, Zr, Te, Ba, Hf, Ir, Pt, Ce, Eu, Gd, Yb and Lu. The \(\gamma\)-ray spectra in excised tissues were measured using a germanium detector. At 48 hours after the injection, the uptake of some radionuclides, e.g., Sc and Y, by the tumor was relatively high compared to that in normal tissues such as the liver, muscle and blood.

In conclusion, these results suggest that, in tumor-bearing murines, the Zn uptake is preferentially increased in the liver. Moreover, using the multitracer technique, some rare earth elements were observed to accumulate more in tumor tissue than in normal tissues.

References
Biological Tissue Distribution of Vanadium in STZ-Induced Diabetic Rats: Simultaneous Tracing of V, Cr, Mn, Fe, Co, Zn, and Se Using a Radioactive Multitracer

H. Yasui, T. Takino, J. Fugono, R. Hirunuma, S. Enomoto, and H. Sakurai

The biological actions of vanadium have been investigated by many researchers. The insulin-mimetic effect of vanadium is the most remarkable among its several biological actions. Recently, vanadyl ions (+4 oxidation state of vanadium) and its complexes have been shown to normalize the blood glucose levels in streptozotocin-induced diabetic rats (STZ-induced diabetic rats). We have carried out experiments to find vanadyl complexes with more effective insulin-mimetic activity and prepare less toxic complexes using various types of coordination modes.\(^1\)

Vanadyl-methylpicolinate complex (VO-MPA) containing VO(N₂O₂) exhibited more effective and longer lasting insulin-mimetic activities and less toxicity after oral administration than other complexes in the in vivo experiments.\(^2\)

In the present investigation of the metabolism of trace elements, we studied the biological tissue distribution of vanadium as well as other trace elements in normal, STZ-induced diabetic, and vanadyl sulfate (VS)-administered rats, to elucidate the relationship between the blood glucose normalizing effects and global disposition of trace elements including vanadium. In this experiment, we used VS as a positive control compound to examine the effects of vanadium on the tissue distribution of trace elements before testing VO-MPA.

A multitracer solution containing the radioisotopes of 20 elements was prepared from an Ag target irradiated by a heavy-ion beam of 135 MeV/nucleon accelerated by the RIKEN Ring Cyclotron. Vanadyl sulfate (VOSO₄ \cdot 4H₂O) was purchased and used as the positive control compound. Male Wistar rats (body wt. \(\sim\)250 g) were divided in three groups, that is, normal, STZ-induced diabetic, and VS-administered groups. Rats treated with VS were administered three intraperitoneal (i.p.) injections of VOSO₄ at doses of 10 mgV/kg body weight once a day for three days. The multitracer solution was injected intraperitoneally (1.0 ml/rat). The rats were sacrificed at 12, 24 and 72 hrs after the administration, and blood samples were collected and selected organs (liver, kidney, muscle, and bone) were removed from the rats in each group (n = 4). The radioactivity levels in their blood, liver, kidney, muscle, and bone was determined by \(\gamma\)-ray spectrometry. The observed \(\gamma\)-rays were analyzed in terms of their energies and half-lives. The individual behavior of Be, Na, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Tc, Ru, and Rh was examined. The obtained time courses of amount of each of the trace element in each organ were evaluated by noncompartmental analysis (moment analysis). Furthermore, we developed a novel evaluation method to directly compare the biodistribution of trace elements in normal rats with that in STZ-induced diabetic rats, using the ratio plots of tissue uptake (\% of dose) of every trace element.

The mean tissue uptake rates of \(^{48}\)V by the four tissues and blood of the rats were determined. The highest uptake of \(^{48}\)V was observed in the kidney of all groups. The uptake rates of \(^{48}\)V were observed to decrease with time except for that by the bone, which was increased at 72 hr in comparison with that at 12 and 24 hrs. These results are in good agreement with our previous pharmacokinetic analyses of the tissue distribution of vanadyl compounds by means of neutron activation analysis (NAA).

In addition, the amounts of other trace elements accumulated in the tissues were simultaneously determined by the radioactive multitracer technique. The effect of preadministered VS on the accumulation of trace elements in the tissues was most significant in the bone. These results suggest that the accumulation of vanadium in the body may alter the global disposition and tissue distribution processes of several trace elements. Therefore the relationship between the antidiabetic activity of the vanadyl compounds and the biobehavior of other essential trace elements must be clarified in detail.

References

Selenium is an essential element to mammals but poisonous at high doses.1 It was reported that Se exhibits a competitive or synergetic relationship with several elements such as Hg and Cd.2,3 Therefore, the distribution of other trace elements in various organs is expected to be influenced by the amount of Se fed to mammals. However, no systematic study has been reported on the behavior of trace elements in Se-deficient rats. This paper describes the uptake and distribution of trace elements in Se-deficient rats by the multitracer technique and instrumental neutron activation analysis (INAA).

Wistar male rats bred from fetal stage on a Se-deficient diet (produced by Oriental Yeast Co., Ltd.) were used in these experiments as Se-deficient rats. Control rats were fed with the Se-deficient diet supplemented with 0.2 ppm of Se (adequate level of Se for normal growth).

In the first experiment, a multitracer solution containing various kinds of radionuclides was prepared from an Ag target irradiated with 14N beam of 135 MeV/nucleon accelerated in the RIKEN Ring Cyclotron. The multitracer solution was injected intravenously into each rat. The Se-deficient and control rats were sacrificed at 3, 12, 24, and 72 hours after injection, and the radioactivities in the brain, liver, kidney, spleen, and testicles were measured using high-purity Ge detectors. The distribution of Se, Fe, and Zn in various organs of the rats was evaluated.

In the second experiment, the 12-week-old Se-deficient and control rats were sacrificed and the organs were obtained. Each organ was lyophilized, pulverized, and then irradiated with the thermal neutron flux of 1.5 × 10^{12} \text{n cm}^{-2} \text{s}^{-1} at F-24C in TRIGA II nuclear reactor of Rikkyo University.

Table 1 shows the Se, Fe, and Zn concentration in various organs of each rat determined by INAA. As for the Se-deficient rats, only a small amount of Se was found in all organs. Iron concentration in the liver and spleen of Se-deficient rats was higher than that of control ones. However, no difference in the concentration of Zn between Se-deficient and control rats was observed.

Figure 1 shows the uptake of Se, Fe, and Zn in various organs of the Se-deficient and control rats, as determined by the multitracer technique. Influences due to Se-deficiency were observed on the distribution pattern of Se and Fe in various organs. The uptake of Se was higher in the brain of the Se-deficient rats than in that of the control ones. In the liver, the uptake of Se in the control rats was higher than that in the Se-deficient ones. In the case of control rats, the uptake of Se in the liver was much higher than that in the brain. However, the uptake in the liver was

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
 & Brain & Kidney & Liver & Spleen & Testicles \\
\hline
Se & 0.65±0.1 & 0.65±0.1 & 0.07±0.03 & 0.34±0.1 & 2.48±0.2 \\
Control & 1.02±0.1 & 7.9±1.0 & 3.1±0.3 & 2.34±0.2 & 10.3±1.4 \\
\hline
Fe & 160±24 & 258±26 & 452±45 & 143±241 & 150±13 \\
Se & 150±20 & 300±35 & 654±41 & 2434±247 & 157±10 \\
Control & 160±24 & 258±26 & 452±45 & 143±241 & 150±13 \\
\hline
Zn & 61±1 & 71±1 & 57±1 & 9±1 & 215±19 \\
Se & 61±1 & 71±1 & 57±1 & 9±1 & 215±19 \\
Control & 59±1 & 100±17 & 87±6 & 90±6 & 215±19 \\
\hline
\end{tabular}
\caption{Concentration (ppm) of Se, Fe, and Zn in various organs of Se-deficient and control rats.}
\end{table}

Fig. 1. Uptake of Se, Fe, and Zn in various organs of the Se-deficient and control rats.
almost comparative to that in the brain of Se-deficient rats. It is reported that a small quantity of Se fed to Se-deficient rats is absorbed preferentially in the brain over the liver.\(^1\) It is considered that the results described above are attributed to this reason. No difference was detected in the uptake of Zn between Se-deficient and control rats. On the other hand, uptake of Fe in Se-deficient rats was higher than that in control ones. The uptake of Fe in the liver of Se-deficient rats increased with time. The increase in Fe uptake by Se-deficient rats suggests an increase in Fe-containing proteins. The concentration of Fe-containing proteins, such as hemoglobin, transferrin, and ferritin was measured in the serum of Se-deficient and control rats. The concentration of ferritin in Se-deficient rats was found to be high. The increase in Fe uptake by Se-deficient rats caused an increase in the concentration of Fe-binding proteins, such as ferritin. We suggest that ferritin in excessive amounts promotes peroxidation of cell membranes that results in cell damage.

References
Selenium (Se) is the essential trace element that constitutes the active center of glutathione peroxidase (GSH-Px). It is believed that Se plays a protective role against oxidative stress in living organisms. On the other hand, it is known that Se interacts with other metal ions in biological systems. For example, the accumulation of iron (Fe) in Se-deficient rat liver, kidney, and spleen has already been reported in a previous paper, and we observed that Fe uptake increased in Se-deficient rat liver.\(^1\) However, the mechanism of Fe accumulation in the liver of Se-deficient rats has not yet been clarified. In living organisms, Fe constitutes the active center of catalase, cytochrome P-450, and xanthine oxidase, and is related to the digestion and synthesis of reactive oxygen species. Therefore, the change of in vivo redox reaction valence due to decreased GSH-Px activity is expected to cause the change of the Fe dynamics in Se-deficient rats.

In this experiment, using instrumental neutron activation analysis (INAA) and multitracer analysis (MTA), we examined the dynamics of metal ions which are related to in vivo redox regulation systems such as Se, Fe, manganese (Mn), cobalt (Co), and zinc (Zn) in liver cell fractions of Se-deficient rats.

Se-deficient and normal male Wistar rats (8 weeks old) were sacrificed by bleeding from the abdominal aorta under anesthesia. Subsequently, the liver was perfused with 0.9% NaCl. The liver was removed and homogenized with a threefold volume of 1.15% KCl. Then, nuclear (NU), mitochondrial (MT), microsomal (MC), and cytosolic (CS) fractions were separated by centrifugation. In the INAA experiment, each fraction was lyophilized. Then, an aliquot of each powdered fraction was weighed and sealed in polyethylene. Neutron irradiation was carried out in the TRIGA II nuclear reactor of Rikkyo University. Bovine liver (NBS SRM 1577) was used as a standard sample. In the MTA experiment, each cell fraction was prepared 2 days after intravenous administration of the multitracer. An aliquot of each wet fraction was put into a plastic tube. The \(\gamma\)-ray spectra of the INAA and MTA samples were measured with a high-purity Ge semiconductor detector equipped with a multichannel analyzer. In the present study, we focused our spectral analysis only on Se, Co, Mn, Zn, and Fe.

The Se contents of the separated fractions of the normal rats obtained by INAA were 2.5 ppm in MT, 1.5 ppm in MC, and 3.1 ppm in CS, respectively. In contrast, the Se contents in all the separated fractions of the liver homogenates of Se-deficient rats were below the detection limit, which was estimated to be 0.04 ppm in the dried sample as the upper limit for Se under the present experimental conditions. The peak identification of \(\gamma\)-ray spectra was based on a criterion of greater than 3\(\sigma\) (three times the standard deviation of the background counts).

The uptake of Se was determined using MTA. The results indicated that the uptake (percentage to the standard) of Se into each fraction of rat liver homogenates was not significantly different. This is believed to be due to the absence of a specific transportation system for Se.

The content of Co also decreased in Se-deficient rats compared with the normal ones, and this was believed to be due to the low content of Co in the diet. However, MTA data indicated that the uptake of Co increased in cell fractions other than CS, suggesting that the enhancement of the uptake was due to the supplement effect because of the insufficient content of Co in the Se-deficient diet.

The uptake of Mn into the MT, MC, and CS fractions of Se-deficient rats was lower than that of normal rats except for increased uptake into the NU fraction. The uptake of Zn into the CS fraction of Se-deficient rats decreased, although the uptake of Zn into the other fractions increased. The INAA data indicate that the contents of Mn and Zn in the MT and CS fractions of liver were lower in Se-deficient rats than normal rats. These two elements are known to be the active centers of Mn-SOD and Cu,Zn-SOD, and are located mainly in MT and CS fractions, respectively. The lower uptake and contents of Mn in the MT fraction and Zn in the CS fraction of Se-deficient rat liver may be responsible for the decrease of the SOD activity in these cell fractions.

The content of Fe significantly increased in Se-deficient rats, especially in the MC fraction. This is believed to be due to the change of activity of cytochrome P-450 which exists in the MC fraction. On the other hand, if the Fe existed as free-ion form (or could be coordinated by easily exchangeable ligand molecules), an increase of hydroxyl radical synthesis through the Fenton reaction and peroxidation of the lipid membrane could be expected. Although Fe uptake increased in the MC fraction of Se-deficient rat liver, its increment was not large (less than 0.2%).

References
Selenium (Se) is an essential trace element for mammals, and both inorganic and organic Se can be utilized as a nutritional source by the body. Inorganic Se in the form of selenite and selenate and organic Se in the form of selenocysteine (SeCys) are reduced by glutathione and glutathione reductase and metabolized by β-lyase, respectively, to the assumed key compound, selenide (H_2Se). Selenide is, then, utilized for the synthesis of selenoproteins or excreted in urine and/or by respiration after being methylated. On the other hand, selenomethionine (SeMet) taken up by the body is incorporated into general proteins without being distinguished from methionine or metabolized to selenide.

Our previous study showed that the chemical species and concentration of Se in the diet influence the concentration of Se in hair, blood, liver and kidneys. In particular, the Se concentration in hair, blood, liver and kidneys of rats fed with a SeMet-excessive diet was higher than that of rats fed with a selenite-excessive diet. Selenium has been known to interact with toxic heavy metals (e.g., Hg and Cd) and to decrease the toxicity of Se and other metals.

In the present study, effects of the chemical species and concentration of Se in the diet on the uptake, distribution and excretion of other metals (Mn, Co, Zn, Se and Hg) administered intravenously (iv) at a low dose, were examined by the multitracer technique. A multitracer solution containing radioisotopes of 17 elements (Be, Na, Ca, Sc, V, Cr, Mn, Fe, Co, Zn, Ga, As, Se, Rb, Y, Zr and Tc) was prepared from an Ag target irradiated with a heavy-ion beam of 135 MeV/nucleon accelerated by the RIKEN Ring Cyclotron. Then, the multitracer solution was mixed with a 203Hg solution, and administered iv to rats at a dose of 0.2 ml/rat.

Male rats of the Wistar strain (4 weeks old) were fed a Se-deficient (concentration of Se, less than 0.03 mg Se/kg diet), selenite-adequate (0.2 mg Se/kg diet), selenite-excessive (2.0 mg Se/kg diet), SeMet-adequate (0.2 mg Se/kg diet) or SeMet-excessive (2.0 mg Se/kg diet) diet for 2 weeks. At 6 weeks of age, all groups of rats were administered a multitracer solution containing 203Hg, and sacrificed 96 hr after the injection. The radio/activities in the organs (liver, kidneys, testes, spleen and brain), whole blood, plasma, hair, urine and feces were determined by γ-ray spectrometry and the observed γ rays were assigned in terms of their energies and half-lives to the individual behavior of Mn, Co, Zn, Se and Hg.

Table 1. Effect of dietary Se on uptake of tracers (Mn and Se) in the liver and kidneys.

<table>
<thead>
<tr>
<th>group</th>
<th>liver (% of recovery)</th>
<th>kidney (% of recovery)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se</td>
<td>Mn</td>
</tr>
<tr>
<td>Se-deficient</td>
<td>6.43 ± 0.07</td>
<td>5.16 ± 0.13</td>
</tr>
<tr>
<td>SeMet-adequate</td>
<td>7.99 ± 0.43*</td>
<td>8.12 ± 0.26*</td>
</tr>
<tr>
<td>Selenite-excessive</td>
<td>5.74 ± 0.22*</td>
<td>2.41 ± 0.20*</td>
</tr>
<tr>
<td>SeMet-adequate</td>
<td>7.31 ± 0.47</td>
<td>7.52 ± 0.05*</td>
</tr>
<tr>
<td>Selenite-excessive</td>
<td>5.58 ± 1.15</td>
<td>2.30 ± 0.19*</td>
</tr>
</tbody>
</table>

*Significant difference from the Se-deficient group at $p<0.05$ (n=3).

The behavior of radioisotope Se in each group showed that the 75Se distribution levels in the plasma, kidneys, testes, spleen and brain were inversely proportional to the dietary Se concentration. However, in the liver and blood, the 75Se recovery of the adequate groups were higher than that of the deficient group. These results were assumed to be caused by the dilution of 75Se with dietary Se. The behavior of the radioisotope Hg in each group showed that the 203Hg distribution level in the liver was inversely proportional to the dietary Se concentration.

With respect to Zn and Co, there was almost no influence on the uptake, distribution and excretion by the chemical species or concentrations of the dietary Se.

In the liver, kidneys, testes, spleen, plasma and feces, the distribution of Mn was similar to that of 75Se (Table 1). In other words, the Mn distribution level in the kidneys, testes, spleen, plasma and feces was inversely proportional to the dietary Se concentration. The mechanism underlying the similarity of the Mn uptake to that of 75Se is not clear at present because of the diverse biological functions of Mn in the body. However, the accelerated uptake of Mn may be related to oxidative stress under Se-deficient conditions.

Statistical analysis was performed by two-way ANOVA to compare the mean values between excessive or adequate and deficient groups.

In conclusion, although the effects of chemical species of dietary Se on the distributions of Zn, Co, Mn, Se and Hg were not observed, the effects of differing concentrations of dietary Se on the distributions of Se, Hg and Mn were demonstrated.

References
Uptake Rates of Trace Elements in Zn-Deficient Mice

T. Ohyama, T. Yoshida, M. Iwama, M. Yanaga, M. Noguchi,*1 T. Omori,*2 R. Hirunuma, and S. Enomoto

Zinc is one of the most essential trace elements in living organisms, and is second only to iron in abundance. More than 300 Zn-proteins have been identified, and deficiency of this element leads to various symptoms, such as growth retardation, hypogonadism, immunodeficiency and alopecia.

The concentrations of Zn and other trace elements in various organs and tissues of Zn-deficient and control mice were determined by instrumental neutron activation analysis (INAA).1,2) Zinc concentrations in the bone and pancreas of Zn-deficient mice were significantly lower than those in control mice, although those in the other organs and tissues of Zn-deficient mice were not. It is believed that Zn is supplied from the bone to other organs, where it supports various functions. The Co concentrations in Zn-deficient mice, in however, were significantly increased in all organs and tissues.

The multitracer technique is a suitable method to investigate the behavior of these trace elements in vivo. This technique enables us to trace various elements simultaneously under identical conditions. In this study, the uptake rates of trace elements in Zn-deficient mice were examined using the multitracer technique and compared with the results obtained previously using INAA.

Seven-week-old male mice of the ICR strain were purchased and fed with a commercial diet and tap water. After one week, they were divided into two groups. The Zn-deficient group was fed Zn-deficient diet and distilled water (Zn-deficient mice), and the control group was fed control diet (the control diet consisted of the raw materials for the Zn-deficient diet and Zn in the form of zinc carbonate) and distilled water (control mice). After three weeks, a multitracer physiological saline solution, which was prepared from Ag foil by a previously reported method,3) was injected intraperitoneally into each mouse (0.2 ml/mouse). Six, 24 or 72 hours after the injection, they were sacrificed under diethyl ether anesthesia. Then, the brain, liver, kidney, pancreas, spleen, testis, skeletal muscle, bone and skin were removed. These organs and tissues were weighed immediately and their radioactivity levels were measured with HP Ge detectors.

The uptake rates of various trace elements by the bone are shown in Fig. 1. The uptake rate of Zn 24 and 72 hours after the injection of Zn in Zn-deficient mice decreased significantly compared with that in control mice. On the other hand, the uptake rates of Zn in the liver, kidney and spleen in Zn-deficient mice were higher than those in control mice (data not shown), although the Zn concentrations determined by INAA in these organs of Zn-deficient mice were similar to those in control mice. These findings suggest that Zn is not only transferred from the bone to the liver, kidney and spleen, but is also taken up by these organs preferentially. Our previous works have shown that the Co concentrations in all the organs and tissues of Zn-deficient mice were higher than those in control mice.1,2) However, there were no significant differences in the uptake rates of Co in most of the organs and tissues between Zn-deficient mice and control mice. Our experiments using the INAA method showed that the accumulation of Co in Zn-deficient mice was saturated within a three-week treatment period. This might be one of reasons why no significant differences were recognized in the uptake rates of Co. It was found, furthermore, that the behavior of Sr was similar to that of V and Y in both Zn-deficient and control mice, as shown in Fig. 1. However, the uptake rate of the typical bone-seeking element, Sr, was decreased in Zn-deficient mice with the passage of time after injection.

References
Characterization of Manganese Transport System Using Cadmium-Resistant Metallothionein-Null Cells

T. Yanagiya, N. Imura,*1 S. Enomoto, Y. Kondo,*2 and S. Himeno

Cadmium (Cd) is an environmental pollutant that has adverse effects on cells and animals. Despite the toxic effects of Cd in animals being well documented, the transport mechanisms of Cd are poorly understood. Previously, we reported that a Cd-resistant cell line (Cd-rB5) derived from immortalized metallothionein (MT)-null fibroblasts exhibited a marked decrease in cadmium uptake as compared with that by the parental MT-null cells, suggesting that changes in the cadmium transport mechanism are responsible for resistance to cadmium.1) Furthermore, when a multitracer solution was added to the medium of Cd-rB5 and parental cells, only Mn uptake was reduced in Cd-rB5.2) However, the reduced uptake of Mn was observed only at low concentrations, suggesting that a high-affinity component of the Mn transport system is down regulated in Cd-rB5 cells.2)

In the present study, to investigate the substrate specificity of the high-affinity Cd-Mn transporter, we examined the inhibitory effects of metal ions such as Zn, Co, Ni, Fe and Cu on the cellular uptake of Cd and Mn in parental cells. As shown in Fig. 1, the uptake of Cd was inhibited by Zn as well as Mn, but not by Co, Ni, Fe and Cu. Similarly, cellular uptake of Mn was inhibited by Zn and Cd, but not by Co, Ni, Fe and Cu (data not shown). These results suggest that the high-affinity Cd-Mn transport system may, at least in part, involve the mechanism for Zn transport.

Recently, Gunshin et al. reported that a divalent metal transporter 1 (DMT1), a proton symporter, is involved in Fe, Zn, Mn, Cd, Co, Ni, Cu and Pb incorporation into the intestinal mucosa.3) Since DMT1 can transport metal ions only at acidic pH, we examined the pH dependency of Cd and Mn uptake by Cd-rB5 and parental cells. As shown in Fig. 2, maximal uptake of Cd and Mn was observed at neutral pH in parental cells, but no uptake of either metal was observed at physiological pH in Cd-rB5. These findings suggest that the high-affinity Cd-Mn transporter that is suppressed in Cd-rB5 cells is not DMT1.

Application of the multitracer technique has enabled us to detect the transport system for both Mn and Cd. Further study is needed to elucidate the molecular mechanisms of Cd and Mn transport.

References

Fig. 1. Effects of various metals on the uptake of Cd by parental cells. Parental cells were exposed to 0.03 μM [109Cd]-CdCl2 in the presence of 5-fold excess amounts of MnCl2, ZnCl2, CoCl2, NiCl2, FeSO4 or CuCl2 for 15 min. Significantly different values were obtained in the absence of metal inhibitors (**, p < 0.01).

Fig. 2. pH-dependency of Cd and Mn uptake by Cd-rB5 and parental cells. A: Cd-rB5 (closed circles) and parental cells (open circles) were exposed to 0.03 μM [109Cd]-CdCl2 for 15 min in the medium adjusted to a specific pH. B: Cd-rB5 (closed circles) and parental cells (open circles) were exposed to 0.03 μM [54Mn]-MnCl2 for 15 min in the medium adjusted to a specific pH.

*1 School of Pharmaceutical Sciences, Kitasato University
*2 Department of Urology, Nippon Medical School
Biobehavior of Multitracers in the Brain and Other Organs of 1-, 3- and 8-Week-Old Mice

T. Tarohda,*1 R. Amano, K. Sakamoto,*2 and S. Enomoto

Manganese, copper and zinc are known for their nutritional roles in animals; Mn definitely and possibly Cu and Zn have important biological functions in various metabolic processes.1) Homeostasis and interactions among these microessential elements during growth and developmental processes remain to be thoroughly studied. In this study, we focused on the transportation and retention of Mn, Zn, Se and Rb trace elements in the brain, liver, pancreas, spleen and kidney, utilizing a radioactive multitracer technique developed by us.

A carrier-free multitracer was obtained from an Ag (purity: more than 99.99%) target irradiated by the 12C-ion 135 MeV/nucleon beam from RIKEN Ring Cyclotron. The multitracer solution, which was prepared according to the method of Ambe et al.2-4) at the Radioisotope Center of Kanazawa University, contained 17 radioisotopes of 14 elements. The physiological saline solution (0.9% NaCl in 0.001N HCl, pH 2–3) containing the multitracer was prepared for intraperitoneal (ip) injection. Table 1 lists the radioisotope specifications of a 0.1-ml multitracer solution injected into a 5-g mouse.

Sixty normal ICR mice used in this experiment were divided into three groups according to the age (1-, 3- and 8-week-old mice) An appropriate amount of the multitracer was prepared for intraperitoneal injection. Table 1 lists the radioisotope specifications of a 0.1-ml multitracer solution injected into a 5-g mouse.

![Brain uptake rates for Se, Mn, Zn and Rb in normal mice at 6, 12, 24 and 48 hr after ip injection of the multitracer solution.](image)

Table 1. Specifications of a 0.1 ml multitracer solution injected into a 5-g mouse.

<table>
<thead>
<tr>
<th>Radioactive tracer</th>
<th>Half life (d)</th>
<th>Radioactivity (kBq)</th>
<th>Estimated mass (µg)</th>
<th>Chemical form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1083Rb</td>
<td>53.29</td>
<td>3.669</td>
<td>0.28</td>
<td>Be*</td>
</tr>
<tr>
<td>1059Co</td>
<td>43.81</td>
<td>0.061</td>
<td>0.05</td>
<td>Se*</td>
</tr>
<tr>
<td>1064Ce</td>
<td>15.97</td>
<td>0.023</td>
<td>0.08</td>
<td>Mn*</td>
</tr>
<tr>
<td>1055Mn</td>
<td>27.70</td>
<td>1.721</td>
<td>0.50</td>
<td>Cr*</td>
</tr>
<tr>
<td>1055Mn</td>
<td>5.59</td>
<td>0.356</td>
<td>0.02</td>
<td>MnO*</td>
</tr>
<tr>
<td>1054Mn</td>
<td>312.12</td>
<td>0.445</td>
<td>1.53</td>
<td>MnO2</td>
</tr>
<tr>
<td>1054Mn</td>
<td>70.92</td>
<td>0.792</td>
<td>0.67</td>
<td>Co*</td>
</tr>
<tr>
<td>1068Zr</td>
<td>44.50</td>
<td>0.130</td>
<td>0.06</td>
<td>Fe*°</td>
</tr>
<tr>
<td>1066Zr</td>
<td>244.26</td>
<td>0.432</td>
<td>1.42</td>
<td>Zr°</td>
</tr>
<tr>
<td>1197Sr</td>
<td>119.77</td>
<td>1.167</td>
<td>2.17</td>
<td>SrCl2*</td>
</tr>
<tr>
<td>1065Rb</td>
<td>86.20</td>
<td>2.345</td>
<td>3.47</td>
<td>Rb°</td>
</tr>
<tr>
<td>1095Rb</td>
<td>32.77</td>
<td>0.367</td>
<td>0.27</td>
<td>Rb°</td>
</tr>
<tr>
<td>1064Sr</td>
<td>54.84</td>
<td>3.574</td>
<td>4.05</td>
<td>Sr°</td>
</tr>
<tr>
<td>1083Rb</td>
<td>83.40</td>
<td>3.703</td>
<td>5.63</td>
<td>ZrO2° (?)*</td>
</tr>
<tr>
<td>1083Rb</td>
<td>3.27</td>
<td>4.040</td>
<td>0.24</td>
<td>ZrO2° (?)*</td>
</tr>
<tr>
<td>1083Rb</td>
<td>2.90</td>
<td>2.025</td>
<td>0.15</td>
<td>(?)*</td>
</tr>
<tr>
<td>1083Rb</td>
<td>4.24</td>
<td>5.077</td>
<td>0.02</td>
<td>Rb°</td>
</tr>
</tbody>
</table>

*1 Graduate School of Natural Science and Technology, Kanazawa University
*2 Faculty of Science, Kanazawa University

Fig. 1. Brain uptake rates for Se, Mn, Zn and Rb in normal mice at 6, 12, 24 and 48 hr after ip injection of the multitracer solution.

then freeze-dried. The dried samples were subjected to γ-ray spectrometry using pure Ge detectors with reference to an appropriate standard. The uptake behavior was evaluated in terms of organ uptake rate (the radioactivity percentage of injected dose per gram of the organ of interest, % dose/g). Data are expressed as the mean ± SD (standard deviation) for five animals.

Figure 1 compares the brain uptake rates for 54Mn, 65Zn, 75Se and 83Rb tracers in mice at 6, 12, 24 and 48 hr after ip injection. The multitracer technique enabled simultaneous tracing of the elements Mn, Se, Zn and Rb in the identical brain samples and an accurate comparison of their biobehavior. The results reveal that the brain uptake rate increased with time in 1-, 3- and 8-week-old mice. On the other hand, the uptake rates for the four tracers in the other organs decreased with time. Moreover, the uptake rates for all four tracers in the brain of 1-week-old mice were found to be much higher than those of 3- and 8-week-old ones. The uptake rate in the brain of 1-week-old mice was in the following order: 83Rb>54Mn>65Zn>75Se. However, in the case of 3- and 8-week-old mice, the rates were in the following order: 83Rb>65Zn>54Mn>75Se. This observed higher uptake and retention of Mn in younger mice suggest some active involvement of this element in important brain functions during the growth period.5)

References
Iron deficiency anemia is one of the major micronutrient deficiencies in the world, particularly in developing countries. Recent research has shown an association between iron deficiency anemia and adverse effects on the intelligence quotient in infants and children. One of the methods to prevent iron deficiency anemia in developing countries may be the fortification of food products with iron. Iron bioavailability depends on the chemical formula of iron and also the food component. In developing countries, available foodstuff consists mainly of plant foods. The use of NaFe-ethylenediaminetetraacetic acid (EDTA) as a food additive has recently been reviewed by the International Nutritional Anemia Consultative Group and was strongly recommended as the most suitable iron fortificant for use in developing countries. However, EDTA is a chelating agent. Thus it may possibly react with other minerals. We considered the influence of NaFeEDTA on the biodistribution of other trace elements as examined by the multitracer technique. This is a part of the previous study of the examination.

As the experimental animal, male wistar rats were purchased (Charles River Japan, Inc.) and were housed in stainless steel cages. The cages were placed in an air-conditioned room and subjected to 12 h of light. They were fed a standard laboratory diet and had free access to drinking water prior to the tracer experiment. A multitracer solution was obtained from an Ag target irradiated by the heavy-ion beam from the RIKEN Ring Cyclotron. To elucidate the effect of oral administration of NaFeEDTA on the biodistribution of trace elements, two types of solutions containing ferrous sulfate and NaFeEDTA were prepared. An equivalent molar solution of EDTA was also prepared to examine the effect of EDTA itself. Saline was used as a control. Finally four groups were arranged. The solutions of ferrous sulfate and NaFeEDTA were orally administered to each rat (3 mg Fe/kg B.W.). EDTA solution and saline was also orally administrated to the rats. An amount (0.2 ml) of the multitracer solution was continuously orally administrated into rats of each group. The rats were sacrificed at 7 hours after administration of the multitracer solution. The radioactivity levels of their organs were determined by γ-ray spectrometry.

The uptake of radioactive Fe in organs of the control rats was the highest among the four groups (Fig. 1). It is believed that the uptake of radioactive Fe was influenced by presupplied cold Fe such as ferrous sulfate or NaFeEDTA. The uptake of radioactive Fe was higher in organs of group I (ferrous sulfate) than in those of group II (NaFeEDTA). In addition, the uptake of radioactive Fe in organs of group II (EDTA) was lower than that in organs of the control group. The uptakes of radioactive Zn in organs of groups II and III were lower than those in the organs of control and group I. The behavior of Co was similar to that of Zn. The results in this experiment showed the adverse effects of NaFeEDTA on the biodistribution of various elements. Thus, it is difficult to evaluate the effect of NaFeEDTA in this study. However, this experiment was carried out using an system of Fe-containing solutions and multitracer solutions in the absence of food, that is without an inhibitors condition. We require more experiments to determine the role of the mechanism of NaFeEDTA in the absorption study and the biodistributions of other minerals.

References
Contribution of Arbuscular Mycorrhizal Hyphae to Acquisition of Trace Elements by Marigold

H. Suzuki, H. Kumagai, K. Oohashi, and S. Enomoto

The plant roots infected with the arbuscular mycorrhizal fungi (AMF) are known to have higher phosphorus (P) absorption capacities compared to those of non-mycorrhizal roots. Difference in this capacity between mycorrhizal and non-mycorrhizal roots was based on the increase in P absorption by the arbuscular mycorrhizal hyphae (AMH). Similar results are obtained in experiments involving N, Zn, and Cu. In the present study, we have examined the absorption of other trace elements by AMH in the symbiotic system of marigold plants (Tagetes patula L. cv. Bonanza spray) and AMF (Glomus etunicatum) using a multitracer technique, because the absorption of trace elements by AMH is still rather obscure.

Preparation of a multitracer is described in the literature. A plant container (240 ml pot) was divided into the “root compartment” (RC), for the growth of the roots and AMH, and the “hyphal compartment” (HC), for the growth of AMH, by a 20 μm nylon mesh as shown in Fig. 1. The HC contained 120 g of river sand with a multitracer solution containing the radionuclides of 7Be, 22Na, 46Sc, 51Cr, 54Mn, 59Fe, 65Zn, 75Se, 83Rb, 85Sr, 88Y, 88Zr, and 95mTc. The chemical forms of the tracers on application were assumed to be Be²⁺, Na⁺, Sc³⁺, Cr³⁺, Mn²⁺, Fe³⁺, Co²⁺, Zn²⁺, SeO₄²⁻, Rb⁺, Sr²⁺, Y³⁺, Zr⁴⁺, and TcO₄⁻, respectively. The RC was filled with 280 g of river sand. A marigold seed was sown in the RC. In the mycorrhizal plant, the spore of Glomus etunicatum (Becker and Gerdemann) was added to the center of the RC. A non-mycorrhizal marigold was used as the control plant. The plants were grown in the biotron with a 16/8 hr day/night regime, at 15000 lux, 65% relative humidity, and 25°C. The experiment was carried out at 35% of the water holding capacity of the growth medium. The plants were harvested at 40 and 60 days after sowing (DAS). The radioactivities of 7Be, 46Sc, 51Cr, 59Fe, 56Co, and 88Zr could not be detected in any plant.

The results show that AMH can absorb Na, Zn, Se, Rb, Sr, and Y from the soil and translocate these elements to the plant.

References
Influence of Zn on the Uptake of Various Elements into Carrot

T. Ozaki, Y. Kawamura, and S. Enomoto

To satisfy their growth requirements, plants absorb cations and anions from their surroundings. The generally accepted theory of ion uptake by plant cells is that specific molecular carriers transfer the ions through cell membranes which are otherwise almost impermeable. Zinc is one of the essential elements for all plants, and it is involved in a number of proteins and biochemical reactions. At the same time, too much Zn is known to be deleterious to plants. Thus, the effect of Zn on the behavior of other elements merits investigation, particularly for acquiring information about the interaction between Zn and other elements around carriers on the surface of cell membranes. In the present paper, we report the effect of Zn on the behavior of other elements, particularly for acquiring information about the interaction between Zn and other elements around carriers on the surface of cell membranes. In the present study, the concentration of Zn was changed, along with the change of Zn concentration. As shown in Fig. 1 (c), however, no influence was observed on the uptake of Se. Considering interactions between anions are also reported, such as between Cl⁻ and NO₃⁻ or between SO₄²⁻ and MoO₄²⁻. In the present study, the concentration of Cl⁻ was also changed, along with the change of Zn²⁺ concentration. As shown in Fig. 1 (c), however, no influence was observed on the uptake of Se. Considering

Fig. 1. Uptake of Co, Rb, and Se into roots.

To be transported to the cytoplasm via carriers, ions must be adsorbed onto the transport sites of carriers. In the present study, the concentration of ZnCl₂ on the uptake of various elements (Be, Na, Mn, Co, Zn, Se, Rb, Sr, Rh, Ce, Pm, Gd) by carrot, using the multitracer technique developed at RIKEN.

Carrot (Daucus carota cv. U. S. harumakigosun) seeds were rinsed with distilled water and allowed to germinate on filter paper. Germinated seeds were grown on Kureha horticulture soil, and kept in a growth chamber at 23 ± 2°C under supplemental lighting of 150 μmol·m⁻²·s⁻¹ with a 12 h photoperiod. Twenty days after germination, when the length of plant bodies and roots was approximately 7 cm, the carrots were transplanted into ultrapurified water and kept for three days with constant bubbling of air under the same photoperiod and temperature as above. Just prior to the uptake experiment, all roots were again washed with ultrapurified water.

An uptake experiment was conducted over two days with roots of samples maintained in 50 ml ZnCl₂-multitracer solutions (pH 4.5 ± 0.2). After the uptake period, the roots were thoroughly washed with distilled water and 0.1 mol·L⁻¹ HCl, then wiped with filter paper. The plant bodies were divided into roots and upper parts. The uptake ratio for each part was defined as: uptake ratio (%/g) = 100× (radioactivity in each part/total amount of radioactivity added to the uptake solution/fresh weight of the corresponding part. Each datum point in the figures was given as the mean ± standard deviation of five replications.
the preparation procedure of the multitracer solution, the chemical form of Se in the multitracer solution is considered to be SeO₃²⁻. The result obtained in this investigation suggests that Se is distinguished from Cl during the uptake into roots, and they are recognized as different ion species with low physicochemical similarities.

The uptake of Co, Rb, and Se by leaves is shown in Fig. 2 (a)-(c). Apparent decreases in the uptake by leaves were also observed for Na, Sr, Mn, and Zn with increasing ZnCl₂ concentration (data not shown). For the elements which exhibited a decrease in uptake by the leaves, the degree of the decrease was almost proportional to the decrease in the uptake by the roots. This indicates that the competition of these elements with Zn for the binding sites occurred mainly outside the cytoplasm in the process of entering it, and not inside it.

References
Enhanced Uptake of Mn by LeGlp1-Transgenic Tobacco Plants

Plants require sources of the inorganic nutrients C, N, P, and S to synthesize organic cell constituents. Eleven other inorganic ions have been proven essential for plant growth. Soil is the storehouse of all of these nutrients, except CO₂. Nutrient uptake by plant roots involves an ion-protein interaction in which transporter molecules in the root plasma membrane recognize specific ions in the soil solution and absorb them against a concentration gradient at the expense of membrane potential, ΔpH or ATP.¹ It is believed that the transporter molecule has a site that is essential for the binding to the ions to be transferred. ABC-type transporters contain a membrane-peripheral substrate-binding subunit.

Metal ions toxic or disadvantageous to plant metabolism might be inevitably absorbed through the transporters, mistaken for essential ions with similar chemical characteristics, such as ionic radius and electronic charge. These ions should be detoxicated by inclusion in stable chelating molecules or by exudation after being absorbed. Metal-protein interaction may be the most important process involved in metal homeostasis. Metal-binding proteins may be involved in individual metal-ion-requiring functions. Transition metals coordinate with the N in the amino, the S in the thiol, the O in the carboxyl and hydroxyl side chains of the protein molecule. Four to six ligands form an array with an interval adequate for forming a metal-binding pocket. Although some ligands are localized with a long interval so that they are distributed over different strands, some are within the same strand. We developed a screening method for metal-binding proteins, especially for the membrane protein and the protein with metal binding sites unexposed to the solvent. Using this screening method, a metal binding site was isolated from tomato roots and cDNA was cloned. A full-length cDNA (LeGlp1) of 828 bp was shown to encode a precursor protein of 23797 Da having a 27-amino-acid leader sequence at the NH₂ terminus. The aforementioned three lines of tobacco plants were hydroponically grown at 25°C under 18-h-light/6-h-dark cycle with Hyponex for two months followed by distilled water supplemented with a multitracer for 2 days. Multitracers were extracted from irradiated Ag targets as described,²) mixed with ⁵⁹Fe, and subjected to the growth medium. Plants were further chased with Murashige-Skoog's medium for 3 days. With a 1-day interval, the radioactivity of Mn, Fe, Co, Zn, and Rb in the roots and leaves of the subject plants were determined by a Ge detector (EG & G). Figure 1 shows the bioaccumulation (g of dose (g of dry wt.)⁻¹) of Mn in the roots and leaves of the three lines of tobacco plant. Newly absorbed Mn was transferred to aerial parts of tobacco plants 3 days after the addition of ⁵⁴Mn into the growth medium. Metal-binding LeGlp1-expressing transgenic tobacco accumulated most in the leaves of the plants, although the amount of Mn in roots was comparable irrespective of the expression of LeGlp1. The time course of bioaccumulation of other transition metals, such as Fe, Co, and Zn, was similar to that of Mn, with Fe being most rapidly absorbed, however, the amounts of Fe, Co, and Zn, as well as Rb did not differ between the three lines of tobacco plants (data not shown).

LeGlp1 has a binding site, presumably composed of two cysteines, for transition metal ions. LeGlp1 itself is localized in tomato roots, not in the leaves. The

* Department of Applied Biological Chemistry, Osaka Prefecture University
multitracer experiment indicates that accumulation of Mn in leaves is enhanced in the transgenic plant that expresses LeGlpl without any tissue specificity, suggesting that Mn is the intrinsic bound metal ion in the LeGlpl molecule.

References
Selective Detection of EC-Decay Radionuclides in Multitracers: A Proposal

Y. Minai and S. Enomoto

The multitracer technique has been recognized as an innovative radioanalytical method to study the behavior of trace elements in biological, analytical, and environmental systems. Usually, the behavior of each element in the system is estimated from its distribution determined by γ-ray spectrometry. The high resolution of germanium semiconductor detector is responsible for deconvoluting the γ-ray spectrum to obtain the distribution of the elements applied as multitracers.

Such use of the germanium semiconductor detector has been very popular in activation analysis for determining trace elements. The high resolution of the detector changed activation analysis from a mono elemental analytical technique accompanied by tedious radiochemical separation procedures to an instrumental technique for simultaneous determination of multiple elements. Accuracy of instrumental activation analysis largely depends on the degree of overlap of the photopeaks from different radionuclides. Careful examination of each photopeak must be carried out to avoid overestimation of peak intensity due to the overlap of the photopeak from another radionuclide. Such a situation also occurs in the radioassay of the multitracer solution or of systems containing the multitracer. Extremely complex structure of the spectra, which are sometimes encountered in studies using the multitracer, may influence the accuracy of distribution data on each element. Radiochemical separation of particular group of elements has been applied to reduce the frequency of photopeak overlap in the γ-ray spectra. 1)

As an alternative to the radiochemical methods for separation of particular elements, detection of another radiation from the corresponding radionuclides other than γ-rays is proposed. Preparation of the multitracer at RIKEN starts from production of radionuclides in the target material by heavy-ion bombardment. Nuclear spallation reaction accompanied with bombardment can generate neutron-deficient radionuclides. Those nuclides tend to decay via EC processes. Utilizing the intense nature of the characteristic X-rays emitted after electron capture, detection of this radiation may be used to evaluate distribution of the EC-decay radionuclides, such as 64Cu, 69mZn, 109Pd, 107Cd, and 122Sb.

In earlier studies on use of Si(Li) detectors for neutron activation analysis, great improvement was shown in analytical performance for the determination of many EC-decay radionuclides. 2) A relatively simple structure of the X-ray spectra can reduce ambiguity in deducing the spectral data. The potential factor affecting the accuracy of the peak intensity for a particular radionuclide with an atomic number Z is the production of other radionuclides emitting the same X-ray: β-decay radionuclides with Z-2 and α-decay radionuclides with Z-1. As EC-decay involves the ionization of the inner sphere of an electron shell, it was found that the intensity of the characteristic X-rays is much more intense for those nuclides than for the β- or α-decay nuclides in analytical condition. 3)

It is noteworthy that the X-ray spectral structure, even as indicated by a simple parameter like the K_{α}/K_{β} ratio, is a function of the oxidation state and the nature of chemical bonding. 3, 4) In an application study, the dissolved species of radionuclides in the multitracer solution are not well recognized. The spectral feature of the emitted X-ray may be a clue in the evaluation of the species in the solution even if the amount of the radionuclide is extremely low relative to the amounts of nonradioactive components in the system.

References
Evaluation of the *in vitro* Stability of Radiolabeled DTPA and DOTA and Their Conjugated Antibodies

Y. Kawanura, S. Enomoto, and R. Amano

In the field of radiopharmaceutical science, radioactive metal ions chelated to small molecules, peptides, or proteins, such as monoclonal antibodies, have been used clinically for the diagnosis of cancers and for fundamental studies on the function of various organs.\(^1\)

For example, monoclonal antibodies labeled with radioisotopes such as \(^{67}\)Ga, \(^{111}\)In or \(^{99}\)Y are used in radioimmunoimaging and radioimmunotherapy. In the selection of suitable isotopes for radiopharmaceutical uses, we usually compare the *in vitro* and *in vivo* behavior for each labeled compound, which is time work. Moreover, slight changes in the conditions are inevitable in experiments for each radionuclide. With the multitracer technique, we can obtain much information at one time under identical experimental conditions.

In this work, labeling of antibodies, immunoglobulin G (IgG), with a multitracer was investigated using Diethyleneetriamine-pentaacetic acid (DTPA) and 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA),\(^2\) which is a strong chelating agent for many metal ions. We attempted to establish a procedure to evaluate the *in vitro* stability of the chelate with various metals and the efficiency and selectivity of DTPA and DOTA with metals.

A carrier- and salt-free multitracer solution was prepared from Au foil irradiated with a 135 MeV/nucleon \(^{14}\)N beam at the RIKEN Ring Cyclotron. Details of the procedure for multitracer preparation was reported previously.\(^3\) The multitracer solution containing radioisotopes of Na, Sc, Mn, Fe, Co, Zn, Se, Rb, Sr, Rh, Ag, Ir and lanthanide was evaporated to dryness and the radioisotopes were dissolved in water.

The efficiency of the radiolabeled chelate was confirmed by paper chromatography (saline), using Whatman No. 1 paper strips pretreated with 2.5% albumin. In the paper-chromatographic system, radiocolloids remain at the origin, and the labeled and the free chelate move with the solvent front.

The spectra of the chromatographed fractions obtained using a high purity germanium gamma (HPGe) detector were quantitatively analyzed.

The radioisotopes of Zr, Hf, Y and lanthanide were found to combine with DTPA and DOTA to make stable complexes, while the other radioisotopes, such as those of the nonmetallic element Se, the alkali metals Na and Rb and the alkaline earth metal Sr, did not combine with these ligands. The other metals of Co, Ga, Mn, Sc also did not form stable complexes.

Conjugation of DTPA cyclic dianhydride to IgG was performed by the addition of 0.2 ml DTPA cyclic dianhydride in dimethyl sulfoxide (DMSO) solution (5 mg/ml) to 200 ml of the IgG (ChromPure) solution 11.3 mg/ml containing 0.5 M of NaCl and 0.01 M of sodium phosphate buffer to ensure a pH of 7.6. After standing at room temperature for 5 min, the mixture was loaded into a Sephadex G-50 (fine) column (of 20 cm height and 1.5 cm I.D.). The column was eluted with 0.05 M sodium citrate (pH = 5.6). The fractions showing absorbance at 280 nm (corresponding to IgG-DTPA) were collected. The multitracer solution was added to the IgG-DTPA fraction. After standing for two hours at room temperature, an IgG-DTPA-multitracer fraction was separated from the free multitracer ions using a molecular cut filter. The radioactivity remaining in the dialysis bag was measured with a HPGe detector. As a control, the same labeling procedure was performed with another IgG solution in the absence of DTPA.

In our experiment, the conjugation efficiency was determined to be 40%. Radioisotopes of Sc, Fe, Co, Zn, Ag and lanthanide were found to combine with IgG-DTPA. The radioisotopes of Se, Na and Rb did not combine with the conjugating species. Only a small fraction of the Mn, Rh and Ir radioisotopes combined with IgG-DTPA. These results suggest that the stability of the metal DTPA complex was the main factor determining the labeling efficiency. For the control sample without DTPA, the amounts of radioisotopes combined with IgG were below the detection limit.

This indicates that once metal ions combine with IgG-DTPA, the chelate is stable under the conditions studied. The DTPA and DOTA were recognized as ligand chelates for particular cations. The conjugated ligands with IgG had an affinity with these cations. This indicates that steric factors relating to the formation of conjugates with IgG were not a major factor controlling the affinity with the radioisotopes studied. These results were confirmed by both ion size chromatography and the adsorption method. This implies that the simple method applied in this work efficiently evaluated the efficiency and purity of the labeled compounds. A detailed study of *in vitro* and *in vivo* properties of IgG labeling by the multitracer technique is under way and is expected to provide important information for further radiopharmaceutical studies.

References

HPLC Elution Behavior of Multitracer Metallofullerenes

K. Sueki, K. Akiyama,* H. Nakahara, K. Kikuchi,* S. Ambe, F. Ambe, and S. Enomoto

The formation of metallofullerenes has been reported for the group 2 elements (Ca, Sr and Ba), for the group 3 elements (Sc, Y and lanthanoids), and for the group 4 and 5 elements (Zr, Hf and Nb). In this study, the elution behavior of radiotracer metallofullerenes was examined in two types of stationary phases for high performance liquid chromatography (HPLC). A Buckyprep column has a nonpolar stationary phase, but a Buckyclutcher I column has a polar stationary phase. By combining these two columns of different characters, it was expected that isomers of M@C82 could be identified by their subtle differences during the retention time.

Crude with multitracer metallofullerenes dissolved in toluene was passed through a Buckyprep column (Cosmosil, Nacalai Tesque Inc.) of the size i.d. 10 mm × 250 mm with a flow rate of 3.2 mL/min. Fractions of the eluant were collected every three minutes, and the radioactivity of a specific nuclide in each fraction was assigned and determined by γ-ray spectrometry using an HPGe detector. In the second experiment, the M@C82 fractions eluted from the Buckyprep column were submitted to the Buckyclutcher I column (Regis Chemicals Corp., the size of i.d. 10 mm × 250 mm, a flow rate of 2.0 mL/min) for separation with a mixture of toluene and hexane (7 : 3) as solvent. Elution was monitored using a UV on-line monitor, and by γ-ray off-line measurements of the eluted fractions (0.5 min) using an HPGe detector.

The elution curves for an HPLC Buckyprep column obtained by γ-ray measurements are summarized in Fig. 1 for 85Sr, 88Y, 88Zr, 139Ce, 143Pm, 149Eu, 146Gd, 169Yb and 175Hf. The result shows that these curves can be classified into three groups: group I (85Sr, 149Eu and 169Yb), group II (88Y, 139Ce, 143Pm and 146Gd), and group III (88Zr and 175Hf).

The elution curves of M@C82 for an HPLC Buckyclutcher I column obtained by γ-ray measurements are summarized in Fig. 2 for 85Sr, 88Y, 139Ce, 143Pm, 146Gd and 169Yb. The result shows that the retention time at the point of maximum activity depends on the radionuclide detected; being around 20 min for 85Sr and 169Yb, 27 min for 139Ce and 143Pm, and 29 min for 88Y and 146Gd.

These results indicate that the distributions of the radionuclides in the metallofullerene species differ, and that the retention time of M@C82 for the second column depends on which radionuclide is examined.

References
Gamma-ray Detection System for Multitracer Research

Y. Yang, Y. Gono, S. Motomura, S. Enomoto, and Y. Yano

Multitracer research is a rapidly developing field since it improves the reliability and efficiency comparing with those of single-tracer research. Multitracer in an aqueous solution can be prepared by chemical separation from a target irradiated by intermediate-energy heavy ion beams. To study the dynamic behavior of nuclides in a sample, their positions in the sample must be measured. Here we propose a detector system called a Multitracer Gamma Emission Imaging System (MT-GEI), which can be used to assign the γ-rays of different nuclides and measure the positions of different nuclides without sacrificing the sample.

The proposed detector system consists of two segmented HPGe detector arrays and is shown in Fig. 1. The γ-rays emitted from samples are measured directly at two consecutive interaction positions x_1 and x_2 of two segmented detector arrays. The total γ-ray energy is then obtained by adding the energies deposited in two detector arrays once the scattered γ-rays have been fully absorbed in the second detector array. Nuclides can be identified based on the total γ energy because of the very good energy resolution of HPGe detectors. The Compton scattering angle θ is then calculated from total γ energy and γ energy loss in the first detector array using Compton scattering kinematics. Therefore the emission point must lie on the surface of a cone defined by lines with angle θ to the vector $x_1 - x_2$ through x_1. For a point source, a succession of emissions generates a number of cones which have a common point of intersection, thereby defining the source position.

Monte-Carlo simulations were performed for the proposed detector system, and a point γ source with an energy of 1.332 MeV using the GEANT program.¹ The efficiency of the detector system is defined by the number of γ-rays that undergo Compton scattering in the first detector array and then are absorbed in the second detector array divided by the number of γ-rays emitted from the source. The detector system consists of two square arrays, each containing 25 segments of 1 cm x 1 cm x 2 cm. When the source is situated in the center of the surface of the first array and the distance between the centers of the two arrays is 2 cm, the efficiency is estimated to be 5×10^{-3}. If the distance from the source to the first array and between the two arrays is 10 cm, the efficiency is 3×10^{-5}. In the Monte-Carlo simulations, the centers of the segments are considered to be the interaction positions. A three-dimensional histogram can be obtained by summing a number of cones generated by a successive emissions of γ-rays.

Each cone consists of a number of points that are uniformly distributed on its surface. A one-dimensional position spectrum in each direction can be obtained from the projection of the three-dimensional histogram by zooming a region near the source position in the other two directions. The width of the position spectrum decreases as decreasing the size of the segment and the distance from the source to the first array, and increasing the distance between the two arrays. The coordinates of the source position are obtained by fitting the one-dimensional spectra in three directions. The positional accuracy is defined by the difference between the actual source position and the source position determined by the simulations. The positional accuracy is improved by decreasing the width of the position spectrum and increasing the number of cones which form the histogram. Simulations were carried out under the conditions of a 1 cm x 1 cm x 2 cm segment size in both arrays, and 6 cm distances between both the source and the first detector and the two detectors. When the number of cones was 8000, a positional accuracy of ± 0.5 mm in the x and y directions (parallel to the detector array plane) and ± 1 mm in the z direction was obtained. Further simulations to optimize the detector system are still ongoing, and based on the simulations, a detector system will be developed in the next two years. We are also doing research to determine γ interaction positions with a higher accuracy than the size of segments using the induced signals in the neighbouring segments. A much better source-position accuracy is expected with this method.

References

Time Course Induction of p53 in Human Cell Lines

A. Gordon, S. Morimoto, N. Fukunishi, T. Kurobe, T. Mizuno, F. Hanaoka, and F. Yatagai

To assess the influence of mutant p53 gene on mutagenesis, we are characterising the nature of the mutations induced by heavy ions of various LET (Linear Energy Transfer) in the human lymphoblastoid cell lines WI-L2-NS (mutant p53) and TK6 (wildtype p53) which are derived from the same spleen.\(^1\) We are also monitoring the time course of p53 induction in these cell lines, and how heavy ions of various LET affect the cell cycle.

Cell cycle analysis is achieved by the analysis of DNA content by laser-scanning cytometry of propidium iodide-stained cells at various times after heavy-ion treatment. At various times after heavy-ion treatment, whole cell extracts are made and used in western blotting analyses using anti-bodies against p53, p53-phosphorylated at Ser15, p21 and actin. Mutation studies involve the generation and characterisation of hypoxanthine phosphoribosyltransferase gene (hprt) mutations induced by heavy ions in the two cell line backgrounds.

\(\text{hprt}\) mutations were induced in TK6 and WI-L2-NS cells by irradiation at a LET of 23, 67, and 1000 keV/\(\mu\)m for C-, Ne- and Fe-ions, respectively. WI-L2-NS cells were more radio-resistant than TK6 cells after such exposure to these heavy-ions, as they were to X-ray exposure. \(\text{hprt}\) mutation induction under these exposures was also higher in WI-L2-NS cells.\(^2\) Two hours after 3 Gy irradiation (C-ion of 22 keV/\(\mu\)m, Fe-ion of 1000 keV/\(\mu\)m and X-ray irradiation), both p53 and p21 proteins are induced in the TK6 cell line. However, p53 and p21 are not induced in the WI-L2-NS cell line after any type of irradiation; in WI-L2-NS p53 is constitutively expressed and p21 is not produced (due to the mutant nature of p53). The type of irradiation did not alter the p53/p21 response of each cell line as monitored at 2 h. However, the time course of p53 induction appears to be different after the three irradiation treatments, with X-rays and C-ions producing an earlier maximal level of p53 induction compared to that induction produced by Fe-ion irradiation (Fig. 1).\(^3\) Cell cycle analysis suggests that X-ray irradiation produces the strongest G2 block, Fe-ion irradiation produces the weakest G2 block and C-ion irradiation produces a G2 block intermediate between X-rays and Fe-ions. No G1 block was seen in these lymphoblastoid cell lines (Fig. 2).\(^3\)

References
2) S. Morimoto et al.: submitted for publication.
3) A. Gordon et al.: manuscript in preparation.
4. Radiation Chemistry and Radiation Biology
Recently, we found a new extremely fast luminescence band by measuring time-resolved luminescence spectra (its time resolution of 100 ps) of heavy-ion-irradiated α-alumina, and proposed that the origin is the electron-hole plasma (e-h plasma) or the free exciton complex, hereafter, referred to as the e-h plasma. If this proposal is valid, the corresponding luminescence should be observed not only for alumina but also for other insulator crystals. We have examined this for single crystals of LiF, NaF, NaCl, KCl, KBr, KI, RbI, CsCl, CsBr, CsI, MgO, SiO₂, and diamond, and observed the corresponding luminescence in all crystals except for SiO₂ and diamond. Figure 1 a and b (for KCl) and c and d (for MgO) show decay curves at various wavelengths and time-resolved spectra of luminescence, respectively. The luminescence showed the following common characteristics of these samples. (1) The lifetimes were 100 ps or shorter. (2) The band widths were unusually broad and the wavelength positions were different from all known bands. (3) The efficiency increased superlinearly with an increase in the excitation density. (4) The decay rate temperature and the efficiency were almost invariant to temperature changes. These results imply that the origin of the luminescence concerned is not self-trapped excitons, free excitons, excited defects, and excited impurity centers which have been reported so far, and also that it is not due to a localized excited state but a multiply bound state among short-lived (at most 100 ps) excited states. The state which suits these characteristics may be the e-h plasma or the free exciton complex, considering that almost all energy deposited by ions (as large as a few handled eV Å) is given to electronic systems to produce e-h pairs. The e-h plasma may decompose stepwise with emissions of photons of which energy is less by binding energy than that of the free exciton, analogous to excitonic molecules in semiconductors. This is expressed schematically as follows.

\[n(\text{e-hole}) \rightarrow (\text{e-hole})_n \rightarrow (\text{e-hole})_{n-1} + h\nu \]

\[n = 1, 2, \ldots \]

\[h\nu = E_{\text{free exciton}} - E_{\text{binding}} - K^2/4M (\approx 0). \]

Other emission processes induced by direct electromagnetic interaction between ion beams and substances, e.g., transition radiation, Bremsstrahlung and Cherenkov radiation, were ruled out by the estimation of luminescence yield and the measurement of light polarization and its spatial pattern.

References
Luminescence Spectra and Decay Curves of Diamond Crystals Irradiated by Heavy Ions

J. Kaneko, K. Kimura, and S. Sharma

Cathode luminescence analysis is a standard method for the characterization of diamond crystals, because it is possible to extract information about band-gap energy, centers of impurities and vacancies. Synthetic diamond crystals were irradiated by several kinds of ions from the RIKEN Linear Accelerator for purposes of characterization and study of luminescence caused by high-density excitation. Luminescence spectra from the synthetic diamond crystals were measured at 77 K. Time-resolved spectra were measured by using a single-ion-hitting and single-photon-counting (SISP) system) whose time resolution was better than 100 ps. In this paper, experimental results using heavy ions, i.e., Xe, were described.

A high-purity type IIa single diamond crystal grown by a high-pressure and high-temperature (HP-HT) synthesis and a high-purity chemical vapor deposition (CVD) diamond polycrystal were used in this experiment. The type IIa diamond that had almost ideal crystallinity was estimated to contain less than two ppm of impurities. The CVD diamond polycrystal whose grains had a size of several μm was estimated to contain fewer impurities than that of the type IIa diamond crystal.

In general, a luminescence band, called band A, is predominant in cathode luminescence spectra of diamond crystals. When the type IIa and the CVD diamond crystals were irradiated by light ions, e.g., He and Ar, at 77 K, the luminescence spectra had the centers of band A at 520 and 360 nm respectively. Figure 1 shows luminescence spectra from the type IIa and CVD diamond crystals irradiated by Xe^{27+} at 77 K. There are peaks of free-exciton recombination luminescence at 235 nm in each spectrum. Sensitivity dependence on wavelength was not calibrated for these spectra; thus it should be kept in mind that the luminescence yield in the short-wavelength region was higher than that in long-wavelength region. The luminescence peak located around 520 nm is still predominant in the luminescence spectrum of the type IIa diamond, though there are several peaks at 300 nm that were not observed in luminescence caused by light-ion irradiation. On the other hand, the fine structure of peaks around 360 nm became clear in the luminescence spectrum of the CVD diamond; there are peaks around 520 nm that were not observed in luminescence caused by light-ion irradiation. A peak located at 270 nm is unique to the luminescence spectrum of the CVD diamond. This peak is probably related to grain boundaries.

Figure 2 shows a time-resolved luminescence spectrum up to 4 ns of the CVD diamond crystal irradiated by Xe^{27+}. Although the free-exciton recombination luminescence was predominant in a time-resolved luminescence spectrum of the CVD diamond irradiated by Ar^{8+}, luminescence peaks around 360 nm became predominant in the time-resolved spectrum caused by Xe^{27+}. Additionally, there is no peak around 270 nm in the time range; thus the peak at 270 nm had a slow decay time.

References
Ultrafast Luminescence and Exciton Dynamics in Ion-Irradiated RbI Single Crystal

S. Sharma, J. Kaneko, and K. Kimura

We are conducting a study of the luminescence and its decay of ion-irradiated wide-band-gap crystals, using a fast decay measurement technique. Heavy-ion irradiation is a useful method for high-density excitation of such crystals. Our recent studies of ion-irradiated α-alumina and alkali halides revealed the formation of a new 100-ps-lived band. This new finding prompted us to investigate in detail the luminescence and exciton dynamics in RbI. Many spectroscopic studies of RbI irradiated with electrons and photons have been carried out in the recent past. The three self-trapped exciton (STE) luminescence bands at 320 (σ), 400 (Eα), and 540 nm (π) have been well identified. RbI appears to be a unique material in which all the three types of STE luminescence bands coexist.

The luminescence decay was measured using the single-ion-hitting single-photon-counting (SISP) technique with a time resolution of 100 ps. The projectile ions He\(^{+}\), Ar\(^{8+}\), Kr\(^{18+}\), and Xe\(^{20+}\) accelerated by the RILAC were used and the ion energies were 2.0 MeV/nucleon. The time-integrated luminescence spectra obtained by ion irradiation, composed of bands at 320, 400, and 540 nm, were similar to those obtained by electron and photon irradiation. In contrast, the time-resolved luminescence spectra showed only the σ band and a new short-lived luminescence component. Figure 1 (a) shows the wavelength-dependent decay curves obtained by Xe ion irradiation of RbI, while Fig. 1 (b) shows the time-resolved spectrum. In these figures, a fast decaying component spread over both sides of the 320 nm band can be easily noticed. The half lifetime of this component was estimated to be about 100 ps, which is the time resolution of our equipment. The intense band due to the σ excitons at 320 nm masks the peak of the 100 ps component, however the shape of this peak may be similar to that shown in Fig. 1 (c) which was obtained by subtracting a suitably enlarged spectrum at 4 ns from the spectrum at 0 ns.

The excitation density (ED) dependence of the 100 ps component at 400 nm, where the new band is almost free from the superposition of the 320 nm band, is shown in Fig. 2. It is evident from the equiheight decay curves (Fig. 2 (a)) that the decay rate constant is scarcely influenced by the ED. This suggests that the decay rate of the 100 ps component once it is formed, is no longer influenced by the ED. The luminescence efficiency however, was largely enhanced with increasing ED (Fig. 2 (b)). The ratio of the efficiencies at t = 0 (actually in a period of 20 ps) for Ar, Kr, and Xe ion irradiation was 1 : 7.6 : 53. The intensity by He ion irradiation was too weak to be evaluated. The intensity ratio for Ar, Kr, and Xe ion irradiation is much larger than the corresponding ratio of ED (1 : 1.8 : 2.4) and also its square (1 : 3.2 : 5.9), which suggests that the 100 ps component originates from multiple bindings among the primary excited states, i.e., an ex-
citon complex. This complex may be formed by the binding among the electron-hole pairs that are formed at extremely high densities in the ion track.

The ratio of the luminescence efficiencies of the σ band (320 nm) for Ar, Kr, and Xe ion irradiation, 1 : 2.1 : 12, is much greater than even the corresponding ratio of $(ED)^2$, which suggests not only distant radiative interaction between the excited states, but also stimulated emission.

Further studies related to the exciton reaction in wide-band-gap crystals are in progress.

References
Strontium Uptake by Yeast *Schizosaccharomyces pombe*

Y. Nose and I. Yamaguchi

The disposal of radioactive wastes and nuclear facility accidents are serious social problems. For nuclear safety assessment, we have been researching the uptake of various radionuclides by living organisms, particularly yeast. Recently, we demonstrated by using the multitracer technique\(^1,2\) that the yeast *Saccharomyces cerevisiae* JCM7255 took up various radionuclides, including strontium-85. Radioactive strontium has been regarded as one of the most hazardous elements because of its high yields in \(^{235}\)U-fission products in nuclear facilities. Therefore, we planned a series of studies viz. (1) the characterization of Sr uptake by yeast and (2) identification of the genes and proteins related to Sr uptake. In this article, we report the properties of Sr uptake by yeast.

In the experiment, the yeast *Schizosaccharomyces pombe* was used. The nuclear phase of the strain of *S. pombe* was one, whereas that of *S. cerevisiae* JCM7255 was four. Therefore, *S. pombe* was considered to be more suitable for genetic experiments. First, we studied the radionuclides uptake activity of *S. pombe*. The yeast was cultured in \(10\) ml of YEL medium (0.5\% (w/v) Bacto Yeast Extract, 3\% (w/v) glucose) at 25°C, on a shaker. Cells were collected by centrifugation at 1000 × g, for 5 min. To remove the YEL medium, the cell pellets were suspended in D.W. and recentrifuged under the same conditions three times. Then, the cells were suspended in 3.5 ml of 10 mM MES buffer (pH 6.0) with 3\% glucose. One ml of the cell suspension was transferred into a 1.5-ml tube, and shaken at 25°C for 30 min. Then the cells were washed, collected and subjected to \(\gamma\)-ray measurement and protein assay by the same procedure described above. Figure 1 shows that the amount of \(^{85}\)Sr taken up by *S. pombe* in the buffer with glucose (+glucose) was significantly larger than that in the buffer without it (−glucose). In +glucose, the amount of \(^{85}\)Sr taken up increased depending on the amount of \(^{85}\)Sr added to the cell suspension. However, in −glucose, the amount taken up remained at a low level over the entire \(^{85}\)Sr concentration range examined (0.5–2 \(\mu\)M).

To identify the gene(s) related to the Sr uptake, we are planning to produce transformants of *S. pombe* by restriction-enzyme-mediated integration (REMI). The transformants will be tested for the Sr uptake, in order to select the cells with low or high Sr uptake ability. The genes disrupted by REMI event will be identified; and further more, the uptake of various metals by the transformants will be studied by the multitracer technique.

References

Table 1. Uptake of various radionuclides by *Schizosaccharomyces pombe*. Data represent the the \(\gamma\)-ray activity (Bq) of each radionuclide per microgram of cell protein. N.D.: not detectable.

<table>
<thead>
<tr>
<th>Nuclides</th>
<th>Bq/μg protein (×10^{-3})</th>
<th>Ave. ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be-7</td>
<td>4.32 ± 0.46</td>
<td></td>
</tr>
<tr>
<td>Na-22</td>
<td>N.D.</td>
<td></td>
</tr>
<tr>
<td>Sc-46</td>
<td>0.04 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>Mn-54</td>
<td>2.93 ± 0.29</td>
<td></td>
</tr>
<tr>
<td>Co-56</td>
<td>0.70 ± 0.09</td>
<td></td>
</tr>
<tr>
<td>Zn-65</td>
<td>9.13 ± 0.92</td>
<td></td>
</tr>
<tr>
<td>Se-75</td>
<td>0.11 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>Rb-83</td>
<td>21.04 ± 2.27</td>
<td></td>
</tr>
<tr>
<td>Sr-85</td>
<td>8.75 ± 1.02</td>
<td></td>
</tr>
<tr>
<td>Y-88</td>
<td>8.25 ± 1.02</td>
<td></td>
</tr>
<tr>
<td>Zr-88</td>
<td>0.27 ± 0.08</td>
<td></td>
</tr>
<tr>
<td>Tc-95m</td>
<td>N.D.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. \(^{85}\)Sr uptake by *Schizosaccharomyces pombe*. Data represent the \(\gamma\)-ray activity (cpm) per milligram of cell protein.
Influence of Endophytes on the Uptake of Radionuclides by Perennial Ryegrass

T. Soshi, T. Arie, Y. Nose, and I. Yamaguchi

Radionuclides released by nuclear power plants into the environment are a potential risk to human health. Consumption of food contaminated with radionuclides, due to their transfer from soil to plants and then to livestock, is a significant pathway for human exposure to radionuclides. To decrease such exposure doses of humans, it is desired to eliminate radionuclides from the soil. Phytoremediation is a good method to remove radionuclides from the soil. We have shown that several factors influence the uptake of radionuclides by plants, including soil profile, pH and microorganisms in the soil. But the influence of microorganisms on the uptake of radionuclides by plants remain unclear.

Endophytes are fungi that live inside grass, for example, in tall fescue (Festuca arundinacea) and perennial ryegrass (Lolium perenne). The relationship between grasses and endophytes is symbiotic. The endophytes do not harm the grasses, but they sometimes produce toxins that are harmful to livestock. Infected plants can grow better and show higher drought tolerance and resistance to insects than noninfected ones. In this paper, we report the influence of an endophyte on the uptake of radionuclides by perennial ryegrass using a multitracer.

Genetically identical strains of perennial ryegrass that were infected with an endophyte (Neotyphodium lolii) and noninfected strains were kindly supplied by Dr. Shimanuki (National Grassland Research Institute, MAFF, Tochigi). Five plants were used in each treatment, and grasses were grown in five plastic pots containing 150 g of sterilized horticulture soil (Kureha engei baido, Kureha Chemical Industry Co. Tokyo). A solution of diluted multitracer and radioactive cesium was administered to each pot. The same amounts of solution were absorbed by filter paper for comparison. Plants were cultivated in a greenhouse at 25–30°C and under 15000 to 17000 lux light for 12 hrs a day. After 4 weeks, aerial parts of plants were collected and dried at 50°C. Then the radioactivity was measured using hyper pure Ge detector and the results were expressed as the uptake percentage compared to the control per gram dry weight of the plant.

Figures 1 and 2 show the uptake rate of several elements (Sc, Mn, Co, Zn, Se, Rb, Sr, Cs in Fig. 1, Na and Tc in Fig. 2). In the noninfected strain, the uptake rates of Na and Tc were high, about 10% for Na and 32% for Tc. For other nuclides, such as Sc, Mn, Co, Se, Rb and Sr, the uptake rates were relatively low (1% to 8%). The uptake rate of Cs and Zn was less than 1% (0.14% Cs and 0.77% Zn). In the endophyte infected strain, almost all of the element’s uptake rates were reduced.

References
Analysis of Heavy-Ion Beam-Induced DNA Damage in *Saccharomyces cerevisiae*

M. Yoshimasu, T. Abe, S. Yoshida, F. Ling, and T. Shibata

It has been reported that a heavy-ion beam induced DNA double-strand breaks in the diploid cells of *Saccharomyces cerevisiae* and caused both point mutations and deletions of genomic DNA in a human cell line.\(^1,2\) In this study, we reported that the nuclear mutations were induced in the haploid cells of *S. cerevisiae* by accelerated heavy-ion beam irradiation. To identify these mutations, the sequence alternations in an open reading frame (ORF) of the *URA3* gene were examined.

We used the haploid cells of IL166-187 (α, *leu2, trp1, [p+]*)\(^3\) to induce the damage by a heavy-ion beam into the genomes. The cells, grown in a glucose medium at 30°C for 3 days were spread on 1% agar plates without the amino acids required for cellular growth. The plates were exposed to irradiation with 5 to 200 Gy of the \(^{20}\)Ne-ion beam (135 MeV/u) accelerated by the RIKEN Ring Cyclotron. The linear energy transfer of the \(^{20}\)Ne-ion corresponded to 63.4 keV/μm. After the irradiation, the cells were suspended in sterilized water and then spread on glucose plates. After incubation at 30°C for 4 days, the survival rates at various doses of the \(^{20}\)Ne-ion beam were calculated.\(^4\) Then, the cells irradiated at 50 Gy with 32% of survival rate were spread on 5-fluoroorotic acid (FOA) containing plates to select the cells required for uracil (ura\(^{-}\)). After that, the whole cellular genomes were purified from the ura\(^{-}\) cells and used for amplification of the ORF of the *URA3* gene by PCR. The PCR products were digested by *Apa* I and the sizes of the PCR products were compared with that of the *URA3* gene amplified from wild-type cells through acrylamide gel electrophoresis. As shown in Fig. 1, all PCR-amplified DNA fragments from 20 mutant clones had the same length. Since it has been reported that heavy-ion beams caused deletions of genomic DNA with eighty base pairs in animal cells,\(^3\) if any deletions occurred, different sizes of PCR products would be observed. Finally, we examined the sequences of the PCR-amplified *ura3* gene in 6 clones (Table 1). Among the sequenced fragments, only point mutations with base transition from C to T or G to A were detected.

The heavy-ion beam induced DNA deletions in animal and plant cells, but we could not detect deletions on the genomes in our experiment. It is likely that there are different cellular systems corresponding to the biological effects of a heavy-ion beam on the

![Fig. 1. Electrophoresis in acrylamide gel of DNA fragments of the *ura3* gene mutated by the heavy-ion beam.](image)

<table>
<thead>
<tr>
<th>Clone number</th>
<th>Mutation point</th>
<th>Transition of bases</th>
<th>Replacement of amino acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ura3-134</td>
<td>403 C→T</td>
<td>134 Gln→stop</td>
</tr>
<tr>
<td>4</td>
<td>ura3-202</td>
<td>608 C→T</td>
<td>202 Pro→Leu</td>
</tr>
<tr>
<td>1</td>
<td>ura3-203</td>
<td>611 G→A</td>
<td>203 Gly→Asp</td>
</tr>
</tbody>
</table>

Table 1. Ne-ion beam-induced point mutations.

Genomes between yeast and animal or plant cells.

References
Effective Plant-Mutation Method Using Heavy-Ion Beams (IV)

T. Abe, M. Miyagai, and S. Yoshida

In the previous paper\(^1\) we have reported that tobacco is quite sensitive to the irradiation with heavy-ion beams during the stage of fertilization. However, it is difficult to apply this method at this particular stage for plants that have several seeds per flower. In this paper we report the effect of heavy-ion beams on dry seeds, imbibition seeds and calli of tobacco.

Tobacco seeds (*Nicotiana tabacum* cv. Xanthi and BY-4) were incubated in 1/2MS agar medium for 24 hrs before irradiation. The imbibition seeds and dry seeds were irradiated with N or Ne-ion beams (135 MeV/u) within a dose range of 5 to 200 Gy. The linear energy transfer of the N and Ne ion corresponded to 30 and 63 keV/\(\mu\)m, respectively. One month after the irradiation, we determined their germination percentage, growth rate and morphological abnormalities. Calli (BY-4) were irradiated with N or Ne-ion beams (135 MeV/u) within a dose range of 5 to 50 Gy. After irradiation, calli were cultured on MS medium containing 1mg/L 2,4-D at 25°C under continuous light. Callus growth was measured after two weeks. The growth rate was calculated by dividing the increment in the fresh weight by the initial weight.

The germination and survival rates were not affected by ion beam irradiation in the case of dry seeds (Table 1). In the case of imbibition seeds, the germination rate was reduced when irradiated at 100 and 200 Gy, and the germinated plants produced no leaves and died at doses higher than 20 Gy (Fig. 1). The irradiation of dry seeds with N ions resulted in variegation in Xanthi (1 plant/1239 germinated plants) and formation of pale green leaves in one plant of BY-4 (1/1010) of the \(M_1\) progeny. The frequencies of morphologically abnormal plants, obtained following N-ion irradiation of embryos during fertilization cycle, were 18.1 and 0.82% for Xanthi and BY-4, respectively\(^2\) whereas the frequencies were 0.08% for Xanthi and 0.1% for BY-4 of dry seeds. Callus growth was inhibited at doses higher than 10 Gy (Fig. 2). The results indicate that there is a difference in sensitivity to ion beams between organs of tobacco. The sensitivity of these organs decreased in the following order: calli, embryos during fertilization cycle, imbibition seeds, dry seeds.

Table 1. Effect of heavy-ion beams on seed germination.

<table>
<thead>
<tr>
<th>Ion</th>
<th>Control</th>
<th>N 5</th>
<th>N 10</th>
<th>N 20</th>
<th>N 50</th>
<th>N 100</th>
<th>N 200</th>
<th>Ne 5</th>
<th>Ne 100</th>
<th>Ne 200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xanthi</td>
<td>BY-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BY-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dry (%)</td>
<td>Dry</td>
<td>Imbibition</td>
<td>Dry</td>
<td>Imbibition</td>
<td>Dry</td>
<td>Imbibition</td>
<td>Dry</td>
<td>Imbibition</td>
<td>Dry</td>
</tr>
<tr>
<td>Ion</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>98.8</td>
<td>98.9</td>
<td>96.9</td>
<td>97.2</td>
<td>98.4</td>
<td>97.2</td>
<td>98.1</td>
<td>96.0</td>
<td>98.8</td>
<td>97.5</td>
</tr>
<tr>
<td>Ne</td>
<td>99.6</td>
<td>99.6</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
<td>99.0</td>
</tr>
</tbody>
</table>

References

Effects of Heavy-ion Beam Irradiation on Shoot Elongation in Roses

T. Kitaura, Y. Hara, T. Abe, K. Miyoshi, and S. Yoshida

Breeding programs of roses through conventional crossing methods have proven difficult for its genetic improvement due to the variation in ploidy levels, high sterility and genetic heterozigosity. The spontaneous as well as artificial mutations in a crop, which can be easily propagated vegetatively, will accelerate its genetic improvement. Mutants of rose have been successfully induced yielding alteration of growth habitat and flower color by treatment with chemical mutagen and radiation. Heavy-ion beam irradiation, which is considered to result in new variations in phenotype of induced mutants, has recently been reported as an alternative method of inducing mutation in some crops. The objective in the present study is to determine the effect of heavy-ion beam irradiation with 20Ne and 14N on rose mutation breeding, particularly the effect of exposure dose on shoot elongation of spray type roses.

Two spray type rose cultivars, namely ‘Love me tender’ (pink flower) and ‘Bridal Fantasy’ (white flower) were used. Ten offshoots (ca. 70 mm long) were used for each treatment. The explant contained one winter bud. Irradiation treatments were conducted in the dose range of 5, 10, 20, and 50 Gy for 20Ne ions and 5, 10, 20, 50, and 100 Gy for 14N ions with control (0 Gy) at an energy of 135 MeV/u. The buds were grafted on the rose stock one day after irradiation. Survival of bud and length of shoots from the grafted bud were recorded one and two months after grafting, respectively.

Survival rates of buds and length of shoots decreased with the increase in exposure dose. Survival rates and shoot length were lower after 20Ne beam treatment than that of 14N of the same exposure dose. No clear-cut genotypic difference was found in the response to irradiation. The values of LD$_{50}$ for the two varieties were found to be 10–20 Gy of the 20Ne ion and 20–50 Gy of the 14N ion, respectively (Tables 1 and 2). Some chimeric tissues, such as the red sector in the petals of the pink flower, from irradiated buds were observed. Further experiments to induce more shoots from the putatively mutated sections should be conducted to obtain the mutants of roses.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Dose (Gy)</th>
<th>No. plants</th>
<th>Survival (%)</th>
<th>Shoot length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Love me tender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>90</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>80</td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>80</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>10</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>100</td>
<td>46.4</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>70</td>
<td>9.1</td>
<td></td>
</tr>
<tr>
<td>Bridal fantasy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>100</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>100</td>
<td>36.6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>40</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Effect of 20Ne heavy-ion beam irradiation on growth of roses.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>Dose (Gy)</th>
<th>No. plants</th>
<th>Survival (%)</th>
<th>Shoot length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Love me tender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>90</td>
<td>24.9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>100</td>
<td>34.2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>90</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>90</td>
<td>35.6</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>9</td>
<td>56</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>30</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Bridal fantasy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>100</td>
<td>22.3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>100</td>
<td>39.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
<td>36.6</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>40</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>9</td>
<td>44</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Effect of 14N heavy-ion beam irradiation on growth of roses.
Adaptive Response of Human Cultured Cells to Heavy-ion Irradiation

S. Morimoto, A. Gordon, N. Fukunishi, T. Kurobe, F. Hanaoka, and F. Yatagai

Cells can become resistant to cytotoxic treatment after a low-dose exposure to various physical and chemical agents. This phenomenon is observed not only in prokaryotic cells but also in fish, plant and mammalian cells, and is defined as adaptive response. The basic mechanism of this adaptive response is not yet well understood but is regarded as an important index to estimate the risk of low-dose radiation.

The reaction kinetics of the radioadaptive response to low-dose X-ray exposure have been studied in quiescent cultured mouse cells. Mouse m5S cells pre-exposed in the G1 phase to low doses of X-rays became insensitive to the induction of chromosomal aberrations, mutations causing 6-thioguanine resistance and cell killing. In this study, we focused on such a response to heavy-ions since this subject has not been thoroughly studied.

Human lymphoblastoid TK6 cells were incubated for 2 hours at 37°C after pre-exposure to 5, 10 or 20 cGy of C-ions (22 keV/μm) or Fe-ions (1000 keV/μm). The cells were then challenged by X-ray irradiation and the survival, mutation induction and protein induction were determined (Fig. 1). Under

![Diagram of reaction kinetics](image)

Fig. 1. Time schedule of the survival, mutation and protein assays. After 5, 10 and 20 cGy X-rays, 22 keV/μm C-ion and 1000 keV/μm Fe-ion pre-irradiation, cells were incubated for 2 hours at 37°C in 5% CO₂ and then challenged with X-rays.

![Survival curves against X-ray dose](image)

Fig. 2. Survival curves against X-ray dose after 5, 10, and 20 cGy X-rays, 22 keV/μm C-ion and 1000 keV/μm Fe-ion pre-irradiation.

![Hprt mutation frequency](image)

Fig. 3. Hprt mutation frequency after exposure to 1 Gy X-rays. 2 hours before the challenge, cells were pre-irradiated by 5 cGy X-rays, 22 keV/μm C-ions and 1000 keV/μm Fe-ions. There are no standard error bars for Fe-ions due to the results of a single experiment.
the present condition of pre-irradiation and subsequent radiation treatment, the cells did not acquire any significant radioresistance (Fig. 2). Similarly almost no reduction in hprt mutation induction was observed following these heavy-ion irradiations (Fig. 3). To determine the survival fraction and the mutation frequency, we followed the procedure described by Kagawa et al.3)

Since such an adaptive response was not clearly detected even with pre-X-ray irradiation (Figs. 2 and 3), we would like to consider the possibility that this lymphoblastoid cell line exhibits poor adaptive responses, unlike the aforementioned mouse cells. Consistent with these results, the induction patterns of p53, p53-ser15-phosphorylated and p21 were similar between the X-ray- and the heavy-ion-irradiated groups (Fig. 4).

Here, we would like to emphasize the relatively high level of induction of the above protein following exposure to a very small dose of 5 cGy for all tested types of radiation. It is thus important to study the cellular responses to low-dose radiation, including that to heavy-ions. Furthermore, the adaptive response must be evaluated not only in terms of the survival and mutation rate but also in terms of the characteristics of the mutations. Toward this end, we are now analyzing the induction of the TK mutation using the same cell line. Furthermore, we plan to use a fibroblast cell line to carry out a similar study.

References
2) M. Sasaki: Radiation Biology Center of Kyoto University, personal communication.
Cytogenetic Effects of Heavy-Ion Beams on Mammalian Cells

N. Shigematsu,* S. Yamashita,* N. Ihara,* T. Kawata,* O. Kawaguchi,* A. Kubo,*
H. Ito, T. Kanai, Y. Furusawa, and F. Yatagai

Previous studies have shown that heavy particles are more lethal to mammalian cells than sparsely ionizing radiation such as γ or X-rays. 1–5) Induction of mutations by high-LET ions was investigated in rodent and human cells using the well-known HPRT-locus and TK-locus models, and the results revealed higher levels of mutation than that induced by low-LET radiation. 3–5) Transformations caused by heavy ions are dose- and LET-dependent and are more frequent than those induced by X-rays. It has also been shown that high-LET particles induce high rates of DNA strand breaks and chromosomal breakage and rearrangement. 6–9) Chromosomal rearrangements induced by sparsely ionizing radiations are well known, and cytogenetic analyses of irradiated human lymphocytes have been widely applied to biological dosimetry. However, much less is known about chromosome aberrations induced by high-LET particles.

Most of the studies on chromosomal aberrations induced by heavy-ion radiation reported thus far have been performed using Giemsa-stained or R-banded chromosomes and have dealt with dicentric, fragment and ring formation as indicators of chromosomal changes. However, other types of aberrations such as translocations and insertions cannot be detected using these techniques. Chromosome staining by the FISH technique will facilitate simple and accurate analysis, particularly of translocations in metaphase chromosomes.

To investigate (1) whether the energized-charged particles have a more efficient effect than sparsely ionizing radiations in inducing chromosomal aberrations, (2) whether the chromosomal aberrations is dose- and LET-dependent, and (3) whether the different effects are observed in different types of particles as we showed by HPRT-locus mutations caused by carbon and neon particles used at the same LET level, 3–5) we will carry out the experiment with the following plan.

The cultured cell samples and blood samples collected from human donors are irradiated at room temperature. Heavy-ion irradiation will be performed in the plateau region of the Bragg curve with various shielding, using carbon, neon and argon. One to three hours after irradiation (samples on on ice in the interim), the samples will be distributed in culture tubes, and cells in metaphase will be harvested after a colchicine block to score chromosome aberrations using the FISH technique with chromosome #1 and #2 paint probes.

References

* Department of Radiology, Keio University School of Medicine
The analysis of chromosome aberration is an effective method to estimate the radiation dose during a space mission or at an accident at an atomic power station. Since mitotic delay is dependent on radiation dose and radiation quality, it is important to study cell cycle disturbance after irradiation with various types of radiations and at various doses using different types of cells. We studied the cell cycle progression in normal human fibroblasts (NB1RGB) or rodent cells (V79) after irradiation with carbon-ion beams.

The cells were irradiated with carbon-ion beams from the Ring Cyclotron at RIKEN, the Heavy Ion Medical Accelerator in Chiba (HIMAC) and the Cyclotron Facility at NIRS. Initial accelerated energies of carbon ions were 135 MeV/nucleon at RIKEN, 135 and 290 MeV/nucleon at the HIMAC and 12 MeV/nucleon at the Cyclotron Facility. Linear energy transfer (LET) of the beams on the target was changed by inserting a plastic plate in front of the target. The LET range was 30–250 keV/μm at the sample center. The radiation dose rate ranged from about 1–5 Gy/m. The reference radiation was 200 kVp X-rays filtered through 0.5 mm Al and 0.5 mm Cu with a dose rate of 0.9 Gy/m. After irradiation, the cells were incubated with 5 μM bromodeoxyuridine (BrdU) if necessary, and the cells were then trypsinized and fixed with 70% ethanol. The cells were stained both with propidium iodide to measure the total DNA contents in a cell and anti-BrdU-fluorescein for the newly synthesized DNA, and analyzed with a flow cytometer. Cell cycle distribution was analyzed using the ModFit LT (Becton Dickinson).

For the asynchronous V79, more than 80% of the cells were in the G2/M phase from 4 to 12 h after irradiation, with a peak at around 6 h. The maximum value and the width of the peak increased with both increasing LET and radiation dose. The relative biological effectiveness (RBE) of G2 arrest was calculated using the width of the peak at the half values. RBE increased with LET up to 180 keV/μm. RBE values for G2 arrest above 30 keV/μm were greater than those for the cell inactivation in which the RBE-LET curve had a peak around the LET of about 100 keV/μm. More precise analyses were carried out using BrdU. Because the cells were continuously labeled with BrdU after irradiation, cells in the G1 and the S phases at the time of irradiation incorporated BrdU. Labeled cells exhibited G2 arrest from 6 to 16 h after irradiation, depending on LET and radiation dose. In contrast, unlabeled cells exhibited little G2 arrest. Therefore, the high percentage of V79 cells exhibiting G2 arrest was due to the populations in the G1 and the S phases at the time of irradiation. There was no G1 arrest for V79 cells. This is natural because p53 gene of the V79 cells was mutated in a presumed DNA binding domain. In our first experiment of cell cycle analysis of V79 cells at the RIKEN Ring Cyclotron, a low percentage of cells in the G2/M phase was observed after 8 h incubation following the C-ion irradiation with LET of 153 keV/μm. The cells may have been synchronized during the time they were transported from NIRS to RIKEN. More carefully prepared samples are necessary.

References
Recognition of Hit Sites within the Cells Exposed to Accelerated Iron Ions Using CR-39 Plastics

H. Sasaki, P. Mehnati,* F. Yatagai, and F. Hanaoka

Since the distribution of ionization is sparse and homogeneous for low-LET radiations but is dense and inhomogeneous for high-LET radiations, the probability that no ionization occurs within the cell target is much higher for the latter than for the former radiation when compared at the same dose level. Assuming a Poisson distribution of hit-events, the fraction of cells whose nuclei are not transversed by iron ions (4 Gy, 2000 keV/μ) was calculated to be about 20%. Previously, we observed CHO cells by time-lapse photography for three to five generations after exposure to the same dose of iron ions and found that about 20% of the cells (18%; 25/136) showed no division delay at the irradiated generation and continued dividing with a cell cycle time similar to that of nonirradiated cells. This suggests that a single hit by an iron ion to a cell nucleus induces an early cellular response such as division delay. In order to verify this possibility, we have to identify cellular sites (nucleus or cytoplasm) through which the iron ions transversed and then determine whether growth arrest did or did not occur for individual cells.

In this study, we used a CR-39 plastic (solid state nuclear track detector: Harzlas/TNF-1) as the detector of hit sites. First, the optimum etching condition was examined using the plastics which had already been exposed to iron ions (1-4 Gy: 2000 keV/μm).

When the plastics were etched following a generally adopted procedure (7N NaOH at 60°C), it took about 30 minutes to produce a microscopically recognizable pit size (φ >1 μm). However, we could treat the plastics under very mild conditions (10 min at 37°C) using PEW (KOH : Ethanol : Water = 3D 15wt% : 65% : 20wt%, recommended by Dr. N. Yasuda: NIRS, Chiba) as an etching solution. Next, CR-39 plastics were attached to the bottom outside face of a culture flask in which Mongolian gerbil fetal (MGF) cells were grown and treated with PEW solution at 37°C for 10 min. Two micrographs were taken under a phase-contrast microscope within the same area, one focused on the cells and the other focused on the pits on the CR-39 plastic surface, and then they were superimposed using a computer. An example of such superimposed microphotographs is shown in Fig. 1 where CR-39 plastics were exposed to 1 Gy of iron ions. Thus, we can recognize hit sites within the cells exposed to accelerated very high LET heavy ions (Fe or Ar ions). This study is in progress to elucidate whether early-responding gene products (p53, poly(ADP-ribose)polymerase) are expressed within the cells whose distinct sites (nucleus or cytoplasm) have been transversed by accelerated iron ion.

Fig. 1. A superimposed photograph showing MGF cells and tracks of transversed iron ions.

* Faculty of Medicine, Kyushu University
Oxidation Degradation of High Density Polyethylene Irradiated with Ion Beam

T. Oka, F. Yatagai, and Y. Hama

The transformation proceeding over a very long term was investigated in the inner region of a high density polyethylene (HDPE) slab (2 mm thick). A block of twelve piled samples, the length of which is longer than the range of the ion, was irradiated at room temperature in air with ion beams. We could not observe such a phenomenon for low density polyethylene (LDPE) in our other experiment. Figure 1 shows the depth profiles of carbonyl group measured at different dates after irradiation with 135 MeV/u Ne10 in air. These profiles were obtained by micro-fourier transform infrared spectroscopy (micro-FT-IR) measurement. The carbonyl group yield in the inner region is found to increase significantly by a long storage in air. We have found that it was more marked for the sample stored for about 3 years. This suggests that the oxidation reaction has been taking place very slowly in the inner region over a long period. We have confirmed by electron spin resonance (ESR) measurement that there are no radicals remaining in HDPE irradiated in air. On the other hand, the increase in carbonyl group concentration was observed even when the same sample was irradiated in vacuum with 10 MeV/u O6 and then exposed to air. The radicals produced in HDPE by irradiation under vacuum are stable at room temperature, but they disappear immediately when the sample is exposed to air. This finding suggests that the disappearance of the radicals could be caused by any oxidation reaction. This oxidation reaction, however, does not immediately produce carbonyl groups. Therefore, any group which does not include a carbonyl group may be produced, e.g., hydroperoxide –OOH. It is also known that the degradation reaction in HDPE proceeds very slowly through the photo- or thermally induced cyclic chain reaction. This observation leads us to the conclusion that there are many initiators that do not include a carbonyl group, such as the −OOH group, but which can induce the chain reaction and they transform very gradually into the structures that include the carbonyl group by photo- or thermally induced chain reaction.

Fig. 1. Depth profiles of the carbonyl group content measured at different dates after irradiation.
Heavy Ion Beams: Application to Mouse Mutagenesis (II)

A. Yoshiki, N. Hiraiwa, F. Ike, T. Tsukada, N. Fukunishi, M. Kase, Y. Yano, and M. Kusakabe

Mouse mutants are useful animal models for human diseases. We have attempted to use heavy ion beams to induce germline mutations in mice. We used two strategies to induce germline mutations, one is the irradiation of sperm solution followed by sperm injection into the egg cytoplasm to produce G1 founders, and another is the irradiation of male testes followed by conventional mating to produce G1 founders. These G1 founders can be directly analyzed for dominant mutations which exhibit the phenotype in a heterozygous state. However, a number of abnormalities in humans and mice are known to be caused by recessive mutations, and can be detected only in the homozygous state.

In this report, we focused on the screening of recessive mutations with morphological phenotypes during early embryogenesis. Males of C57BL/6J (B6) strain mice were anesthetized, held on a plastic board and irradiated with ^{12}C and ^{14}N ion beams at dosages of 3 Gy and 5 Gy, respectively. The exposure to the heavy ion beams was restricted to the inguinal region of the body. Six weeks later successful irradiation of the testes was indicated by coat color changes in the ventral and dorsal skin. These irradiated G0 males were crossed with nonirradiated B6 or BALB/c females to create G1 founders. Subsequently, the G1 founders were crossed with BALB/c females to produce G2 females, half of which were heterozygous for the newly induced mutations inherited from the G1 founders. Then, G2 females were backcrossed with their fathers, and sacrificed on day 10 of gestation for the screening of G3 embryos. Morphological abnormalities were observed under a dissecting microscope. If the phenotypes are caused by one or two recessive mutations with high penetrance, similar phenotypes should be observed repeatedly. Therefore, a G1 founder which produced two or more embryos with a similar phenotype was considered as a potential carrier of recessive mutations.

To date, we have examined 26 G1 males, and determined that 23 were fertile and 3 were sterile. With the 23 fertile G1 males, 110 G2 females became pregnant, and had 985 morphologically normal embryos, 50 morphologically abnormal ones, and 54 absorption sites. Six G1 males out of 23 ($6/23 = 26.1\%$) produced two or more embryos with the similar phenotypes, and thus were selected as potential mutant carriers (lines B117, B170, B171, B25, B92, and B134), as summarized in Table 1. Samples of morphologically abnormal embryos are shown in Fig. 1 A and B. These six G1 founders have been kept for further breeding to confirm the phenotype heritability and to establish new mutant lines.

<table>
<thead>
<tr>
<th>Mutant lines</th>
<th>Beam</th>
<th>Dose (Gy)</th>
<th>Phenotypes on embryonic day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>B117</td>
<td>^{12}C</td>
<td>5</td>
<td>developmental retardation at E9</td>
</tr>
<tr>
<td>B170</td>
<td>^{12}C</td>
<td>5</td>
<td>developmental retardation at E8</td>
</tr>
<tr>
<td>B170</td>
<td>^{12}C</td>
<td>5</td>
<td>yolk-sac-like structure without a proper embryo</td>
</tr>
<tr>
<td>B171</td>
<td>^{12}C</td>
<td>5</td>
<td>left-turning tail</td>
</tr>
<tr>
<td>B171</td>
<td>^{12}C</td>
<td>5</td>
<td>defect in neural tube closure</td>
</tr>
<tr>
<td>B25</td>
<td>^{12}C</td>
<td>5</td>
<td>left-turning tail</td>
</tr>
<tr>
<td>B25</td>
<td>^{12}C</td>
<td>5</td>
<td>developmental retardation at E9</td>
</tr>
<tr>
<td>B92</td>
<td>^{14}N</td>
<td>3</td>
<td>developmental retardation at E8</td>
</tr>
<tr>
<td>B134</td>
<td>^{14}N</td>
<td>3</td>
<td>developmental retardation at E8</td>
</tr>
</tbody>
</table>

Mutant lines of B170, B171, and B25 produced two different types of abnormal embryos, indicating that each G1 may carry multiple mutations.

Fig. 1. Morphologically abnormal embryos found in G3.
5. Instrumentation
Design of Liquid-He-Free Superconducting Solenoid Coils for Electron Cyclotron Resonance Ion Source

T. Kurita, T. Nakagawa, T. Kawaguchi, and S. M. Lee

In recent years, we have constructed a facility for experiments to study the dynamic behaviors of metal clusters such as fission and multifragmentation. One of the main features of this facility is the production of multiply ionized clusters with soft peripheral collisions of highly charged ions with metal clusters. This method allows the multiple ionization of a metal clusters without strong additional excitation.\(^1\) This offers the possibility to study the dynamic behavior of a metal cluster. To produce an intense beam of highly charged ions for this experiment, we constructed an electron cyclotron resonance (ECR) ion source which consists of liquid-He-free superconducting solenoid coils and a permanent hexapole magnet.\(^2\)

Solenoid coils are used for axial plasma confinement in an ECR ion source. A superconducting magnet provides a high magnetic field which can’t be achieved by room-temperature magnets, and a higher magnetic field makes an ECR ion source deliver highly charged ions.\(^3\),\(^4\) One of the main features of this source is the use of Gifford-McMahon refrigerators for cooling the solenoid coils instead of liquid-He. This feature enables lower cost, lesser complexity and greater compactness than those of conventional superconducting magnets produced using liquid-He. A schematic drawing of our superconducting coil system and the highest axial magnetic field profile are shown in Fig. 1. The magnetic system for the axial magnetic field consists of a set of four solenoid coils divided into three groups. The central one operates in a reverse current to increase the mirror ratio of the axial magnetic field. These superconducting coils have the following characteristics:

1. Internal diameter of all coils: 290 mm
2. External diameter of the coils other than the central coil: 445 mm
3. External diameter of the central coil: 380 mm
4. Thickness of the coils other than the inner coil on the injection side: 80 mm
5. Thickness of the inner coil on the injection side: 48.1 mm
6. Conductor: NbTi/Cu
7. Maximum current density: 100 A/mm\(^2\)
8. Axial mirror-to-mirror distance: 400 mm

Two refrigerators, a low-power one and a high-power one, are used. The low-power refrigerator cools the current leads and prevents heat invasion of the solenoid coils through the current leads. The high-power refrigerator cools the solenoid coils via a cooling conductor to the temperature of 4 K. The cryostat is enclosed in a 5 cm-thick iron yoke. When using the refrigerators, it is necessary to minimize the unbalanced electromagnetic force which must be supported by thermal insulating supports, because of the associated low cooling power (~1 W at 4.2 K). Our conclusion in the design was that the unbalanced axial force should be less than 15 kN. To minimize the force, we studied the coil arrangement, the axial position of the yoke and the operation conditions using code-OPERA.

Figure 2 shows a cross-sectional view of our superconducting solenoid coils and their electrical connections. The unbalanced electromagnetic force is maximum when some coils are quenched. To reduce the unbalanced electromagnetic force without expanding the iron yoke, the injection-side coils consist of two solenoid coils (Coil 3 and Coil 4), and the extraction-side coil (Coil 1) and Coil 4, i.e., the outer of injection-
The injection-side coil is divided and the external aspect of the injection side and the extraction side coil are connected in series. The magnetic field profile and the unbalanced electromagnetic force when the force is maximum are shown in the case of this magnetic configuration.

Case 1
The electromagnetic force: 14.4 kN

Case 2
The electromagnetic force: 13.8 kN

Fig. 2. The injection-side coil is divided and the external aspect of the injection side and the extraction side coil are connected in series. The magnetic field profile and the unbalanced electromagnetic force when the force is maximum are shown in the case of this magnetic configuration.

The severest conditions, under which the electromagnetic force becomes maximum are the following configurations:

Case 1: When all coils except Coil 3 are quenched under the condition to yield a maximum axial field, the peak of the magnetic field on the extraction side vanishes. The magnetic field of 3 T generated by the induced current in Coil 3 will remain on the injection side. In this case, the electromagnetic force pushing Coil 3 toward the injection side will become maximum. The magnetic field profile in this case is indicated by the solid line in Fig. 2. Since the position of the peak shifts to the inside, the electromagnetic force will be reduced compared with an undivided coil.

Case 2: When only Coil 1 and Coil 2 are excited with a maximum current, the electromagnetic force toward the extraction side becomes maximum. The magnetic field profile of this case is indicated by the dashed line in Fig. 2. Because Coil 1 and Coil 4 are connected in series, there are always two magnetic field peaks formed on both sides. This property contributes to the reduction of the electromagnetic force between the iron yoke and the coils.

As an optimized and calculated result, the electromagnetic stress become less than ~15 kN, as shown in Fig. 2. With our magnetic configuration, we can successfully reduce the electromagnetic stress without expanding the iron yoke. The measured unbalanced force in Case 2 is ~13 kN. This is consistent with the calculated value. If the injection-side coil is not divided, and Coil 1 and Coil 4 are not connected in series, then the electromagnetic force will be greater than 30 kN in some cases. To summarize, it has been demonstrated that we can reduce the electromagnetic force between the iron yoke and the solenoid coils, and we have succeeded in designing a compact magnetic system for an ECR ion source.

References
Automatic 18F Supply System for a Slow Positron Beam

F. Saito, N. Suzuki, J. H. Kim, Y. Nagashima, T. Kurihara, Y. Itoh, T. Hyodo, and A. Goto

The spin-polarized slow positron beam is a promising probe for surface magnetism. A spin-polarized positron beam is conveniently produced using a β^+ decay radio-isotope (RI) source. However, the activity of 22Na which is routinely used, is at most 6 GBq. Recently we have developed a practical way of producing an 18F (half-life 110 min, β^+ endpoint energy 635 keV) positron source for use in materials research. To perform continuous measurements for a few days, however, the process of fabricating the source has to be simple and rapid. In the present paper, we report an automatic system which rapidly supplies an 18F positron source produced by the AVF cyclotron at RIKEN.

18F is produced via the 18O(p, n)18F reaction. The apparatus used is similar to that used routinely for the production of 18F as a PET (Positron Emission Tomography) source. A 14-MeV proton beam from the AVF cyclotron is used for the bombardment of liquid H$_2^{18}$O. The activity of 18F is about 4 GBq after an hour of proton irradiation at 2 μA. The 18F solution is automatically transferred by He gas at a pressure of 1.5 atm through a Teflon capillary from the target container in the AVF cyclotron vault to the experiment vault downstairs.

An automated electro deposition and source-supply mechanism, which is controlled by a personal computer, is shown in Fig. 1. It has two rotatable discs. One serves as a turntable which carries 12 electrodeposition cells made of platinum. The cell acts as a cathode as well as a vessel for the 18F solution. Twelve graphite rod anodes of 3 or 5 mm are installed on the side of the second disc, which is perpendicular to the horizontal turntable, rotatable and movable vertically. When the cell is filled with the 18F solution, the turntable rotates to set the cell at the position for electro deposition, directly below the source window of the slow positron beam apparatus. Then the second disc descends until the end of a graphite rod dips 0.2 mm below the surface of the solution. The position of the liquid surface is detected by monitoring the electric current passing through the graphite rod. The typical electro-deposition time is about 15 min. After the electro deposition, the vertical disc is raised to the original position and rotated by 180 degrees. It is then raised farther about 7 mm so that the graphite rod is close at 1 mm to the positron incidence Ti window of the beam apparatus. The source is placed outside the beam apparatus so as not to break the vacuum in the apparatus. The entire procedure takes only 20 min including the liquid transfer time and the 15 min of electro-deposition.

While 18F is being electro deposited and used as a source, the next batch of 18O-water is loaded in the target container and irradiated by protons. In this way, the 18F source is supplied continuously throughout the experiments.

The highest efficiency of electro deposition was 97% using 2 GBq 18F solution deposited on a 5 mmϕ graphite rod for 30 min. The fraction of the positrons emitted from of the surface was 45%. Thus, as much as 42% of the β^+ from the 18F in the 18O-water can be used as a source of the slow positron beam.

The maximum activity of 18F was estimated from the density of the 19F carrier which was used for electro-deposition. It was three orders of magnitude larger than that of 2 GBq 18F. Since both 18F and 18F are electro deposited with the same efficiency, we expect that an 18F activity of at least 2 TBq can be electro-deposited on a 5 mmϕ graphite rod, provided we produce 18F with such an activity. For example, if a small cyclotron commonly used for PET, having a proton beam current of 50 μA, is available, a positron source of 100 GBq can be easily produced and about 107 slow positrons per second would be produced with a tungsten moderator.
Design and Simulation of an Electrostatic Spin-Polarized Positron Beam System for Surface Magnetism Studies

Spin-polarized low-energy positrons are considered to be useful as probes for studying electron spin states of both surface and bulk materials. Positrons are polarized along their momentum directions when they are emitted from a radioactive source. The formation of positronium (Ps, an electron-positron bound system) can be distinguished from the formation of different electron spin states due to the spin-dependent interactions between positrons and electrons on the surface. This method has the advantage of combining spin sensitivity and surface selectivity. Recently, a positron source of 18F (half-life 110 min, $E_{\text{max}} = 0.635$ MeV) has been developed for a polarized slow positron beam at RIKEN.

We are in the process of designing an electrostatic positron beam system in combination with a spin rotator that can change the spin direction of the positrons without changing the beam optics. This design of the beam system can be applied to the investigation of both surface and interface magnetism. Moreover, the beam system may be applicable to studies of polarized low energy positron diffraction or polarized Auger lineshape.

An overview of the positron beam optics is shown in Fig. 1. Positrons from a moderator are extracted and accelerated in a spin rotator, bent 90° by a parallel-plate analyzer, and finally focused onto the target by a series of electrostatic lenses. For the rays of positrons, we have chosen 33 trajectories (ranging from $-80°$ to $+80°$) which are evenly spaced on the moderator with a diameter of 6 mm in the x-y plane. The distance from the parallel-plate to the sample is about 1500 mm. The spatial separation prevents the γ-rays, emanating from the source region, from reaching the sample.

After spin-polarized positrons are extracted from a moderator (A), they enter the spin rotator (B) where the angle of the positron spin direction rotates along the magnetic field due to Lamor precession, while their path is not changed. The parallel-plate mirror (D) bends the positron beam 90° in order to prevent the fast positrons and γ-rays emitted by the source from reaching the sample. Although the positron's momentum direction is changed, its spin direction remains the same in an electric field. By the combination of the spin rotator and the parallel-plate bender, both longitudinal and transversal spin components of positrons can be adjusted at the sample.

The source-moderator chamber is insulated from the sample chamber and floats at voltages from 0.1 to 30 kV to accelerate positrons while the sample is maintained at ground potential. The voltages at the end of a linear-type accelerator (F) are adjusted to vary the positron beam energies. The beam diameter at the sample (H) is simulated to be 2–6 mm in the range of beam energy from 0.1 to 30 keV. A set of lenses with a 20 mm inner diameter is used to transport the accelerated positrons onto the sample through the electromagnet (G) that will produce a magnetic field at the sample. The observation of reflections of positrons (lower than 2 keV beam energy) near the sample when 12 K Gauss is applied indicates that further consideration of beam design is required for a better positron polarimeter.

References
Calibration of Beam-Line Polarimeter at $E_d = 140$ and 200 MeV

The deuteron polarimeter, which is based on the $d+p$ elastic scattering, was calibrated at $E_d = 140$ and 200 MeV.

The $d+p$ elastic scattering has several advantages in polarimetry for an intermediate-energy deuteron beam: (1) It is expected to have large vector and tensor analyzing powers. (2) A high signal-to-noise ratio is attainable because the coincidence measurement of the scattered deuterons and recoiled protons is applicable. (3) We can use a polyethylene (CH$_2$) film as a "hydrogen target" because the coincidence measurement described above makes the contribution from carbons in CH$_2$ less important. A thin CH$_2$ foil (~50 μm) is nondestructive to the beam quality, easy to use, and inexpensive, therefore, it is desirable as a target for a beam-line polarimeter.

In the calibration measurement, the polarizations of a deuteron beam were measured using a low-energy polarimeter1 before acceleration in the Ring cyclotron. It is assumed that depolarization during the acceleration process is negligible. It should be noted that we have recently carried out the measurement of absolute polarization via the 12C$(d,\alpha)^{10}$B*(2$^+$) reaction2 independent of this assumption. The typical beam polarization was 70–80% of the ideal value.

A 1-mm-thick polyethylene target was bombarded by the polarized deuteron beam. Scattered deuterons and recoiled protons were detected in coincidence with plastic scintillation detectors. A schematic depiction of the detector setup is presented in Fig. 1. Four sets of deuteron and proton detectors, Left, Right, Up, and Down, were used to reduce systematic uncertainties in analyzing powers (only the Left and Right detector sets are illustrated in Fig. 1). Details of the experimental setup are described in Ref. 3.

In Fig. 2, vector (A_y) and tensor (A_{yy} and A_{xx}) analyzing powers for the $d+p$ elastic scattering are shown. Full and open circles represent the present results and the data taken at Saturne,4 respectively. The angles used in the polarimeter were chosen to be $\theta_{cm} = 110^\circ$ and 82.5$^\circ$ at $E_d = 140$ and 200 MeV, respectively. The analyzing powers at these angles are listed in Table 1.

References
Absolute Calibration of the Deuteron Beam Polarization at an Intermediate Energy via the $^{12}\text{C}(d,\alpha)$ Reaction

The polarization of the deuteron beam accelerated by AVF and Ring cyclotrons is measured using a polarimeter (high-energy polarimeter), which applies the d-p elastic scattering as a polarimetry.\(^1\) The analyzing powers for the reaction were calibrated against the polarization measured using the $^{12}\text{C}(d, p)^{13}\text{C}$ reaction at the exit of the AVF cyclotron.\(^1\) However, the analyzing powers calibrated in this manner inevitably have systematic errors because the uncertainty of the analyzing powers for the reference $^{12}\text{C}(d, p)^{13}\text{C}$ reaction is already significant in amount. Moreover, systematic uncertainty also arises from the long-term instability of the polarization because measurement of the beam polarization and the analyzing powers for the d-p elastic scattering cannot be carried out simultaneously at RARF. Therefore, it has become necessary to calibrate the high-energy polarimeter directly using nuclear reactions, the absolute values of the analyzing powers of which are unambiguously known. Although such a reaction is not known for the vector analyzing power, a few reactions exist for the tensor analyzing power. One of those is the $^{16}\text{O}(d, \alpha)^{14}\text{N}(0^-, 4.92\text{ MeV})$ reaction, and was used at a low energy.\(^2\) At intermediate energies, however, it is considerably difficult to use the reaction since an energy resolution better than 200 keV is required and the cross section is rather smaller than that at a low energy. As an alternative, we propose to use the $^{12}\text{C}(d, \alpha)^{10}\text{B}$ reaction for calibrating the absolute value of the polarization. In this reaction at 0°, if the final state of ^{10}B has natural parity except for 0+, it can be shown that the tensor analyzing power A_{zz} is unity due to the parity conservation. Among the levels of ^{10}B, the 2+ state at 3.59 MeV excitation is advantageous because energy differences between adjacent levels are more than 1 MeV. Moreover, even if the tensor polarized beam has a component of vector polarization, it does not influence on the measurement of the tensor polarization because $A_{yy} = 0$ at 0°.

The absolute calibration of the high-energy polarimeter using the above reaction was carried out for a 270 MeV deuteron beam. For the measurement of the (d, α) reaction, we used the spectrometer SMART. A self-supporting natural-carbon foil with a thickness of 10.94 mg/cm\(^2\) was used as the target. The scattered particles were momentum-analyzed by the SMART and detected using a multiwire drift chamber and three plastic scintillators at the second focal plane. The \(\alpha\) particles were identified using the light output from the plastic scintillators. A typical excitation-energy spectrum is shown in Fig. 1. The cross section for the 2+ state is 5 \(\mu\text{b/sr}\) at 0°. In the analysis, we limited the scattering angle to less than 1° in a laboratory system because A_{zz} for the (d, α) reaction varies

![Fig. 1. A typical excitation-energy spectrum for the $^{12}\text{C}(d, \alpha)^{10}\text{B}$ reaction at $\theta_{\text{lab}} = 0°-4°$ is shown with solid circles. The broken line shows the result of a Gaussian fit for each peak. The solid line shows the sum of the fit results. A hatched peak represents the 2+ state of interest at the excitation energy of 3.59 MeV.](image_url)

![Fig. 2. The analyzing powers A_{yy} and A_{xx} for the d-p elastic scattering. The present data are indicated by open diamonds. The data obtained from Ref. 1 are indicated with solid circles.](image_url)
considerably near 0°. The horizontal and vertical angular resolutions of the SMART, which are 0.19° and 0.22°, respectively, are sufficiently good. Simultaneously with the measurement of the \((d, \alpha)\) reaction, the asymmetry of the \(d-p\) elastic scattering was measured using the high-energy polarimeter. With the polarization obtained using the \((d, \alpha)\) reaction, the analyzing powers \(A_{yy}\) and \(A_{xx}\) for the \(d-p\) elastic scattering were determined. The analyzing powers are compared with the data reported in Ref. 1. The results are in good agreement with the statistical errors, as shown in Fig. 2. The systematic errors are estimated to be equal to or statistical errors.

In the detection of the \(\alpha\) particle, the signal-to-noise ratio was very low due to the small cross section. The beam intensity was limited to less than 20 nA to prevent the loss of detection efficiency. As a result, the statistical errors of the present data are twice as large as those in Ref. 1. In order to improve the statistical accuracy, we will repeat the experiment again with increased beam intensity and reduced background. Further, we plan to calibrate of the high-energy polarimeter at 140 MeV.

References
Calibration of 3He Polarization Using Electron-Spin-Resonance Method

S. Yamamoto, T. Uesaka, T. Wakui, H. Sakai, and Y. Yano

The RIKEN spin-exchange-type polarized 3He target was applied to nuclear physics experiments in 1996\(^1\) and 1998.\(^2\) It is important to accurately determine the absolute polarization of 3He in such applications. At present, the most common method of 3He polarimetry is based on nuclear magnetic resonance (NMR) of adiabatic fast passage (AFP), which we are using. Through this method, however, we can only determine the relative value of polarization.

To calibrate the absolute value of polarization, we measured Boltzmann polarization signals from protons in a sample of water using AFP-NMR (proton NMR) under the same conditions as those used to measure 3He polarization. Though it is easy to measure the proton NMR signals, there are considerable systematic errors due to the small strength of proton NMR signals. Thus, we have introduced a method based on the frequency shift of the Rb electron-spin resonance (ESR).\(^3\)

The frequency shift is proportional to the polarization of 3He, the density of 3He, and the Rb-3He spin-exchange constant κ_0. The value of κ_0 is determined accurately as 4.52 ± 0.00934 xT [°C].\(^4\) The uncertainty in κ_0 is 1.5% at 175°C.\(^4\) Therefore the precision of this calibration depends on the precision of measurements of the Rb ESR frequency shift and the density of 3He.

We measured the frequency of Rb ESR in a magnetic field of 30 G as follows: firstly, 85Rb atoms in the cell, containing 3 amagats1 of 3He gas and a few mg of Rb metal, were optically pumped with circularly polarized light (σ^+) tuned to the D_1 transition (795 nm) from the ground state $^5S_1/2$ to the excited state $^5P_{1/2}$. The population of all the Zeeman sublevels in the ground state was thereby depleted except for the $m_F = +3$ Zeeman sublevel of the $F = 3$ hyperfine state. This led to a decreased absorption of the pumping laser light; consequently, the fluorescence intensity was markedly reduced. Secondly, we applied an RF field to repopulate the depleted $m_F = 2$ level at a frequency corresponding to the ESR transition between $m_F = +2$ and +3, and the fluorescence intensity was immediately increased. Therefore, the Rb ESR frequency could be determined as the peak position in the fluorescence spectrum by scanning the RF frequency. In this experiment, the frequency was locked at peak position using a feedback system, and was measured by a frequency counter.

The measurements of the ESR frequencies were performed in the cases where 3He nuclear spin \textbf{K} is parallel ($\langle \textbf{K} \parallel \textbf{B} \rangle$) and antiparallel ($\langle \textbf{K} \perp \textbf{B} \rangle$) to a magnetic field \textbf{B}. Figure 1 shows the ESR frequency which was alternately obtained for each case. The frequency shift $\Delta \nu$ is given with the Rb ESR frequencies $\nu_{\langle \textbf{K} \parallel \textbf{B} \rangle}$ and $\nu_{\langle \textbf{K} \perp \textbf{B} \rangle}$ as

$$\Delta \nu = \frac{\nu_{\langle \textbf{K} \parallel \textbf{B} \rangle} - \nu_{\langle \textbf{K} \perp \textbf{B} \rangle}}{h} \times \frac{8\pi}{3} \kappa_0 \frac{\rho_{^3\text{He}}}{\rho_{^3\text{He}}},$$

where ν_B is the Bohr magneton, g_s is the electron g-factor, I is the nuclear spin of 85Rb, $[^3\text{He}]$ is the density of 3He, and $P_{^3\text{He}}$ is the polarization of 3He. Figure 2 shows the frequency shift and polarization as a function of the NMR signal. In Figs. 1 and 2, error bars are as large as 5 kHz, which indicate an uncertainty in polarization of about 40%. This large uncertainty is due to the instability of the magnetic field. An error

\[\text{Fig. 1. A typical set of ESR data. We measured the ESR frequencies in the cases where } ^3\text{He nuclear spin } \textbf{K} \text{ is parallel (} \langle \textbf{K} \parallel \textbf{B} \rangle \text{) and anti-parallel (} \langle \textbf{K} \perp \textbf{B} \rangle \text{) to a magnetic field } \textbf{B}.\]

\[\text{Fig. 2. The relationship between the frequency shift (polarization) and the amplitude of the NMR signal.}\]
of 5 kHz corresponds to an instability of 20 mG. To decrease the uncertainty of polarization to less than 5%, we have to decrease the instability to less than 3 mG. We are planning to improve the stability of the magnetic field by introducing a feedback circuit with a magnetometer.

References
2) M. Kurokawa et al.: private communication.
Response of an Imaging Plate for Heavy Particles

S. Gunji, H. Sakurai, N. Sato, K. Morimoto, F. Tokanai, I. Tanihata, Y. Wakasaya, and T. Kato

We are investigating the response of an imaging plate (IP) for heavy particles for use as a detector of ultraheavy cosmic rays. It is well known that photostimulated luminescence (PSL) occurs when the positions injected with heavy particles are illuminated using a laser. By detecting the PSL value using a photomultiplier, we can obtain information about the injection positions of the particles and the deposited energy. However, due to the fading effect, information on the deposited energy of the positions fades as with time. Therefore, it is very important to detect the PSL in real time. In order to do so, it is necessary to know where the particles are injected. We plan to locate the position using the prompt luminescence from the IPs. We irradiated the IPs with Bi\(^{10}\) A MeV and Kr\(^{70}\) A MeV in the RIKEN cyclotron accelerator, and attempted to detect the prompt luminescence for each particle.

For this experiment, the setup shown in Fig. 1 was used. The four-channel multianode photomultiplier mounted on the side of the IP was used to detect the prompt luminescence, and the plastic scintillator in front of the IP was used to confirm that the heavy particles passed through the IP. The flux of the heavy particles was adjusted to about 1000 counts/sec for an area of 30 cm\(^2\). The trigger condition was the coincidence of the plastic scintillator with the four channel signals of the multianode photomultiplier. The output signals from each channel of the multianode photomultiplier were acquired by the CAMAC system using the trigger condition.

Using this setup, we succeeded in detecting the prompt luminescence of the particles for both Bi\(^{10}\) A MeV and Kr\(^{70}\) A MeV. In Fig 2, the summed pulse height distribution for all four channel signals is shown. A broad peak which corresponds to the deposited energy of Bi\(^{10}\) A MeV, is clearly observed.

In a future work, we will investigate the proportionality of the prompt luminescence to the deposited energy. Moreover, we plan to identify the injection positions by mounting four photomultipliers on the corners of the IP and determining the differences between their signals. We will also investigate the wavelength and the time profile of the prompt luminescence.

References
4) K. Sakasai et al.: Proc. 7th Int. Conf. on Nuclear Engineering, Seattle (1999).
Development of Time-of-Flight Detector with Streak Camera

F. Tokanai, K. Morimoto, M. Kurata-Nishimura, I. Tanihata, and S. Yamada*

In high-energy physics, time-of-flight (ToF) measurement has commonly been used to determine the mass and energy of heavy ions. One of the main requirements for any ToF detector is good time resolution. A time resolution of up to about 150 ps has been achieved. A time resolution of 150 ps allows for a separation of masses of around 4 amu with an energy of 6.8 GeV for a 1 m flight path. However, masses of around 200 amu can be separated only up to 136 MeV. Recently, construction of the radioactive ion beam facility (RIBF) was begun at RIKEN. In this facility, heavy ions will be accelerated to energies up to 400A MeV for light nuclei and 150A MeV for the heaviest nuclei. Therefore, if we separate masses of around 200 amu at the energy of 30 GeV, a time resolution of 10 ps is required for a 1 m flight path. For this purpose, we have been developing a novel ToF detector with a 10 ps time resolution, which utilizes a streak camera.

The configuration of the new ToF system is shown schematically in Fig. 1. This system consists of two identical sets of streak cameras (systems 1 and 2). The system 2 streak camera is placed at a distance \(L \) (m) from system 1. These systems are tilted at 45 degrees with respect to the heavy-ion path. Foil is mounted at the center of each system to emit secondary electrons. This foil divides each streak camera system into a streak-image detector and a center-image detector. An acceleration mesh is mounted on both sides of the foil at a distance of 2.7 mm. In the streak-image detector section, the secondary electrons from the foil are accelerated by the electric field of the mesh and focused by an electronic lens. These electrons are swept by applying a 100 MHz sine wave voltage to the vertical and horizontal diffraction plates. The swept-electrons image appears as a circle of 16 mm diameter on the phosphor screen. In the center-image detector section, the secondary electrons are accelerated, focused by an electric lens, and directly impinge on the phosphor screen (not swept). The position of the electron image on the screen represents the center of the circle from the streak-image-detector section. These light images for both detector sections are recorded by a two-dimensional position-sensitive detector such as an image intensifier.

Since the sweeping electric fields of each system are operated at the same period (angular velocity \(\omega \)), when a heavy ion passes through this system, we obtain the streak image of \(\theta_0 = \omega t_0 \) and \(\theta_1 = \omega(t_0 + \delta t) \) on a circle for system 1 and system 2, respectively. Using the relationship between \(\delta t \) and \(L \), we can obtain the velocity of a heavy ion. Therefore, this system can be used as a ToF detector.
In order to investigate the performance of the ToF system, we carried out test measurements using one streak camera system for the heavy-ion beams. The performance test of the streak camera system was carried out using 10B and 12C beams of 2.5A energy MeV from the RIKEN heavy-ion linear accelerator (RILAC). The streak and center images on the phosphor screen were lens-coupled to a CCD camera. Figure 2 shows the streak image obtained for the 10B beam at 2.5A MeV energy. The center image is also shown in Fig. 3. The beam rate was about 10^4 particles/s. We used a gated signal of 111 ms width for the CCD, thus a total of 1110 events was acquired. These images are binned in a 2×2 CCD channel (13.4 μm x 13.4 μm). We can see two clusters in the center-position image. The bright cluster was defined as the focused 10B beam profile with a diameter of about 2 mm and the faint cluster as the effect of the beam attenuator at the beam line. We could not distinguish the two images from the CCD images of the ZnS scintillation light. Therefore, the center-image part of this system will be useful for monitoring both the position and the shape of the heavy-ion beam spot. Moreover, the position information of a heavy ion reduces the uncertainty of the flight path between two ToF systems, which is caused by angular straggling in the target. The streak images corresponding to the center-position images are clearly seen in Fig. 2. However, it is not a circular image, but an elliptical one. This is due to the interface between the horizontal and vertical electric fields in the sweep region in the streak image section. This can be fixed by using an electric shield between the horizontal and vertical electrode.

We are currently working on improving the detection efficiency and the event acquisition rate.

References
Development of a New Photon Detector System for Nuclide Identification

Over the past few years, several experiments for producing and identifying new isotopes have been performed by the $\alpha-\alpha$ delayed coincidence method using the RIKEN gas-filled recoil separator (GARIS). This method is very useful for identifying new isotopes when the α-decay of the daughter nucleus is well known. However, there are cases in which this method is not effective, such as when the α-decay energies of the daughter nucleus are unknown, or when the branching ratio of α-decay for its daughter nucleus is much smaller than the detection limit. In such cases, additional information, for example, the characteristic X-rays oriented from reaction products, measured around a focal plane detector of the separator, is required for identification.

CdTe and CdZnTe semiconductor detectors are suitable for measurements of rare events such as the production of new isotopes because of the high efficiency per volume due to their large absorption cross section compared with those of conventional X-ray detectors, Ge or Si(Li) detectors. The band gap of CdTe or CdZnTe is sufficiently wide to allow operation at room temperature, so it is expected that low running and maintenance costs will be achieved. However, the CdTe and CdZnTe detectors have several problems, including a low energy resolution compared with Ge or Si(Li) detectors, and difficulty with producing large crystals. As a result of the latter, although the price of one CdTe or CdZnTe crystal is much lower than for a Ge crystal, the size of a commercially available CdTe or CdZnTe crystal is much smaller than that of a Ge crystal. In our experiments, X-ray detectors will be placed around the focal plane detector, so the distance between reaction products which are implanted in the focal plane detector and X-ray detectors will be restricted by the optical condition of the separator. In addition, the detectors should be placed far enough from the focal plane so as not to be damaged by charged particles, and yet close enough to the focal plane to achieve a high detection efficiency. Consequently, the total detection efficiency will be strongly affected by the detector crystal sizes; we must use many crystals set around the focal plane detector in order to cover a sufficiently large solid angle. Thus, the total price of the CdTe or CdZnTe system will become even higher than that of the Ge system; this is the problem which must be solved when the CdTe or CdZnTe detector system is constructed. To find the optimum solution for our new photon detector, we investigated the basic performance of CdTe and CdZnTe.

First, a Schottky CdTe detector was tested using the setup shown in Fig. 1. A single crystal of CdTe whose effective area is 10 mm \times 10 mm and thickness is 0.3 mm was mounted on a boron nitride base. The

* Department of Physics, Saitama University
CdTe crystal can be cooled using a Peltier module. The CdTe detector in the vacuum chamber was irradiated by radiation sources through the 0.5-mm-thick metal beryllium window. Figure 2 shows the γ-ray spectrum of a 133Ba standard source at room temperature. The peaks at 359 channel, 387 channel and 449 channel correspond to 276.4 keV, 302.9 keV and 356.0 keV, respectively. The value of the full-width at half maximum (FWHM) in these energy regions is about 22 keV, and this value is about tenfold that of a sufficient resolution. Although the energy region of characteristic X-rays is lower, we have not yet achieved a sufficient resolution.

The main reason for insufficient resolution is the large electric noise of the preamplifier. It is expected that the photon detectors will be placed in much worse environments with respect to electric noise than the present one. At present, only a standard preamplifier which had been used for our silicon solid-state detectors surrounded by the focal plane detector of the GARIS is used, so the development of specific preamplifiers may be necessary. On the other hand, the cost of our photon detection system using this CdTe detector may become much higher than that of Ge or Si(Li) detectors if specific preamplifiers which significantly improve the resolution must be used for each crystal. If so, it will be difficult to use the CdTe detector, from an economic point of view. The CdTe detectors discussed above have many merits, and thus the improvement of the resolution and other investigations, including the testing of CdZnTe detectors, are presently in progress.

References
Development of High-Efficiency Delay-Line PPAC for High-Energy Light Ions

H. Kumagai, N. Fukuda, A. Ozawa, K. Sümmerer, and I. Tanihata

The facilities that produce radioactive secondary beams by projectile fragmentation need to routinely measure the positions of a wide range of energetic ions. For position measurements, two-dimensional parallel plate avalanche detectors (PPAC) based on charge-division read-out have been used at the fragment-separator facilities in RIKEN\(^1\) and NSCL.\(^2\) The detectors have proven to be highly versatile and reliable. However, signal pileup becomes a serious problem when counting rates are higher than 5 k s\(^{-1}\) for such detectors. This is a natural limitation in the case of slow ion signals. Thus, we have developed delay-line read-out models. We have successfully achieved reasonable position and timing resolution for counting rates of 10\(^6\) s\(^{-1}\) for an earlier model.\(^3\) However, due to a smaller induced signal from the electrons, the previous type was effective only for low energies (less than 15 A MeV) or for large Z ions at high energies.

In order to improve detection efficiencies for high-energy light ions, we needed to improve the signal-to-noise ratio of the PPAC. Since it is difficult to enhance the signal in the delay-line PPAC, the only way to improve the signal-to-noise ratio is to decrease the noise level in the PPAC. There are two major noise sources; one is the noise from external electronic devices, such as the power supply of pre-amps and turbo-molecular pumps, and the other comes from internal electronics in the PPAC. To decrease external noise, we carefully mounted the PPAC in such a way that it was isolated from the beam-line and its vacuum chamber. The main source of internal noise is the pre-amp. In order to decrease the noise level, we developed a new design for the pre-amp, using a low-noise transistor. We succeeded in decreasing the noise level by a factor of two.

We measured detection efficiencies, position resolution, and time resolution for the newly designed delay-line PPAC at the RIPS in RIKEN and the KAOS facility in GSI.

We produced several types of secondary fragments at the RIPS, namely, \(^{10}\)Be with 75 A MeV, \(^{8}\)Li with 61–68 A MeV, and \(^{7}\)Li with 87–91 A MeV. We mounted a plastic scintillator in front of the PPAC to count the number of fragments passing through. In order to measure the position resolution of the PPAC, we mounted a small photomultiplier with three fiber scintillators on the exit window of the PPAC. The distance between fiber scintillators was 10 mm and the scintillators were square in shape with a size of 0.5 × 0.5 mm\(^2\). For the PPAC, we used C\(_2\)F\(_8\) gas at 30 Torr and flow rates of about 6–10 l/h. We achieved about 95% detection efficiency for the above fragments even for a 10\(^5\) s\(^{-1}\) count rate. To obtain the position resolution, we measured the position spectra of the PPAC coincident with the fiber scintillators. We obtained a 1.2–1.5 mm (FWHM) position resolution for the PPAC, including the size of the scintillators. We also measured the time resolution between the signal of the front plastic scintillator and the anode signal of the PPAC. The measured time resolution was 1.6–1.7 ns (FWHM), including the intrinsic time resolution of the scintillator. It was noted that the flow rate of the gas affects the bias voltage of the PPAC. For a flow rate of 6 l/h, we achieved 96% efficiency at 1750 V. On the other hand, for a flow rate of 10 l/h, we achieved 95% at 1820 V. The reason for the difference is unclear. Probably, it is due to the purity of the gas and/or the out-gas from materials inside the PPAC chamber. The higher flow rate is preferable for stable PPAC operation.

In one experiment, we applied high count rates (about 25 k s\(^{-1}\)) for about 7 hours to check the long-term stability of the PPAC. During the measurements, the PPAC was damaged due to discharges. After the measurements, we compared the damage of the cathodes, with Al and Au platings, due to the discharges. We observed a marked difference in the trace of discharges. The damage in the case of Au plating as greater than at in the case of Al plating. The difference may be due to the different melting points for both metals. Therefore, we chose Al for the final plating. However, the contact between the delay-line and the cathode plate was formed by Au evaporation to maintain a good electronic contact.

We installed two new delay-line PPACs at the KAOS

![Fig. 1. Bias voltage dependence of the detection efficiency for the newly designed delay-line PPAC measured by the mixed 4B beam.](attachment://Fig1.png)
facility in GSI in order to check the performance of the detectors at relativistic energies. We produced three types of beams, namely 12C with 174 A MeV, 12C with 335 A MeV, and a mixed beam of 8B with 254 A MeV and 7Be with 216 A MeV, from the FRS facility at GSI. The typical count rate was about 100 s$^{-1}$ for the mixed beam. We achieved about 99% detection efficiency for the 12C beams and about 95% detection efficiency for the mixed 8B beam. In Fig. 1, bias voltage dependence of the detection efficiency for the mixed 8B beam is observed. To obtain the position resolution, we measured the position spectra of the PPAC coincident with the fiber scintillators. We obtained 1.1–1.2 mm (FWHM) position resolution for the PPAC, as shown in Fig. 2 for the mixed 8B beam. We also measured the time resolution between the two PPACs. The measured time resolution was 1.2–1.4 ns (FWHM).

References
Construction of PHENIX Muon Tracking Chambers

J. Murata, M. L. Brook, D. M. Lee,*1 S. Pate,*2 N. Saito, T. Shibata,
W. Sondheim,*1 M. Sugioka, and C. Velissaris*2

The PHENIX muon arm consists of a muon identifier (MuID), muon magnets and a muon tracker (MuTr). Muon magnets and MuID panels have been built and installed in the experimental hall. In May 1999, a RIKEN team joined the MuTr construction team to work mainly on: (1) Chamber quality assurance (QA) system construction, (2) Optical alignment system development, (3) Gas system design and construction, (4) Position resolution evaluation.

Each arm of the MuTr consists of three stations of cathode-strip tracking chambers, which are mounted inside the muon magnets. Each station is now under construction at factories in BNL, LANL, UNM (University of New Mexico) and NMSU.

(1) The QA test system at the BNL factory, for testing stations 2 and 3 has been built. The QA system consists of a test system for the high anode-voltage supply and a cathode-signal readout system for evaluation using the β-source. A CAMAC-based data acquisition system (DAQ) has been built and checked using signals from scintillators. The 32-octant chambers of stations 2 and 3 are being checked using this system. The total number of channels is 44544 (cathode strips) and 26496 (anode wires).

(2) A real time relative-position monitoring system has been prepared. The initial placement of the chambers is possible to an accuracy of a few millimeters; however, sufficient resolution can be obtained by measuring the relative alignment of the chambers to within 25 μm using the optical alignment system. The role of this system is not only to measure the initial alignment, but also to monitor the thermal expansion or movements of the chambers. The system comprises an optical fiber connected to a visible-light source, a convex lens and a position-sensing CCD camera. We have developed a DAQ system for CCD utilizing commercially available software. The CCD camera has a sensing area of 8.8 x 6.6 mm with the effective pixels of 768 x 493. Therefore, the pixel resolution is approximately 12 μm and the centroid resolution is approximately 2 μm. We will use seven alignment monitors per chamber. Preparation for the installation is in progress.

(3) The chamber gas supply and recirculation system design has been completed. Ar(50%) + CO₂(30%) + CF₄(20%) mixed gas was selected with consideration of non-flammability, Lorentz angle, cathode charge distribution, efficiency and so forth. In order to reduce the cost of the expensive CF₄ gas, a system enabling almost complete recirculation has been designed using gas purification filters. Safety precautions with respect to protect against too high and too low pressure have been taken, with particular consideration of the thin gas windows of station 2. The system design has been approved by the RHIC safety review committee and construction will start soon.

(4) The position resolution of a test chamber which has the same strip structure as the real chambers of the MuTr has been measured. The primary purpose for constructing the test chamber is to check the performance of the front end electronics before their mass production. However, this measurement in itself is important because it is the only reference data for the resolution. The cosmic-ray measurement was carried out in October 1999 at LANL using four delay-line drift chambers as reference chambers (Fig. 1). The drift chambers have the position resolutions in the range of 80–100 μm. Further calibration and analysis is well underway and the position resolution of 100 μm is expected for the test chamber.

References
1) PHENIX Muon Arms Status, September 1999, (PHENIX, Brookhaven National Laboratory, New York, 1999).
Status of PHENIX Muon Identifier Mechanics

The installation and testing of the muon identifier (MUID) for the PHENIX detector was completed in 1998. Since then, we have been maintaining the detectors and designing the gas supply system for this large-scale detector. In this article we report on the mechanical maintenance of the MUID, focusing on the recovery procedure following a major accident which happened in Jan. 1999, and the progress of the gas supply system design and construction.

The MUID detector plays an important role in the RHIC spin program as well as in the heavy ion program. The detector system consists of a range stack formed by the sandwiching of five absorber steel plates and proportional chambers made of plastic Iarrocibi tubes. In order to cover a large acceptance of 10 to 35 degrees in \(\theta \) and 360 degrees in \(\phi \) at 7 m from the reaction point, the area which must be covered is 10 m high and 13 m wide. The detector covers the forward and backward regions, so-called south and north arms, respectively. We segmented a total of 10 gaps. Each gap has 6 of panels which are into 60 which are formed a proportional tube array housed in the aluminum cases. The MUID panels were fabricated and installed in the fall of 1998.

The PHENIX experimental hall was flooded on Jan. 2, 1999. The rapid increase in temperature melted the accumulated snow on the ground, but did not melt the ground ice. A large amount of muddy water flooded the PHENIX Interaction Region (IR) where all of the MUID panels were installed. All of the water receded the following day, it was observed that the water level had reached about 10 cm above the bottoms of the lower MUID panels. In the following paragraphs, we describe how we recovered the detector following this disaster.

We partially opened one MUID panel and inspected the internal parts. The flood line reached the electronics boards which contain the preamplifier and the high-voltage distributor. However it did not reach the lower end of the Iarrocibi tubes, indicating that the chamber volume was not soaked in water. Holes, 6 mm in diameter, were drilled on the side of the bottom rails in order to drain the trapped muddy water. After most of the water was drained, nitrogen gas was introduced into the secondary volumes, which contain the tubes and the electronics, to dry them out until we finished checking all the soaked panels. The electric connectors, which serve as the interface between the MUID panels and external electronics, were cleaned with alcohol. The expected resistance between the terminals of the low- and high-voltage lines was confirmed before applying the operation voltages. Pure CO\(_2\) gas was then introduced into the chamber volume. The high voltage was applied after flow the gas for three volume exchanges. Then, the signal shapes from each tube were checked using an oscilloscope. The signal rates, which are the incidences of cosmic rays, were measured. These data were compared with those which were taken before the disaster. The details of the checking procedure are described in Ref. 4. All the panel tests were completed on Feb. 2, 1999. Two HV channels were found to be newly sparking under the normal operation voltages. We expect that they will recover with further conditioning.

The mud, which was carried along with the water, still remains in the secondary volumes. It cannot be removed since most of the panels are buried in between absorber steel plates, and the secondary volumes of the panels are inaccessible.

To prevent future flooding, permanent drain pumps were set up in the IR and the landscape around the IR was altered to minimize the possible water flow into the IR.

Next, we describe the gas system design and construction. The outstanding requirements of the MUID gas system are as follows.

1. Large volume of gas (50 m\(^3\)) and high flow rate (17 l/min).
2. Large number of segmentations of the gas volume.
3. Widely scattered locations of the panels in the PHENIX IR.
4. Supply of primary gas (pure CO\(_2\), CO\(_2\)-iC\(_4\)H\(_{10}\) mixture which contains a flammable fraction up to 25 percent) and secondary gas (dry air or N\(_2\)).

Figure 1 shows the schematic diagram of our gas system composed of two major parts. One is located in the IR and the other in the mixing house located outside of the building which contains the IR. The mixing house contains the gas supply and recirculation system. A large portion of the gas piping is in the IR.

The CO\(_2\) and iC\(_4\)H\(_{10}\) gases are fed to the south and north arm chambers through the mass flow controllers which regulate the mixing and flow rates. Up to half of the chamber gas is recirculated through the compressor and purifier. The remaining portion is exhausted into the atmosphere in a safe manner. The
gas qualities, which reflect the chamber performance, at the inlet and outlet are periodically monitored by the analyzers. When the system detects degradation of the gas quality, a warning signal is triggered. If the degradation is in the fatal level, the system will shut off the HV supplied to the chambers in order to avoid catastrophic failure.

The purpose of having the secondary gas flow is twofold. One is to keep the volume clean and dry. Another is to dilute and purge any leakage of primary flammable gas. The leakage rate from the chamber volume is estimated to be maximum 10 percent of the total flow even without catastrophic failure. Nitrogen gas is sucked from the secondary volume and periodically monitored for its flammability using the nitrogen-sniffing system. If the iC₄H₁₀ fraction in the sucked nitrogen exceeds 25 percent of the lowest explosion limit (LEL), the flow of iC₄H₁₀, as well as the high-voltage and low-voltage power, will be shut off.

The analyzers, pressure gauges, flow meters, and solenoid valves that open/close each gas circuit are remotely controlled by a PC in the mixing house. The PC maintains the system.

The design of the gas supply system was reviewed by the RHIC safety committee. The main concern of the committee was preventive measures against fire accidents. Parts in the flammable gas flow line and those very close to the flammable gas flow line must not provide any possible ignition sources. The time period required for flammability to increase in the secondary volume due to a catastrophic leak was estimated. It takes 70 minutes to reach 25 percent of the LEL. In our design, the nitrogen-sniffing interval for each monitoring point is 30 minutes, so that the system can detect a leak well before it reaches dangerous levels. The gas flow indicators monitor the difference between the inlet and outlet flow rates and are able to trigger the warning signal once leakage is detected. The system is already under construction. The major pipes between the mixing house and IR has been completed.

References
High-Energy Beam Test of PHENIX EM Calorimeter at CERN

The PHENIX experiment at RHIC1) will start soon, first for heavy-ion physics, and next for spin physics. In this experiment, an electromagnetic (EM) calorimeter plays an important role in detecting photons and electrons/positrons. In order to cover topics in both heavy-ion and spin physics, e.g., thermal photon measurement in heavy-ion physics, and prompt photon, π0 and weak boson measurements in spin physics, the EM calorimeter needs to cover a wide energy range from a few hundred MeV to 80 GeV. Spin physics also requires an energy measurement to within 2% accuracy to measure the cross sections of prompt photons and π0's with less than 10% error, because the cross sections fall steeply as their energy increases.

The EM calorimeter was originally designed for heavy-ion physics. There are two kinds of calorimeters in the PHENIX detector. One is a lead-scintillator sampling calorimeter (PbSc) and the other is a lead glass calorimeter (PbGI). Table 1 shows their basic parameters. A “supermodule” is composed of 12 × 12 channels for PbSc and 4 × 6 channels for PbGI. The total EM calorimeter system in the PHENIX detector consists of these PbSc and PbGI supermodules.

The performance of both calorimeters for accuracy and resolution of energy measurement, and hadron rejection was measured at BNL/AGS up to 7 GeV. In order to measure the performance up to 80 GeV, the high-energy beam test was performed at CERN/SPS.2) One PbSc supermodule and four PbGI supermodules were located at the H6 beam line, and all were tested with electron beams from 6 GeV/e to 80 GeV/e and π+ beams of 40 GeV/e. In this report, we present the preliminary results of PbSc.

Figure 1 shows the setup of the beam test. The EM calorimeters were placed on a movable platform to allow change of the position and angle of the incident beam on the calorimeters. Delay-line wire chambers (DWC) were located just in front of the calorimeters for measurement of the vertical and horizontal beam incident positions. Incident position dependence of the energy deposit was measured and corrected using the DWCs. Two scintillators (S1 and S2) were used as trigger counters, and two other scintillators were set behind iron blocks to identify muons in the beams. We used 10 GeV/e muon data for the channel-by-channel gain adjustment of each PbSc channel in addition to the electron-beam data. To correct time-dependent gain drift, we applied a laser monitoring system to the calorimeters.

As a result, we obtained the energy resolution for an electron beam. The result is consistent with the AGS data.3) Figure 2 shows all the data points of the energy resolution measured at AGS and CERN. These points are fitted and expressed by the formula

$$\sigma_E/E = 1.9\% + 8.2%/\sqrt{E},$$

Table 1. Basic parameters of the two kinds of PHENIX EM calorimeters.

<table>
<thead>
<tr>
<th>Channel</th>
<th>PbSc</th>
<th>PbGI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel cross section (mm²)</td>
<td>52.5 × 52.5</td>
<td>40 × 40</td>
</tr>
<tr>
<td>depth (mm)</td>
<td>375</td>
<td>400</td>
</tr>
<tr>
<td>radiation length (X₀)</td>
<td>18</td>
<td>14.4</td>
</tr>
<tr>
<td>Moliere radius (mm)</td>
<td>~30</td>
<td>36.8</td>
</tr>
<tr>
<td>Supermodule number of channels</td>
<td>144 (12 × 12)</td>
<td>24 (4 × 6)</td>
</tr>
<tr>
<td>Total system number of channels</td>
<td>15552</td>
<td>9216</td>
</tr>
</tbody>
</table>

*1 Oak Ridge National Laboratory, USA
*2 Institut fuer Kernphysik, University of Muenster, Germany
*3 Kurchatov Institute, Russia
where \otimes represents the quadratic sum. We need more systematic understanding of the correlation between the AGS data and the CERN data.

An analysis of the accuracy of the energy measurement for an electron beam is in progress. In this test, we can investigate the accuracy of energy measurement to within a $\pm 2\%$ limit. The major limit comes from the remaining error of the channel-by-channel gain adjustment. In this limit, we have found that PbSc has a 2% accuracy of energy measurement in the energy region between 20 GeV and 80 GeV. At 10 GeV/c, we observed a shift of the measured energy larger than 2% of the beam energy. We need to understand the source of this shift, e.g., photo-multiplier tube,4) front-end electronics, or accuracy of the beam energy itself.

In the present analysis stage, PbSc almost satisfies the physics requirements to cover both heavy-ion physics and spin physics, although we need greater understanding of its behavior. The PbGI data are also under analysis. We will conclude our analysis for both PbSc and PbGI before the PHENIX experiment starts.

References
3) A. Bazilevsky: private communication.
Feasibility Test of Proton-Carbon CNI Polarimeter for RHIC

At Brookhaven National Laboratory (BNL) construction of helical dipole magnets for acceleration of polarized proton beams in RHIC rings is under way. Successful commissioning of the helical dipole magnets (what we call “Siberian Snakes”) will enable us to do experiments with polarized protons up to \(\sqrt{s} = 500 \text{GeV} \) in collider mode for the first time. In the commissioning phase of the polarized proton acceleration, a reliable polarimeter is crucially required. It was proposed in 1997 to use proton-carbon elastic scattering in the Coulomb-nuclear interference (CNI) region for the polarimeter.\(^{1,2}\) This polarimeter is called the “pC CNI polarimeter”. In the CNI region, where a range of momentum transfer squared \(t = (\text{GeV}/c)^2 \) is \(10^{-3} < t < 10^{-2} \), the theoretically predicted analyzing power \(A_N(t) \) has the maximum value of about 4\% at \(t = 2.3 \times 10^{-3} \) \((\text{GeV}/c)^2 \) and decreases as \(-t \) increases. This polarimeter has the following advantages: (1) the reaction mechanism is theoretically well understood, (2) the analyzing power weakly depends on beam energy and (3) its figure of merit is large owing to the large cross section.

Experiment BNL-AGS E950 was proposed in August 1998 to test the feasibility of the pC CNI polarimeter for RHIC using a polarized proton beam at the AGS. Our goals are to measure the pC CNI analyzing power \(A_N(t) \) for the first time at the RHIC injection energy and to test experimental devices at the AGS environment. The challenge is in detecting elastic pC scattering in a high background and noise environment inside the AGS ring. The proposed method of identifying pC scattering is detecting only recoil carbons, because the scattering angle of the incident protons in the CNI region is too small to detect. These recoil carbons have a very low energy, ranging from 100 \(\text{keV} \) to a few MeV, and recoil angles are almost 90 degrees with respect to the beam direction. The experimental setup, consisting of a carbon target and detector arms, is schematically shown in Fig. 1. The entire setup was installed in the AGS ring. The target was a “microribbon carbon target” which had been developed at IUCF.\(^{5}\) It was 6 \(\mu \text{m} \) wide, 4 \(\mu \text{g/cm}^2 \) thick and 3 cm long. This extremely thin target makes it possible to extend its lifetime by reduction of the heating, to suppress the blowup of the beam emittance and to decrease energy loss and multiple scattering of recoil carbons in the target. The silicon strip detector (SSD) had a thickness of 400 \(\mu \text{m} \) and was segmented into six strips. Each strip was 4 mm wide and 10 mm long. The surface of the SSD had a special feature of markedly thin Boron implantation with small aluminum wire electrodes so that low-energy recoil carbons could penetrate the surface without being hindered by the electrodes. The microchannel plate (MCP) assembly, consisting of two layers of MCPs and a single anode, had a sensitive area of 27 mm in diameter. It detected secondary electrons emitted from a 5-\(\mu \text{g/cm}^2 \)-thin carbon foil primarily by the passage of recoil carbons. The secondary electrons were accelerated and reflected toward the MCP by both an accelerating grid and an electrostatic mirror. The system in each arm provides the measurements of energy, time-of-flight (TOF) between the MCP and the SSD and particle emission angle to the beam direction event by event.

The experiment was carried out in March 1999. The proton beam transversely polarized in the vertical direction was accelerated to 21.7 GeV/c. The polarization sign was flipped each spill in order to reduce systematic errors. The polarization measured by the AGS internal polarimeter was about 40\%. The beam had a bunch structure of 4-6 \(\times 10^9 \) protons per bunch with a width of 6 ns and a crossing frequency of 370 kHz. The trigger was a coincidence between signals from any of the SSD strips and a beam pulse (RF) from the AGS. The trigger rate was about 2 \(\times 10^3 \) per spill. ADCs and TDCs of all detectors were obtained with the ADC gate and the TDC start which were generated by the RF.
Fig. 2. On-line histograms taken from one of the SSD strips. The left histogram was obtained without the microribbon carbon target whereas the right one was obtained with the target.

The polarization sign and the beam intensity were provided from the AGS. To demonstrate the performance of our detectors, two on-line histograms obtained from one of the SSD strips are shown in Fig. 2. The vertical axis is the timing information obtained from the TDC value and the horizontal axis is the ADC value. The left histogram was obtained without the target whereas the right one was obtained with the target. Signals from recoil carbons are clearly seen in the right histogram.

Off-line data analysis is still under way but preliminary results are reported in this article. The strong correlation between ADC and TDC values of the SSD in the right histogram in Fig. 2 was noted and the values were used to select recoil carbon events. The energy calibration of the SSD was carried out by measuring the energy deposition of 5.48 MeV α particles from a 241Am source. The calibration of arrival time from the target to the SSD was performed as follows: (1) TDC data of the SSD are found to be dependent on the pulse height (slowing effect). The dependence was corrected with recoil carbon kinematics using the energy value and TOF between the MCP and the SSD. (2) Time-zero of the arrival time was calculated using the energy value and recoil carbon kinematics. After calibration procedures (1) and (2), the time resolution was defined by the deviation from the center of the carbon locus on the arrival time vs energy plot. The obtained values were 7.3-9.1 ns on each SSD strip. These values were consistent with the width of the AGS beam bunch. To study $-t$ dependence of raw asymmetry, a 10 ns time bin was defined on the arrival time vs energy plot. Raw asymmetries in each time bin were calculated using a so-called square root formula:

$$A_{raw} = \frac{\sqrt{N_L \cdot N_R} - \sqrt{N_L \cdot N_R}}{\sqrt{N_L \cdot N_R} + \sqrt{N_L \cdot N_R}},$$ \hspace{1cm} (1)$$

where $N_L(N_R)$ indicates the number of events in the left (right) recoil arm with beam polarization up (down). The result of the raw asymmetry as a function of time bin is shown in Fig. 3. The error bars are statistical only. $-t$ is a decreasing function of the time bin number; therefore, the measured raw asymmetry decreases as $-t$ increases. The trend in time bin dependence of the raw asymmetry is consistent with the theory. Further analysis will be conducted to derive the pC CNI analyzing power $A_N(t)$ from the raw asymmetry and the beam polarization data of the AGS internal polarimeter. We will estimate physics backgrounds which could affect the raw asymmetry and calculate possible systematic errors from them.

In summary, the feasibility of a pC CNI polarimeter was tested using a 21.7 GeV/c polarized proton beam in the AGS environment. Low-energy recoil carbons were detected inside the AGS ring. The preliminary result of the raw asymmetry revealed the behavior as the theory predicts. Based on the success of this experiment, a pC CNI polarimeter for RHIC is under construction at BNL.

References

Fig. 3. Preliminary result of the raw asymmetry as a function of time bin on arrival time from the target to the SSD. The error bars are statistical only.
PHENIX Computing Center in Japan (CC-J)

T. Ichihara, Y. Watanabe, N. Hayashi, S. Sawada, S. Yokkaichi, A. Taketani, Y. Goto, H. En’yo, and H. Hamagaki

The RHIC experiment is scheduled to start in early 2000. To ensure prompt physics output, we have been preparing to construct the PHENIX Computing Center in Japan (CC-J). R&D for CC-J started in 1998 at the RIKEN BNL Research Center (RBRC). The construction of CC-J at the RIKEN Wako campus, which will extend over a three year period, began in April 1999. CC-J is intended as the principle site of computing for PHENIX simulation, a regional PHENIX Asian computing center, and as a center for the analysis of RHIC spin physics. The planned computing capacity will be sufficient to meet the bulk of the simulation needs of PHENIX. By providing a vital source of regional computing, CC-J will also encourage collaborators from China, Korea, India and Japan to be actively involved in analysis of PHENIX physics data. These capabilities of CC-J are in accord with the research plans of RIKEN and RBRC, which initiated the RHIC spin program and which plan to expand their involvement in the entire PHENIX program.

Figure 1 shows the concept of the CC-J system. During the RHIC experiment, data acquisition, and raw data recording and monitoring will be performed at the RHIC Computing Facility (RCF) located at the BNL. After the track reconstruction, the data summary tapes (DST) will be produced, duplicated and exported to the CC-J. Data mining will be carried out at CC-J as well as at RCF from the DST to produce micro-DST, filtered by the physics interest. Simulation for the PHENIX experiments will be performed at CC-J and this output will be exported to RCF. Table 1 shows the planned size of CC-J.

Table 1.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU (SPECint95)</td>
<td>2400</td>
<td>5900</td>
<td>10700</td>
</tr>
<tr>
<td>Tape Storage (TB)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Disk Storage (TB)</td>
<td>2.0</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Tape I/O (MB/s)</td>
<td>45</td>
<td>90</td>
<td>112</td>
</tr>
</tbody>
</table>

Fig. 1. Concept of the CC-J system.
Figure 2 shows the configuration of the current CC-J system. A high performance storage system (HPSS) was installed in early 1999 as a hierarchical storage system. The HPSS consists of five nodes of an RS-6000/SP2 server, a cache disk of 720 GB, four Red-Wood tape drivers, and a tape robotic storage of 100 TB. A transfer rate of greater than 50 MB/s has been obtained by parallel ftp (pftp) between HPSS clients and HPSS servers over the Gigabit Ethernet. The test of date exchange between CC-J and RCF using the SD3 tape cartridge has been carried out successfully.

Linux pc's with Intel Pentium II/III processors are used for the CPU farms. Each node is equipped with a dual CPU, 512 MB of memory and a 14-18 GB local disk. Portable batch system (PBS) are used for the batch queueing. The multi router traffic grapher (MRTG) is used for monitoring the network traffic, CPU load and free memory. The wide network bandwidth between CC-J and RCF has been achieved by the Asia-Pacific Advanced Network (APAN). The file transfer performance of 600 kB/s has been obtained using the large TCP window-size of 256 kB. This enables us to synchronize the data base between CC-J and RCF.

Stress tests for the entire system were carried out successfully in May, July and December 1999. During the tests, the physics simulation outputs were obtained. We plan to start the operation of CC-J in April 2000.

References
1) http://ccjsun.riken.go.jp/ccj
A Workstation Farm Optimized for Monte Carlo Shell Model Calculations: Alphleet

Y. Watanabe, N. Shimizu, S. Haruyama, M. Honma, T. Mizusaki, A. Taketani, Y. Utsuno, and T. Otsuka

We have built a workstation farm named "Alphleet", which consists of 140 COMPAQ Alpha 21264 CPUs, for Monte Carlo Shell Model (MCSM) calculations. It has achieved a more than 90% scalable performance with 140 CPUs when performing the MCSM calculations using PVM (Parallel Virtual Machine) library and 61.2 Gflops of LINPACK benchmark application.

We have proposed and developed the Quantum Monte Carlo Diagonalization (QMCD) method for solving the many-body problem with a two-body interaction.1-4) In the QMCD, the most important basis vectors of the many-body Hilbert space are searched for stochastically, and the Hamiltonian is diagonalized with respect to them. Contrary to the conventional Quantum Monte Carlo (QMC) methods, the minus sign problem is absent, and energy eigenvalues, matrix elements and wave functions can be obtained not only for the ground but also the excited states. In the nuclear shell model, the matrix of the Hamiltonian is diagonalized for a given many-body system where particles are interacting through a two-body system. The dimensions of the Hamiltonian matrix are often too large to carry out the conventional exact diagonalization. On the other hand, the shell model calculations play an indispensable role in going beyond mean field approximations. Thus, an alternative approach is needed in order to solve the shell model. The shell model calculations based on the QMCD are referred to as the Monte Carlo Shell Model (MCSM).

The MCSM is found to be extremely useful for understanding the nuclear shell model, particularly for large systems. Such large systems are of particular significance in the study of nuclei far from the stability line which are being explored by means of radioactive nuclear beams. The MCSM calculation is characterized as the importance truncation to the full exact diagonalization of the Hamiltonian matrix,5) because it produces a good approximation with a small number (about several tens) of optimally selected important basis vectors.

In the QMCD calculation, it takes almost all the CPU time to calculate each Hamiltonian matrix element with many trial basis vectors to determine the (nearly) optimal transformation. This characteristic is suitable for implementation in a parallel calculation using many CPUs, particularly in a loosely coupled system because the calculation of each matrix element can be divided into individual segments which can be processed in parallel without interacting with each other.

We decided to develop a computer system known as a "cluster" or "farm" because of the absence of a commercially available computer system which realizes this simple parallelism. Every parallel computer available on the market is extremely sophisticated and too costly for our purpose. The performance of floating point calculations is also crucial. However vector CPUs are not suitable for our calculation because our calculation does not produce long enough vector which make vector CPUs work efficiently. We chose the Alpha 21264 which has the highest floating point calculation performance (58.7 SPECfp95 at 500 MHz) in scaler CPUs. It is about fourfold faster than most popular CPUs in the commodity market.

The workstation farm that we have built is named "Alphleet", which consists of many "Alpha" CPUs in a "Fleet". Figures 1 and 2 show a schematic diagram and a photograph (half nodes) of the Alphleet, respectively. The Alphleet consists of 71 COMPAQ DS20 s (a server and 70 clients) connected to each other via a high speed network. Each client has two Alpha 21264 CPUs (500 MHz), 512 MB of memory, Myrinet6) and 100 BASE-T network interfaces but no hard disks. On the contrary, the server which also functions as a firewall, is well equipped with UPS, 36 GB Disk, Myrinet and four 100 BASE-T network interfaces, but only one CPU and 256 MB of memory. Three NFS groups divided by the 100 BASE-T interfaces of the server (Fig. 1) may relieve the network congestion of NFS. Each client node power supply is connected to a power controller, which enables us to switch the power of each node on/off remotely from the server.

![Alphleet Configuration](https://example.com/alphleet_config.png)

Fig. 1. Schematic diagram of the Alphleet: The Alphleet consists of 71 COMPAQ DS20 s (a server and 70 clients) connected by both Myrinet and 100 BASE-T to each other. Each client node power supply is connected to a power controller, which enables us to switch the power of each node on/off remotely from the server.
It is our goal for this system to maximize performance for the MCSM calculation and to minimize management tasks. The latter is desired to enable easy management of such a large scale system for nonprofessional computer users. Therefore, we decided to design a diskless configuration for clients. We will have almost no reason to service to these clients if they do not have hard disks which are very costly but fragile. This means that each client must be booted up by the server through the network. The power controllers prevent the server from overloading when booting up the entire system by automatically supplying power to each client at 30 sec intervals. Thus the entire system can be booted up within about 40 min. without any difficulties. Moreover, the diskless configuration enables the power to each client node to be switched off with no risk at any time. This feature also enables power to be recycled for each client node from a remote site using power controllers, even if a client has hung up without any response. The lack of local swap space is another difficulty associated with a diskless configuration. Therefore, we added 512 MB memory to each client which is estimated to be sufficient for the MCSM calculation. This approach should be worthwhile for other single purpose computer systems for which the memory consumption can be estimated.

Each node has two types of network interfaces; one is the 100 BASE-T for NFS, also used for booting up, and the other is Myrinet, used only for interprocess communications, which is a 1.28 Gbps duplex switched network. Because of the Myrinet, the Alphleet achieved a 93% scalable performance when performing the MCSM calculations, with 140 CPUs (Fig. 3). In addition, the Alphleet also achieved the 61.2 Gflops LINPACK benchmark without any precise tuning. It was ranked 169th on the “14 th TOP 500 List” for the world’s fastest computer systems, published in November 1999.

The Alphleet, which consists of many ready-made components, has achieved superior performance without presenting management difficulties. We demonstrate one sample system which has the advantage of being a single purpose system, in this report. On the other hand, we would like to mention that this technique as a “farm” is useful not only for parallel computing for a few users but also for a more general multipurpose, mutliuser system, because job independence of each user should be offered by a loosely-coupled multi-CPU system.

References
6) http://www.myri.com/
7) http://www.top500.org/
Development of High-Rate MUSIC

At the forthcoming RI beam factory, the high rate particle identification system is expected to be very useful for the experiments using radioactive secondary beams. We have thus constructed a new type of multiple sampling ionization chamber (MUSIC) which can be used stably with high-intensity beams, and tested it by measuring projectile fragments of 40Ar at $E/A = 92$ MeV for comparison with the normal type of MUSIC which we had developed previously. The new high-rate MUSIC (HR-MUSIC) has a simple construction as shown in Fig. 1. It consists of multiple anodes and cathodes made of thin foil (4 µm thick mylar aluminumized on both sides) tilted by 30° toward the center axis. Eight layers of anode and cathode pairs, each separated by a 20 mm space, are stacked together. Thus, the effective length of the HR-MUSIC is 16 cm. The counter was operated using P-10 gas at the pressure of 740 Torr.

Four anode signals were separately amplified using the conventional charge sensitive preamplifier and spectroscopic amplifier systems. Since this IC has no grid, both electrons and slowly moving positive ions contribute to anode signals. Slow positive ion tails could be completely rejected using bipolar signals from the spectroscopic amplifier.

Energy loss of the projectile fragments was measured by the HR-MUSIC and the ordinary MUSIC sharing common gas, located in tandem at the fragment separator course of RIKEN (RIPS). The latter MUSIC is a gridded ionization chamber having five anode pads, whose total length is 50 cm. From the energy loss spectra for $A/Z = 2$ particles, we obtained Z-resolutions, defined as twice the FWHM of a Z-peak divided by the difference of peak channels for $Z + 1$ and $Z - 1$. Figure 2 shows the Z-resolutions of the two MUSICs for $Z = 14$ as a function of $t^{-1/2}$, where t is gas thickness in cm. They were obtained by plotting the energy loss spectra for the average of various numbers of the multiple anode signals. Z-resolutions of the two MUSICs fall on a straight line. This dependence indicates that the resolutions are almost entirely determined by the straggling of the energy loss. Contributions from other effects like electronic noise are represented by the offset of the straight line, about 0.02.

As for the rate dependence of Z-resolutions, we have investigated it under various fragment intensities from 0.4 kcps to 60 kcps and no significant dependence was found. In order to obtain higher rate capabilities of the HR-MUSIC, we have further tested it under higher intensities using a primary 40Ar beam. It was found that the resolution remains constant up to about 100 kcps and it deteriorates gradually above that. A pileup of the anode pulses appears to be mostly responsible for this effect and not the intrinsic detector performance.

![Fig. 1. High-rate multiple sampling ionization chamber (HR-MUSIC).](image-url)
Calibration of Heavy Ion Telescope on Board MDS-1 Satellite with 40Ar Beam

H. Matsumoto, H. Koshiishi, T. Goka, H. Katoh, and H. Miyasaka

The satellite MDS-1 will be launched into geostationary transfer orbit in 2001 from Tanegashima space center. A heavy ion Telescope (HIT) will be on board this satellite to observe galactic cosmic rays. The geometric factor of the HIT is $\sim 25 \text{ cm}^2 \cdot \text{sr}$ and the observable energy range is, e.g., 11–83 MeV/nucleon for oxygen.

An 40Ar beam with an energy of 95 MeV/nucleon was irradiated to examine the particle identification ability of the HIT. The irradiation test was carried out at the E3 of the ring cyclotron of the Institute of Physical and Chemical Research. The energy resolution was tested at four different energies by placing Al moderators of different thickness before in front of the HIT. In the charge discrimination test the secondary particles produced by the nuclear reaction of the 40Ar beam with acrylic were measured.

Figure 1 shows the test configuration with a cross-sectional view of the telescope. The HIT consists of two position sensitive detectors (PDS) and sixteen PIN type detectors. The PSD1 has a 62 mm \times 62 mm effective area with a 0.2 mm thickness, PSD2 has a 62 mm \times 62 mm effective area with a 0.4 mm thickness and the PIN type detectors have an 85 mm-diameter circular effective area and a 0.42 mm thickness. The telescope is optically shielded by 0.7 mm-thick aluminum foil.

As a result of the energy resolution test, the peak loss energy of each detector comes within 5% of the theoretical value, and the full-width at half maximum is also about 5%.

In the charge discrimination test, nuclear fragmentation from helium to oxygen were measured. Figure 2 shows the histograms of atomic number resolution obtained by the $\Delta$$E$-$E$ method. This result indicates that the isotope discrimination ability of the HIT is about 0.5 amu (FWHM).

Fig. 1. Cross-sectional view of the telescope and the beam arrangement.

Fig. 2. The atomic number histograms.
Beam Calibration of Fiber Neutron Monitor onboard the Exposed Facility of the Japanese Experimental Module

K. Koga, T. Goka, H. Matsumoto, H. Kato, H. Miyasaka, and Y. Muraki*

A new type of neutron detector, the FIB (FIBer neutron monitor), is under development at NASDA (National Space Development Agency of Japan). The FIB uses scintillation fibers and multianode PMTs (photomultiplier tubes). It measures the high-energy neutrons, such as those of solar origin and albedo neutrons, in the energy range from 15 MeV to 100 MeV. The main applications of this detector are to inform the cosmonauts of the arrival of strongly charged particle radiation, and to elucidate the ion acceleration mechanism at the solar surface. This detector will be launched in the JEM (Japanese Experimental Module) exposed facility of the ISS (International Space Station) in the year 2003.

A high-energy neutron undergoes elastic collision with a hydrogen atom in the scintillator and produces a recoil proton. Since the produced recoil proton penetrates two or more scintillators, the energy of an incident neutron can be determined by measuring the path length and the trajectory of the recoil proton using 512 ch outputs of the scintillators which are placed in the two orthogonal directions, X and Y, if only the incident direction of a neutron, e.g., a neutron of solar origin, is known. The light emitted by the scintillator is transported by 15–20 cm-long optical fibers to the PMT. Hamamatsu H4140–20 photomultiplier tubes are used as the multianode (256 ch) photomultiplier tubes in the X and Y directions. The signals from the two PMTs are sent to the electronic equipment, which consists of a charge amplifier, an analog memory and a data-processing board. The circuit was designed using CMOS circuits by the KEK (High Energy Accelerator Research Organization) advanced technology group. Figure 1 shows the structure of the FIB. Figure 2 shows a picture of the FIB sensor.

The EM (engineering model) of this FIB was investigated using an accelerated beam. The EM is devoid of the problems of crosstalk and anticoincidence experienced by the BBM (bread board model). The hydrogen molecular ion beam bombards the sensor after passing through aluminum plates of different thicknesses. Figure 3 shows the irradiation test conditions.

Beam Energy: 120 MeV (H₂⁺)
Beam Intensity: 1 x 10⁶–1 x 10⁷ p/sec.
Moderator: 0, 5, 10, 15, 20, 30, 60 mm (Aluminum)

We used aluminum plates (0–60 mm thickness) as both the moderator and the target to obtain a mixed source of protons and neutrons of different energies.

The following issues were investigated in this test:

(1) Energy calibration
(2) Crosstalk between fibers
(3) Discrimination of neutrons from protons
(4) Performance of anticoincidence

Figure 4 shows actually obtained typical tracks in the sensor. From these tracks, we can distinguish between neutrons and protons. The track of the proton started from the first layer of the fiber and advanced in the incidence direction. The track of the proton that was recoiled from the neutron started from the optional layer and proceeded at an angle from the incidence direction. The crosstalk between fibers decreased further in the EM than in the BBM. In the case of the BBM, the track was spread out more than three pixels around the exact track. The main modifications to the EM to reduce crosstalk were the shading of each fiber using an aluminum evaporation film, the end-face processing of fibers for use as the reflector and the integrated shaping of the light-guide.
Table 1 shows the energy resolution for protons from the anode and the dynode-sum of a 256 ch PMT. For protons with the energy of 96.84 MeV, the energy resolution is 63% from the anode output and 30% from the dynode-sum output. The realization of an energy resolution in the range better than that for the anode or dynode-sum is under investigation. The performance of anticoincidence is confirmed. The rate of unexpected defeat of protons is from 0.004 to 0.02%.

From irradiation tests of the EM, the performance of the FIB is confirmed. However, there remains some crosstalk which is caused by the joint between the fibers and the PMT. This problem should be solved before construction of the FM (flight model). Except for this problem, it was almost possible to complete the design of the FM. Manufacture of the FM of the FIB will be started in 2000 and it will launched in 2003.

References
RF Ion-Guide System for Trapping Energetic Radioactive Nuclear Ions from Fragment Separators

M. Wada, I. Katayama, S. Okada, K. Okada, K. Noda,*1 H. Kawakami,*2 and S. Ohtani

The projectile fragment separator provides a wide variety of radioactive nuclear ions without any restrictions on chemical property or lifetime limit of the ions, which are unavoidable problems in the ordinary ion-source-based ISOL (isotope separator on-line) facilities. The beam energy and quality in terms of the longitudinal and transverse emittance is, however, not adequate for low-energy beam experiments, in particular for trapping experiments.

We have proposed a new scheme to provide low-energy high-quality beams from such fragment separators.1,2 The system is comprised of a primary degrader, a large He gas cell and a beam guide. The degrader reduces the beam energy to about 5 MeV/u. If the primary energy of a beam is 100 MeV/u, more than 50% is in the energy range of 0 to 5 MeV/u after passing through a degrader foil of suitable thickness. The medium energy beam thus obtained is then injected into the He gas cell. In order to stop the 5 MeV/u beams, the cell is required to be 2 m in thickness with 0.2 atm of He. The thermalized ions should be extracted from the exit of the cell and then guided to a high vacuum region by the RF sextupole ion beam guide (SPIG) through multiple skimmers.3,4

The main part of the system is the He gas cell. The system is based on the same principle as that of the ion guide ISOL (IGISOL), but a significant difference is in the cell size. In the ordinary IGISOL, a typical cell size is 1 cm which corresponds to a stopping capability of 10 keV/u. This limits the effective thickness of the target and the corresponding yield. The reason a small cell size is used in the IGISOL is that the transport of the ions in the cell is performed only by the gas flow. If a large cell were used in the ordinary IGISOL, it would take many minutes to extract ions which would cause severe loss of ions due not only to the lifetime limit but also to other processes such as neutralization and diffusion. In the proposed system, on the other hand, ions in the cell are totally under the control of an electric field. Many ring electrodes are placed in the cell, which produces a superposition of a DC field and an RF field (RF ion guide). The DC field gives the ions a relatively high velocity in order to quickly exit the cell and the RF field focuses the ion beam to the small exit hole. This allows the use of a large-size gas cell and a small exit hole.

Numerical simulations were performed for the RF ion-guide system. A single ion motion in the electric field was traced by the Runge-Kutta integration method. The effect of gas collision was taken into account by the Monte Carlo method. The kinematics of each collision was simulated in two different ways. In the simpler one, isotropic scattering at the center of the mass system was assumed and the mean
free path was chosen to emulate the experimental result of the ion mobility in He gas (~20 cm²/Vs at 760 Torr). In the more complex one, a classical scattering model in a semi-empirical potential, which was determined by Mason and Schamp from their mobility measurements, was used. The estimation of the simulation results is under progress.

A test bench for the RF ion-guide system with a gas cell of 60 cm in length has been constructed at KEK-Tanashi. The gas throughput is designed to be 2 Torr l/s which allows the use of turbomolecular pumps and highly pure He gas. The entire cell is capable of baking and a gas purification system (SAES Monotorr) is used to prevent possible losses due to charge exchange with impurities. Off-line tests are under progress using a pulsed ion source. In the present test, pulsed metallic ions were produced in the gas cell by irradiation of a YAG laser and the transported ions were detected by a Faraday cup which is, for the moment, still located inside the cell. A schematic diagram of the test setup is shown in Fig. 1 and preliminary results are shown in Fig. 2.

On-line test experiments are scheduled to be performed at the RIKEN RIPS facility aiming at the laser spectroscopy experiment of trapped Be isotopes.

References
Development of a Polarized Solid Proton Target by Means of the Integrated Solid Effect (ISE)

M. Hatano, H. Sakai, A. Tamii, T. Uesaka, and T. Wakui

We have recently begun developing a polarized proton target system using a single crystal of naphthalene doped with pentacene as the target. The protons in the crystal are polarized by means of the integrated solid effect (ISE).\(^1\)-\(^5\) The most significant advantage of this method is its applicability at a high temperature (\(\geq 77\) K) and in a low magnetic field (\(< 3\) kG).

The target is appropriate for investigating the structure of unstable nuclei via the inverse kinematics method. In such investigations, it is crucial to be able to detect low momentum recoil protons to achieve high angular and energy resolutions. The polarized proton target is also useful in other experiments, for example, measurement of \(d + p\) polarization correlation.

The protons are polarized by repeating the following processes (Fig. 1).

(a) Pentacene molecules are excited to one of higher singlet states by a pulsed laser beam.

(b) About 2\% of the pentacene molecules de-excite to the lowest triplet state (\(T_0\)), and have large electron population differences among the three Zeeman sublevels. This indicates that electrons are polarized.

(c) The polarization of the electrons in the \(T_0\) state is transferred to the protons by irradiation of a microwave and sweeping of the magnetic field (ISE).

(d) The pentacene molecules de-excite to the ground state (\(S_0\)).

(e) The proton polarization is transferred to the neighboring protons by the spin-spin interaction.

In process (b), the population differences among the three Zeeman sublevels are governed by a selection rule in the transition from singlet excited states to the triplet state, and therefore have little temperature dependence.

The ISE method, in process (c), is a kind of dynamic nuclear polarization (DNP)\(^1\) method. In a low magnetic field, the electron spin resonance (ESR) line of the electrons in the \(T_0\) state consists of many narrow and independent ESR lines of spin packets\(^1\),\(^5\). By the classical DNP method, in which a static magnetic field is applied, the polarization transfer is inefficient in a low magnetic field due to the destructive contribution from many spin packets. However, in the ISE method, the external magnetic field is swept through the ESR line. The polarization is transferred via the following sequence for each spin packet:

\[
| 0, +\frac{1}{2} \rangle \rightarrow | -1, -\frac{1}{2} \rangle \quad (1)
\]
\[
| 0, +\frac{1}{2} \rangle \rightarrow | -1, +\frac{1}{2} \rangle, \quad | 0, -\frac{1}{2} \rangle \rightarrow | -1, -\frac{1}{2} \rangle \quad (2)
\]
\[
| -1, +\frac{1}{2} \rangle \rightarrow | 0, -\frac{1}{2} \rangle \quad (3)
\]

After the magnetic field is swept, the polarizations of electron spin packets are constructively transferred to the protons, even in a low magnetic field.

In process (d), the molecules de-excite to the \(S_0\) state with a lifetime of 20 \(\mu\)sec, which is much shorter than the relaxation time of the electron polarization. Since the \(S_0\) state is diamagnetic, the proton polarization is maintained for a long time, even at a temperature higher than 77 K.

In the actual experiment, we use an Ar\(^+\) laser beam with a wavelength of 514 nm, which is chopped by an optical chopper with a duty factor of \(1.0 \times 10^{-2}\). We use an NMR system to measure the proton polarization. A C-type magnet, which achieves a homogeneity of \(10^{-3}\) in a 3 \(\times\) 3 \(\times\) 3 cm\(^3\) volume, will be available soon for practical use. A cavity for 9.3 GHz will be ready for mounting in the magnet in a few months. We are now preparing for the manufacturing of single-crystal samples.

References
6. Material Analysis
Development of a Highly Sensitive High-Resolution In-Air Particle-Induced X-Ray Emission (PIXE) System: I

K. Maeda, K. Hasegawa,* and H. Hamanaka*

A crystal spectrometer combined with a position-sensitive X-ray detector is demonstrated to be suitable for measuring particle-induced X-ray emission (PIXE) spectra with high energy resolution. Recently, we developed a compact crystal spectrometer system equipped with a position-sensitive proportional counter (PSPC) for a high-resolution PIXE study in air at atmospheric pressure.1,2 The utility of the system for in situ chemical state analysis was demonstrated by measuring the Ka and Kβ spectra of third period elements.2,3) The chemical state analysis was applicable to minor elements down to the order of 0.1%. The system requires a small sample amount (0.1–1 mg), a small target area (1–10 mm²) and a short measuring time (<1 h) to obtain a spectrum using a moderate beam current (10–100 nA).

A very low beam current is required for delicate samples. If we intend to use the system for the mapping of chemical states, the measuring time required must be significantly reduced. Therefore, we constructed a prototype of a highly sensitive crystal spectrometer system using a newly developed large-window PSPC4) in order to increase the efficiency of X-ray detection by one order of magnitude.

The experimental setup is almost the same as that described in previous papers1,2,3 except for the PSPC. The large-window PSPC used here is a laboratory built, resistance anode type (see Fig. 1 (a)). It employs seven carbon fibers of 7 µm diameter as anodes.

The sensitive area is 44 mm in width and 52 mm in total height. The number of effective analyzing channels is 310 × 7.

The block diagram of a signal processor for the seven-anode PSPC is shown in Fig. 1 (b). The seven anodes operate independently as a single PSPC. Both ends of each anode wire are connected to charge-sensitive amplifiers (preamplifiers), A and B. After passing through mixing amplifiers with seven inputs, MIX AMP A and B, pulses from the seven anodes are converted into digital signals using a 512 × 7 ch charge-division analyzer and then stored on a computer. A 512 × 7 ch histogram memory is used for 2D measurements. The 7 ch memory address lines correspond to the seven anodes. A set of two output pulses, A and B, of MIX AMP A and B gives information on the absorbed X-ray position. The selection of one of seven lines is carried out with a combination of an ADDER and a 7 ch DISCRIMINATOR. X-rays with undesirable energies are eliminated by the DISCRIMINATOR. We can simultaneously obtain seven spectra.

As an example of test experiments of rapid measurements, phosphorous Ka spectra (2.0 keV) obtained from BP powders are shown in Fig. 2 (a). A proton beam of 2.1 MeV was used for excitation. The proton beam current was 30 nA and the measuring time was 1s. A Ge(111) crystal was used as an analyzing crystal. The conversion of the seven measured spectra into one spectrum was carried out by software. Each

* College of Engineering, Hosei University
spectrum has its own offset channel and channel-to-position conversion factor. Figure 2 (b) is the sum of spectra No.1–No.7 after correction of the offset and conversion factors. Here, the correction factors were obtained by measuring the peak channel of \(P' \) of spectra No.1 - No.7 after correction of the offset and conversion factors. Here, the correction factors were obtained by measuring the peak channel of \(P' \) after correction of the offset and conversion factors. The FWHM obtained by measuring the peak channel of \(P' \) of spectra No.1 - No.7 after correction of the offset and conversion factors was 0.4 eV larger than that of the previous single-anode PSPC spectrometer.

In order to examine the energy resolution of the seven-anode PSPC spectrometer, the full-width at half maximums (FWHMs) of the \(P' \) lines were measured by a 140 s measurement under the same conditions. Line broadening due to aberration of the X-ray flux was observed on the highest (No.7) and lowest (No.1) anodes. However, the effect of line broadening on the summed spectrum is not large: The FWHM of \(P' \) in the summed spectrum (2.8 eV) is 0.4 eV larger than that of the previous single-anode PSPC spectrometer.

Although the \(K\beta \) spectra reflect the chemical bonding nature more prominently than the \(K\alpha \) spectra, the production cross sections of \(K\beta \) X-rays are one or two orders of magnitude smaller than those of \(K\alpha \) X-rays. The seven-anode PSPC spectrometer was applied to measure the \(P' \) spectrum (2.1 keV) of BP. Figure 2 (c) is a 7 ch spectra obtained with a 30 s measuring time. The shape of each spectrum is not clear. However, the asymmetric feature of the \(P' \) of BP is well reproduced in the summed spectra shown in Fig. 2 (d). The \(K\beta \) spectrum of P in CaHPO\(_4\)·2H\(_2\)O is also shown in Fig. 2 (e). The low-energy satellite peak \(K\beta' \), which is evidence of P-O bonding, is clearly observed. The peak-to-background ratio is somewhat poorer than that obtained by the previous spectrometer.

The high sensitivity of the crystal spectrometer combined with a large-window multianode PSPC was demonstrated. Further improvements of energy resolution and suppression of background noise are required as the next step.

References
PIXE Analysis of Lead in the Feather of a Jungle Crow Living in Tokyo

H. Yoshiki, K. Maeda, A. Tonomura, and H. Higuchi*

Examination of bird feathers is considered to be valuable for monitoring the environmental pollution of the bird species' habitat.1) For evaluation of the pollutants, heavy metals, such as cadmium, lead, and mercury, absorbed by the feathers, are often analyzed by atomic absorption spectrometry. We demonstrated that particle-induced X-ray emission (PIXE) was useful for the analysis of heavy metals in feathers without any pre-treatment.2) This method enables the analysis of heavy metals in various parts of the feather. In this report, we describe the PIXE analysis of lead concentrations in different parts of the feather of a jungle crow living in Tokyo. Moreover, we discuss how lead is excreted from the body to the feather.

A feather of an adult jungle crow (Corvus macrorhynchos) was collected from Meguro-ku in Tokyo on October 4, 1997. The length of the vane in the feather was approximately 18 cm. The feather was cleaned with an ultrasonic cleaner in a commercial neutral detergent (Iuchi Seieido Co., Clean Ace S) for 1 hr, and then thoroughly washed with deionized water. The feather was bombarded in air with a 1.6-MeV proton beam of 3 mm diameter. X-rays emitted from the feather were detected using a Si(Li) solid-state detector through an 8-μm-thick Be window (EG & G Co.). A graphite sheet with a 0.3-mm-diameter pinhole (graphite pinhole absorber) or 74-μm-thick Al was used as an absorber to attenuate the X-rays in the low-energy region. The concentration of each trace element was estimated from the sulfur concentration determined by an ion gas chromatograph (Yokogawa Co. IC100), the peak area, and the ratio of the theoretical X-ray yield calculated by the computer program THICK in PIXAN.3)

Figure 1 illustrates the relationship between the concentration of the detected trace elements and the distance from the top of the feather. Measurements were carried out at points along the shaft of the feather: 2, 4, 6.5, 9, 11.5, and 15 cm from the top of the vane, and approximately 1 cm away from the shaft. The concentration of lead decreased towards the bottom of the vane. At 2 cm from the top, the lead concentration was 100 ppm, but at 15 cm from the top, it decreased to 9 ppm. A similar trend was observed for zinc which was also detected by the above method; however, the rate of decrease of zinc concentration was lower than that for lead, as shown in Fig. 1. On the other hand, different elemental distributions on the vane were observed for manganese and iron. The concentrations of manganese were almost constant throughout the vane. However, the concentrations of iron increased towards the bottom of the vane.

A similar result was obtained from the measurements along the barb. The concentration of lead was 44 ppm at the top of the barb and 19 ppm near the shaft. It is known that feather replacement occurs regularly with change of season. In this replacement, a new feather starts forming from the top of the vane and shaft in the first stage and then grows rapidly towards the bottom of the vane.4) Therefore, these results may indicate that lead, as a toxic substance taken into the body of jungle crows, is preferentially excreted into feathers in comparison with other trace elements.

In summary, a PIXE analysis has been carried out on different parts of the feather of a jungle crow living in Tokyo. At 2 cm from the top of the vane, 100 ppm of lead was detected. The amount of lead decreased towards the bottom of the vane. However, this tendency was not observed for either manganese or iron detected in the same vane. Therefore, lead appears to be preferentially excreted from the body to the feather during feather formation. We expect that the PIXE analysis of different parts of feathers will be useful to understand and clarify the process of elimination of heavy metals in birds.

References
RBS Analysis of Na-Implanted Glassy Carbon

M. Iwaki and A. Nakao

Depth profiles of Na implanted in glassy carbon have been obtained and analyzed using Rutherford backscattering spectrometry (RBS).

Substrates used were glassy carbon (GC) sheets, GC-20 made by Tokai Carbon with a size of 10 × 10 mm² and thickness of 1 mm. Before ion implantation, the surfaces were mechanically mirror-polished by using a buffing wheel with diamond slurry. Na ions were implanted at doses of 1 × 10¹⁶, 5 × 10¹⁶ and 1 × 10¹⁷ ions/cm² and an energy of 150 keV at room temperature. The beam current density was about 0.5 μA/cm² to prevent surface heating by the beam itself. RBS measurements were carried out with 1.5 MeV He ions and a fluence of 10 μC, using a Tandem-type accelerator. A He-ion beam was irradiated in the direction normal to the specimen surface and the detector angle was 168 degrees.

Figure 1 shows the RBS spectra for Na-implanted GC at the doses of 1 × 10¹⁶, 5 × 10¹⁶, and 1 × 10¹⁷ ions/cm². Arrows of C, O and Na indicate the positions of C, O and Na atoms at the surface, respectively. The Na depth profiles are Gaussian at the doses of 1 × 10¹⁶ and 5 × 10¹⁶ ions/cm². The atomic ratio of Na/C is 0.03 at the maximum Na concentration at the dose of 1 × 10¹⁶ ions/cm². At the dose of 1 × 10¹⁷ ions/cm², the concentration of Na atoms increased at the surface and it remained constant in the implanted layers. The profile is considered to reflect high Na concentrations, generation of high compression and consequent migration of Na atoms toward the surface. High concentrations of O-atoms can be seen at the surface. The appearance of O atoms seems to be due to surface migration and oxygenation of Na atoms during and/or after ion implantation. The atomic ratios of Na/C and O/C at the surface are 0.06 and 0.16, respectively. Such phenomena have been observed in the case of Li and K implantation in GC.

The depth at the peaks can be calculated from the energy loss from the surface, assuming the atomic density of implanted layers. However, it is difficult to determine the atomic density because the structure of implanted layers changes from glassy to amorphous; consequently the depth profile of Na could not be obtained.
Heavy-Ion Irradiation Effects in Bi-2223 Tapes

H. Ikeda, N. Kuroda, A. Iwase, T. Kambara, and R. Yoshizaki

We have investigated the effect of columnar defects on the irreversibility line for the point-pin-enriched sample of Bi-2223 tapes. Since irradiation can introduce defects in a controlled manner, it can be used as a useful tool to probe the response of the flux line system to the known defect structure. Whether or not columnar defects act cooperatively with point defects to pin vortices is not a trivial question.

Ag-Cu alloy sheathed tapes were prepared by the powder-in-tube method. Ag-Cu alloy sheaths in this study were filled with Cu-poor Bi-2223 powder, since copper atoms were expected to diffuse into the inner oxide core from the outer Ag-Cu alloy sheath. We introduced Hf elements into the Ag-Cu alloy sheathed Bi-2223 tapes. This resulted in the improvement of the transport J_c.

Bi-2223 tapes with $3.0 \times 3.0 \times 0.1 \text{ mm}^3$ dimensions were irradiated with $3.5 \text{ GeV } ^{163}\text{Xe}^{31+}$ ions irradiation at the RIKEN ring cyclotron facility to introduce columnar defects perpendicular to the tape surface direction. The total pin density was estimated to be $7.2 \times 10^{10} \text{ cm}^{-2}$, which corresponded to a dose-equivalent matching field of $B_f = 1.4 \pm 0.2 \text{ T}$. This type of irradiation has produced continuous amorphous track with a diameter of $\approx 6 \text{ nm}$ throughout the thickness of the Bi-2223 sample. We estimated sample qualities using X-ray diffraction measurements and transmission electron microscopy. We confirmed that the Hf atoms were substituted for 0.5-1% of Sr by high-resolution analytical electron microscopy (HRAEM). The magnetic properties were measured using a superconducting quantum interference device (SQUID) magnetometer. The magnetic field was applied perpendicular to the wide surface of the tape.

Figure 1 shows the magnetic field versus the irreversibility temperature (T_{irr}), using by solid symbols for the irradiated Ag and Ag-Cu alloy sheathed Bi-2223 tapes with columnar defects and open symbols for the unirradiated tapes. We can observe that the irreversibility line curve for the irradiated Ag sheathed tapes is located on the higher temperature side of the irradiated Ag-Cu alloy sheathed Bi-2223 tapes with columnar defects and open symbols for the unirradiated tapes. This behavior suggests that the pinning force of the irradiated Ag-Cu alloy sheathed tapes is larger than that of the Ag sheathed ones.

In fact, according to the results of the pinning force measurement, the field dependence of F_p of the Bi-2223 tape samples was improved by the Hf substitution for Sr due to the collective pinning. Therefore, it is expected that the columnar defects will function as effective pinning centers in cooperation with the point defects induced by Hf doping.

We observed the effect of the columnar defects in the Bi-2223 tapes. We found that the irreversibility curve of the irradiated Ag-Cu alloy sheathed tape sample is located on the higher temperature side of the irradiated Ag sheathed tape sample even in magnetic field higher than the triplicate of the matching field B_f.

References

* Institute of Materials Science, University of Tsukuba
A New Method for Determining the Vacancy Formation Energy of Metals Using the Positron Age-Momentum Correlation Technique

N. Suzuki, Y. Nagai,* and T. Hyodo

The positron lifetime spectra for materials containing mono-vacancies consist of two components. The shorter lifetime is the inverse of the sum of the positron annihilation rate in the bulk and the trapping rate into vacancies. Thus it is possible, in principle, to determine the vacancy formation energy from the temperature dependence of the shorter lifetime.

The analysis used to obtain the vacancy formation energy is, however, usually performed using the averaged lifetime, since it is difficult to obtain a reliable value for the short lifetime, which is usually shorter than the instrumental time resolution.

In this report we present a new method for separating the short-lifetime component using the positron age-momentum correlation (AMOC) technique.

This method characterizes the AMOC spectrum \(N(p,t) \) (number of counts vs. the momentum of the annihilating electron-positron pairs and the positron lifetime) in terms of the time-dependent line-shape parameter \(S(t) \). When the positrons annihilate from two different states which have different \(S \) parameters, \(S(t) \) is written as,

\[
S(t) = S_1 \cdot l_1(t) + S_2 \cdot l_2(t),
\]

\[
L(t) = l_1(t) + l_2(t) = \int N(p,t)dp,
\]

where \(l_i(t) \) and \(S_i \) denote the lifetime spectrum and the time-independent specific \(S \) value for the \(i \)-th state, respectively. It then follows that

\[
l_1(t) = \frac{S(t) - S_2}{S_1 - S_2} \cdot L(t) \propto (S(t) - S_2) \cdot L(t) .
\]

If the lifetime of the second component is appreciably longer than that of the first, \(S_2 \) is determined by averaging \(S(t) \) in the time range where the second component is dominant. It is then possible to isolate the shorter lifetime component \(l_1(t) \), apart from the normalization factor, solely from the AMOC data.

The reconstructed short-lifetime spectrum of Zn at 453 K is shown in Fig. 1. The lifetime \(\tau_1 \) of this spectrum can be obtained by simply fitting these data to a single-component exponential decay function convoluted with the resolution function. The solid curve represents the result of the fit and reproduces the spectrum very well.

The values of \(\tau_1 \) thus obtained are plotted against temperature in Fig. 2. The line represents the result of fitting using the two-state trapping model. The fit is satisfactory. The vacancy formation energy \(E_D \) for Zn determined from the fitted curve is \(0.50 \pm 0.06 \) (eV). This value is in good agreement with the reported value.

Note that \(E_D \) was determined using only the data for the temperature range 383–513 K, considerably lower than the melting point of Zn (693 K). In the conventional determination of \(E_D \) by positron techniques, it is necessary to perform measurements at temperatures close to the melting point to estimate the parameters for fully trapped positrons.

Utilizing this advantage, we are now planning to determine the vacancy formation energy of alloys that undergo a structural phase transition, which prevent a consistent analysis of the data, at high temperatures.

Fig. 1. Reconstructed positron lifetime spectrum for the shorter lifetime component for Zn at 453 K.

Fig. 2. The shorter lifetime values plotted against the temperature.
7. Miscellaneous
Neutrino Advanced Generation with Accelerated Muon

K. Nagamine

A neutrino ($\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$), a massless elementary particle, if generated in the form of an intense and high-quality energetic beam, can be useful not only for particle-physics experiments such as neutrino oscillation studies, but also for probing the inside of gigantic objects such as the earth itself. Some proposals\(^1\) suggest using neutrinos to explore the nature of the earth. An intense neutrino beam is proposed to be generated using an intense and high-energy (multi-TeV) proton accelerator. However, because of the limited quality of the neutrino beam, the idea should be considered unrealistic, or at least very difficult to be realized.

Using high-energy proton accelerators which produce energetic pions (π^+, π^-), one can expect two methods for neutrino generation: (1) A pion decay to a neutrino through $\pi^+ \rightarrow \mu^+ + \nu_\mu$ or $\pi^- \rightarrow \mu^- + \bar{\nu}_\mu$, (2) A muon decay to neutrinos through $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$ or $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$. Thus far, most of the accelerator-based neutrino experiments, including the inner-earth studies described above, are considered using an energetic neutrino beam obtained through the decay of energetic pions or muons based upon the decay-kinematics law. The quality of the neutrino beam can be considerably improved once the beam quality of the parent particle, pions or muons, can be improved.

Recently, the concept of ultra slow μ^+ was proposed\(^2\) and realized at KEK-MSL.\(^3,4\) In addition, the possibility of the use of this ultra slow μ^+ as the ion source for further acceleration towards $\mu^+\mu^-$ colliders has been emphasized. There are two processes in the realization of an ultra slow μ^+ source: (1) Thermal Mu (μ^+e^-) production in vacuum by stopping μ^+ at the rear side of the selected metallic material, such as hot tungsten, followed by μ^+ diffusion towards the surface as well as Mu evaporation from the surface of the foil, (2) Efficient muonium ionization using a method such as laser-resonant ionization via $1s \rightarrow 2p \rightarrow$ unbound excitation utilizing intense pulsed lasers in combination with a pulsed muon beam.

Recently it has been noted that, in combination with the large-solid-angle MeV muon source, an intense ultra-slow μ^+ source with an intensity of $10^{12} \mu^+$/s and an emittance of better than 10^{-7} rad·m can be generated in the setup shown in Fig. 1. In this setup a thick carbon target with a large-solid-angle pion collector will be installed at the external beam line of medium-energy, such as 1 GeV, protons followed by the pion decay section (super-super muon channel) coupled with the ultra slow μ^+ generator mentioned above. Preliminary optics design work for the 90-degree muon extraction from the proton beam has been done in strong collaboration with K. Ishida. By adopting a strong superconducting solenoid for pion collection and a reasonable length of a decay solenoid installed at the strongest existing pulsed proton beam line of the ISIS synchrotron at RAL (UK), one can obtain a source with an intensity of greater than $10^{10} \mu^+$/s. The momentum spread of the μ^+ obtained at the end of the decay solenoid is very large (nearly ± 40%). However,
it becomes possible to stop generated μ^+ inside a multi-layer of hot W, so that an intense ultra slow μ^+ beam can be generated by the method of laser-resonant ionization of thermal muonium emitted from the surface of hot W. Simulation calculations are in progress to confirm the characteristic features of the ultra slow μ^+ produced after optimization.

The high-intensity ultra slow μ^+ produced can be applied as an ion source for acceleration, by installing radio frequency quadropole (RFQ) and drift-tube linac (DTL) preaccelerators followed by, e.g., a super-conducting linac. One of the most important applications of the intense low-energy μ^+ source is as an advanced source of neutrinos ($\bar{\nu}_\mu$, ν_e) with accelerated μ^+. By installing a relevant decay section for the accelerated μ^+, intense and high-quality neutrinos would be produced via $\mu^+ \rightarrow \bar{\nu}_\mu + \nu_e + e^+$, employing the setup shown in Fig. 2.

The key factors in the realization of this advanced neutrino beam can be summarized as follows.

(1) Quality of the accelerated muons
One can expect a greater than 10^{10} μ^+ source with an extremely small phase space (0.2 eV x (cm)2).

(2) Muon decay section
A race-track-type muon storage ring, as shown in Fig. 2, is an attractive idea.

(3) Quality of the produced neutrino beam
Regarding the decay cone, the opening half-angle, θ_μ, becomes smaller at higher muon energy (E_μ), with the relationship of m_μ/E_μ.

Using the future intense pulsed proton source (with more than MW-order power) to be available also for a spallation neutron source, an intensity of 10^{12} μ^+/s can be obtained. A rough estimate for other proton accelerators can be obtained by scaling to the proton beam power.

Helpful discussions with Drs. K. Ishida and Y. Miyake are acknowledged.

References
Light Hadron Spectrum in Quenched Lattice QCD

S. Kim* and S. Ohta

Reproducing the known light hadron mass spectrum is the most important test that the numerical lattice quantum chromodynamics (QCD) has yet to pass, in spite of the steady progress\(^1\) since the pioneering works of Weingarten and Hamber and Parisi.\(^2\) The main obstacle is the difficulty in including light dynamical quarks, and consequently, the available full-QCD calculations still suffer from a too heavy quark mass, too coarse lattice spacing or too small lattice volume. However, with the quenched approximation in which one neglects dynamical quark loops, recent calculations have used sufficiently fine lattice spacing and sufficiently large lattice volume to allow understanding of the systematic errors arising from them. Indeed, recent quenched-approximation calculations have collectively revealed that both of these errors are smaller than the statistical noise, albeit with rather heavy quarks. Nevertheless these calculations leave three major problems unresolved: The nucleon to p-meson mass ratio is too high, the pion to p-meson mass ratio is too high, and extrapolation to realistically light quark mass values is necessary. Hence quenched-approximation calculations with realistically light quark masses on a sufficiently large and sufficiently fine lattice such as the one we report here\(^3\) are desired.

We chose a gauge coupling of \(6/g^2 = 6.5\) and a lattice volume of \(48^3 \times 64\). These parameters correspond to the lattice spacing of \(a = 0.0544(9)\) fm or the cutoff of \(a^{-1} = 3.63(6)\) GeV and a spatial volume of \((2.59(5)\) fm\(^3\)). We use a staggered quark because it is superior to the Wilson one for controlling the quark mass; the quark mass is well defined and protected by the remnant U(1) chiral symmetry in the former, while in the latter, one encounters the intractable problem of defining the critical hopping parameter under the inevitable presence of exceptional gauge configurations.\(^4\) For the gauge part, we use a single-plaquette Wilson action. This is because our lattice spacing is sufficiently fine and we do not require any help from action improvement to approach the continuum limit.

The main result is summarized in our Edinburgh plot (Fig. 1) where two mass ratios, \(m_N/m_p\) and \(m_{\pi}/m_\rho\), are plotted against each other. For our lightest bare quark mass of \(m_qa = 0.00125\) (approximately \(4.5\) MeV), we obtain \(m_N/m_p = 1.230 \pm 0.035\) and \(m_{\pi}/m_\rho = 0.273 \pm 0.006\). The former is in good agreement with the observed value, although the latter remains approximately 50% larger. The proximity of these results to the continuum limit is measured by the extent of breaking of the flavor symmetry in pion and \(\rho\) meson channels \((m_\pi a - m_\rho a)\) and \((m_\rho a - m_\rho a)\). These breakings are expected to decrease as \(O(a^2)\), as the lattice spacing \(a\) approaches the continuum limit value of 0. We can see that they are hidden below statistical errors for sufficiently light quark mass values: The symmetry is restored adequately. In other words, the lattice is sufficiently close to the continuum limit.

In conclusion, we achieved a realistic nucleon to \(\rho\) meson mass ratio of \(m_N/m_\rho = 1.23 \pm 0.04\) (statistical) \(\pm 0.02\) (systematic) in our quenched lattice QCD numerical calculation with staggered quarks, without relying on any extrapolation. The systematic error is mostly due to the finite-volume effect, and the finite-spacing effect is negligible. The breaking of the flavor symmetry in the pion and \(\rho\) meson is no longer evident.

References
Monte Carlo Simulation of Supersymmetric Matrix Model

J. Nishimura and T. Hotta

Large N reduced models are the zero-volume limit of gauge theories. They have been developed for the study of gauge theories at the large N limit.\(^1\) Recently there has been a revival of interest in these models in the context of nonperturbative formulations of string theory.\(^2,3\) An important feature in this context is the presence of supersymmetry. The bosonic counterpart of the IIB matrix model.\(^3\) The model can be regarded as the four-dimensional Eguchi-Kawai model, where nontrivial large N scaling has been observed.\(^8\) We measured the correlation functions up to three-point functions, and found that they scale universally in the large N limit.

Finally, we also study whether the large N reduced model is equivalent to the ordinary gauge theory as presented by Eguchi-Kawai.\(^1\) For this purpose, it is convenient to consider a model without a traceless condition on A_μ. Such a model has the $U(1)^4$ symmetry $A_\mu \to A_\mu + \alpha_\mu$, which is spontaneously broken. Hence the equivalence to ordinary gauge theory is nontrivial, since this equivalence is guaranteed only if the symmetry is not broken. However, the breaking is much milder than in the bosonic case; the attractive potential among the eigenvalues of the A_μ’s, which induces the spontaneous symmetry breaking, is suppressed by $1/N$ due to supersymmetry.\(^6\) We found that in the supersymmetric case, the equivalence does hold in the intermediate scale but not throughout the entire scale, while in the bosonic case, the equivalence does not hold in any range of the scale.

References
New Method for Trace Element Analysis Using the Electron Cyclotron Resonance Ion Source and Heavy-Ion Linac

We measured the contamination in an Al₂O₃ rod and in composite elements of cinnabar (collected from the Tenjinyama ancient tomb) using the electron cyclotron resonance ion source (ECRIS) and the RIKEN linear accelerator (RILAC) complex. Elements of mass number smaller than 100, such as 50V, 55Mn and 75As, were mainly identified by the system.

Since the 1960s, the technique of accelerator mass spectrometry (AMS) has been developed in cooperation with an electrostatic-tandem accelerator. A negative ion source is conventionally used for a tandem accelerator, and the development of an ion source is an important research theme. The negative ionization of the element strongly depends on its electron affinity. For the production of negative ions from elements with low electron affinity, great effort is required for sample preparation. In particular, it is impossible to produce negative ions from rare gases, such as Ar and Kr. In many cases, the measurement has a large margin of error due to the effect of the various treatments of the element. These are some of the disadvantages of using a tandem accelerator for AMS. In addition, when using a tandem accelerator to identify impurities in materials, automation for scanning both the analyzing magnet of the injection and extraction side of the accelerator is required, which is quite complicated, leading to uncertainties in the determined amount of impurities. To overcome this, we combined the ECRIS and heavy-ion Linac to conduct experiments of element analysis. The 18 GHz ECRIS at RIKEN was used as the external ion source of the RIKEN linear accelerator (RILAC). The production of positive ions does not depend on ionization tendency in the ECR plasma and highly charged positive ions were produced in the ECR plasma for all elements at a high temperature. The acceleration and transportation depends only on the mass-to-charge ratio (A/q). Ions with the same A/q were simultaneously analyzed and detected by this system. With A/q = 3, 4, and 5, approximately 90% of all elements can be accelerated and analyzed.

The composite elements of cinnabar from the Tenjinyama ancient tomb were measured using the same system. Approximately 100 mg of cinnabar was placed into a 4-mm-diameter, 2-mm-thick Ta tube. The tip of the Ta tube was closed using pliers, and two 1-mm-diameter holes were formed in the upper side of the Ta tube. The powdered sample was heated by ECR plasma. The particles with A/q = 5, analyzed using the first analyzing magnet, were accelerated to 1.0 MeV/u using RILAC and the variable-frequency RFQ (radio-frequency quadrupole linac) pre-accelerator.³)

The ΔE spectrum is shown in Fig. 1. By fixing the acceleration parameter to A/q = 5, the mass number of detected elements is a multiple of 5. The accelerator has large ambiguity in terms of mass resolution due to influences such as the fluctuation of the RF phase; however, in the system used in this investigation, the detected elements were almost certain to have A/q = 5, because elements were reselected by the analyzing magnets.

We established a method for the measurement of the relative abundance of elements in a sample by using ECRIS. Unlike conventional AMS, this system allows the measurement of numerous elements at the same time. The effect of spectroscopic interference is negligible owing to ionization in the high-temperature field by the ECR plasma, implying that the number of elements was increased and the margin of measurement error was decreased.

References
IV. NUCLEAR DATA
Until now, the RIKEN Nuclear Data Group has continued three kinds of long-term nuclear data activity described below.

(1) Nuclear reaction cross section data (EXFOR)
Since 1983, our group has been a member of the worldwide network for the compilation of the charged particle nuclear reaction cross sections coordinated by the IAEA Nuclear Data Section (NDS). The tasks of this network are to collect charged particle reaction cross sections and compile them into a special format called EXFOR (EXchange FORmat). The compiled data are incorporated into the master database and provided to clients free of cost upon request.

First we limited data collection to the cross section data of important reactions producing the following twenty typical radioisotopes for medical applications: ^{11}C, ^{13}N, ^{15}O, ^{18}F, ^{28}Mg, ^{52}Fe, ^{67}Ga, ^{68}Ge, ^{74}As, ^{77}Br, ^{82}Br, ^{77}Kr, ^{81}Rb, ^{82}mRb, ^{111}In, ^{123}Xe, ^{127}Xe, ^{123}I, ^{124}I, and ^{125}I. Subsequently, in order to maintain the completeness of the database, we extended the scope of data collection to the important reaction data not included in the EXFOR master file.

So far, we have added 53 entries, ‘R0001’ through ‘R0053’ containing as many as 535 excitation functions in total to the EXFOR database.

(2) Evaluated Nuclear Structure Data File (ENSDF)
We have been participating in the ENSDF compilation network coordinated by the Brookhaven National Nuclear Data Center (NNDC). The task of the network is to evaluate various existing experimental nuclear structure data to construct and recommend a reliable nuclear data set and level scheme for each nuclide in a mass chain.

We have thus far evaluated nuclear structure data for mass chains A = 120, 121, 127 and 129, and the results have been published in the Nuclear Data Sheets.1–5 A draft of a new evaluation of the A = 120 mass chain is now under the author’s review prior to the printing. Because much new data on high-spin states for A = 129, as well as for other neighboring masses, have been accumulating since our last evaluation, we are planning to make partial update of A = 129 mass chain in the near future.

(3) Nuclear Science References (NSR)
We are engaged in collecting and compiling the secondary references printed in Japan (unpublished works such as annual reports, conference proceedings, etc.) into the Nuclear Science References (NSR) file format and transmitting them to the NNDC. The NSR data are disseminated through on-line network services and also in print as ‘Recent References’.

The compilation of the 1998 annual report containing 150 papers has already been completed and transmitted to the NNDC. The Japanese secondary sources surveyed were as follows (shown in the NSR file code name):

RIKEN (RIKEN Accel. Prog. Rep.),
JAERI-TV (JAERI Tandem & V. D. G. Rep.),
JAERI-TIARA (JAERI Takasaki Ion Acc. Advanced Rad. Appl.),
UTTAC (Univ. Tsukuba Tandem Accel. Center),
RCNP (Res. Center Nucl. Phys., Osaka Univ.),
OULNS (Osaka Univ. Lab. Nucl. Studies),
CYRIC (Cyclo. Radioisot. Center, Tohoku Univ.),
KUTL (Kyushu Univ. Tandem Accel. Lab.).

The compilation of works for the 1999 annual report is now in progress.

The RIKEN Nuclear Data Group could not spare the manpower in recent years to carry out other work than the three database activities mentioned above. With the upcoming reorganization of the Radiation Laboratory, we will have to reconsider our activities as a whole.

References
V. DEVELOPMENT OF ACCELERATOR FACILITIES
Biased Electrode Method for RIKEN 18 GHz ECRIS

Y. Higurashi, T. Nakagawa, M. Kidera, Y. Miyazawa, M. Hemmi, T. Chiba, M. Kase, T. Kageyama, A. Goto, and Y. Yano

In order to increase the beam intensity of highly charged heavy ions from ECRIS, several methods have been suggested and successfully applied in many laboratories in the last decade. The installation of an electrode into the plasma chamber is one of the most popular methods. In RIKEN, we have also applied this method and successfully increased the beam intensity of highly charged heavy ions. In spite of the great success of this method, the mechanism is still not completely clear. As a first step toward understanding the mechanism of this method, we measured the beam intensity while changing the electrode position and the biased voltage.

The design and performance of the RIKEN 18 GHz ECRIS without using the biased electrode is described in Ref. 1. Figure 1 shows the cross-sectional view of the RIKEN 18 GHz ECRIS with a stainless steel electrode. The diameter and thickness of the electrode are 18 and 1 mm, respectively. A negative bias voltage is applied between the electrode and plasma chamber as shown in Fig. 1. The electrode can also be used at the floating potential by disconnecting it from the electric power supply. The electrode is placed on the axes of the plasma chamber. The position of electrode (L) is defined in Fig. 1. The axial position of the electrode is remotely controlled with an accuracy of 0.1 mm.

For all elements heavier than carbon, gas mixing is usually used to obtain a higher intensity of highly charged heavy ions. In the present case, we used oxygen as a mixing gas to produce Xe ions. The plasma intensity of highly charged ions from gaseous elements. Open and closed circles are results without using and using the disc, respectively.

Fig. 2. Beam intensity of highly charged ions from gaseous elements. Open and closed circles are results without using and using the disc, respectively.

Fig. 3. Beam intensity of Xe\(^{20^+}\) as a function of the electrode position at the RF power of 200 w.
chamber wall is covered with aluminum tubing (of 1 mm thickness). The aluminum oxide surface emits several secondary electrons per primary electron impact, which helps increase the plasma density.\textsuperscript{1)2}

Figure 2 shows the summary of the beam intensities incisae of the highest beam intensity of the gaseous elements. The closed and open circles are the results obtained using and without using the electrode, respectively. The beam intensity of highly charged ions was strongly enhanced with the use of the electrode, \textit{e.g.}, the intensity of 300 e\textmu A of Ar11+ is almost two times higher than that resulting without using the electrode.2,3)

The measurement was performed under the condition that the ion source was tuned for producing a Xe20+ beam at the bias voltage of 0 V. The gas pressure of the plasma chamber was 7 \times 10^{-7} Torr. The maximum and minimum magnetic field strength of the mirror magnetic field were 1.4 and 0.47 T, respectively. The extraction voltage was 10 kV. The injected microwave power was 200 W. For the experiment, we did not change these parameters except for the negative bias voltage and position of electrode. Figure 3 shows the beam intensity of Xe20+ as a function of electrode position at a bias voltage of 0 V. The beam intensity strongly depends on the position of the electrode. It oscillated as the electrode position changed from \(L = 2 \) to 6 cm. We infer this oscillation may be caused by the standing waves of the micro-wave (18 GHz \(\sim 17 \) mm),4) however its mechanism is still not clear. Additionally, when the electrode position (\(L \)) is near the ECR plasma (\(L = 6\text{--}7 \) cm), the beam intensity decreased as a function of \(L \).

Figure 4 shows the beam intensity dependence \(L \) and the negative bias voltage. At smaller values of \(L \), the beam intensity decreases with increasing negative bias voltage. However, the beam intensity increases with negative bias voltage when the electrode is placed far from the chamber wall.

References
Present Status of 14.5 GHz Caprice in RIKEN

Y. Kanai, Y. Nakai, H. Ohyama, T. Kambara, and Y. Yamazaki

The ECRIS (14.5 GHz Caprice) and the experimental beam lines were built in 1994–1995 in the accelerator research annex for atomic physics experiments.1) This year, we moved the ECRIS and all setups to the Nishina building. The ECRIS and the beam transport line (analyzing magnet and triplet quadrupole magnets) were transferred to the ion source room for the AVF cyclotron. The experimental beam line (switching magnet and four beam lines) and experimental setups were transferred to the new experimental hall for low-energy highly charged ions. The beam transport line passes through the wall between the ion source room and the experimental hall. The power supplies for the ECRIS and the beam transport line were situated in the ion source room. The ECRIS and the beam transport system are controlled from the control desk in the experimental hall.

On this movement, we have not changed the configuration of the beam focusing elements.1) Due to the 56 cm difference in the floor level between the ion source room and the experimental hall, the height of the beam lines was about 94 cm and 150 cm in the ion source room and in the experimental hall, respectively.

The double-wall plasma chamber made of stainless steel (SUS) with an aluminum sheet was replaced with a single-wall aluminum (Al) chamber, which is expected to provide higher charge state ions.2) In the middle of October, we conducted a test of the ECRIS and beam transport system. Typical ion currents before and after the replacement are summarized in Table 1. The extraction voltage was 15 kV and the size of the beam was collimated by the slits to 18 mm x 18 mm before the Faraday cup. The data indicate that the Al single-wall chamber provides higher currents, particularly at higher charges, as expected. We note that by using the Al sheet, the ion currents at a higher charge state were increased as compared to those with the simple SUS chamber, as reported before.3) On the basis of the present results, we can put forth that the Al single-wall plasma chamber is more effective than the SUS double wall plasma chamber with the Al sheet to obtain the higher charge state ions. This is due to the difference in the area of the Al surface in the plasma chamber between the Al chamber and the SUS chamber with the Al sheet.2)

We will test the deceleration mode of the beam transport to use the very slow highly charged ions at the experimental setups.4) Following this test, we will start the experiments using ion beams from the ECRIS.

References

<table>
<thead>
<tr>
<th>Ions currents (eμA)</th>
<th>O^5+</th>
<th>740^a</th>
<th>464^b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O^6+</td>
<td>232^a</td>
<td>370^b</td>
</tr>
<tr>
<td></td>
<td>O^7+</td>
<td>330^a</td>
<td>350^b</td>
</tr>
<tr>
<td></td>
<td>Ar^8+</td>
<td>175^b</td>
<td>291^b</td>
</tr>
<tr>
<td></td>
<td>Ar^{11+}</td>
<td>64^b</td>
<td>68^b</td>
</tr>
<tr>
<td></td>
<td>Ar^{14+}</td>
<td>5^b</td>
<td>3.5^b</td>
</tr>
<tr>
<td></td>
<td>Ar^{16+}</td>
<td>0.3^a</td>
<td>0.12^b</td>
</tr>
</tbody>
</table>
Development of Compact High Current Multicharged Ion Source for RIKEN RI Beam Factory

S. Bhattacharjee, T. Nakagawa, M. Kase, A. Goto, and Y. Yano

Ion sources form an integral part of an accelerator facility. High-current multicharged ion beams are one of the major requirements of the RIKEN RI beam factory. Electron cyclotron resonance ion sources (ECRIS) have been successfully applied for several years. However, specific needs such as high-current maximally charged heavy ions and the increasing demand for higher beam intensities have initiated a quest for new types of ion sources. To address the forthcoming challenges, the development of ion sources using novel concepts is essential.

The performance of an ion source is greatly determined by the characteristics of the source plasma. In order to obtain higher beam intensities and multicharged states, it is imperative to increase the electron density, the electron temperature and the ion and electron confinement times. With such an objective, we attempt to improve upon these plasma parameters using methods that have not been previously explored.

In ECRIS, the bore of the plasma chamber is usually made larger than the cutoff dimension of the fundamental waveguide mode to permit wave propagation and plasma sustenance. The waves are launched with the propagation vector parallel to the axial magnetic field, created by electromagnetic coils. The axial mirror field, although useful for plasma confinement and heating, has a loss cone and instability, such as drift instability. Moreover, the plasma uniformity can become poor and heating can be inefficient when there are large gradients of the magnetic field.

Studies have shown that, for waves launched perpendicular to the magnetic field, a peripheral arrangement of permanent magnets in a multicusp geometry around the waveguide (plasma chamber) helps to obviate the geometrical cutoff problem. In this way the launched microwaves can be efficiently guided into the plasma chamber with a cross section even smaller than the cutoff value. The reduced bore diameter increases the microwave power density which aids in the production of a plasma much denser than the cutoff density. Moreover, perpendicular wave launching favors resonance heating such as upper hybrid resonance, which is unexpected for waves launched parallel to the magnetic field. The absence of electromagnetic coils results in a compact device. Experiments with continuous mode (cw) microwaves of 2.45 GHz indicate that the plasma density is $>10^{11}$ cm$^{-3}$. Good radial and axial uniformity are obtained within a 40 mm diameter and along the length of the chamber (\sim400 mm), respectively. The low-energy electron temperature, measurable by a probe, lies in the range of 10–14 eV, which is much higher than for other high-density microwave plasmas such as surface-wave or helicon-wave sources.

To further raise the electron temperature and the plasma density, it is desired to increase the power of the microwaves. Pulsed mode microwaves are useful in this regard because higher powers can be obtained. Moreover, the pulse repetition frequency and the pulse width provide additional control of the plasma and the extracted beam. We have considered the application...
of high-power short-pulse microwaves. The strong electric fields with a short interval accelerate electrons to high energies during the pulse.8) The high electron temperature persists in the interpulse regime with a decay constant much smaller than those of the charged particles. This can be helpful for successive ionization whereby the possibility for obtaining multiply charged states is increased. The increase in power density in the narrow tube leads to nonlinear effects such as ponderomotive force and nonlinear dispersion. These effects, together with the anisotropic diffusion of the plasma, are expected to be favorable for increasing the beam intensity.

The experimental findings in cw and pulsed microwaves are expected to have great implications in applications where collimated, intense and multicharged ion beams are required. We are currently undertaking feasibility studies of the above concepts for ion source applications. Figure 1 shows a schematic of the experimental system. The design of the vacuum chamber, plasma chamber, microwave circuitry and pumping system has been accomplished. The components are currently being assembled and the experimental facility constructed. Ports have been provided on the vacuum chamber to access the plasma from the radial and axial directions and for beam extraction. Beam intensity and charge states will be measured. There will be provisions for plasma diagnostics such as X-ray, optical, probe and electromagnetic field measurements. Investigations will be carried out to obtain an optimized beam using waves in cw, pulsed or a superposition of the two modes.

We would like to thank Mr. T. Chiba for assisting us with the technical drawings. S. B. thanks Dr. H. Amemiya for his encouragement.

References
In the MUSES project at RIKEN, a pulsed-ion source for highly charged heavy ions is required. A laser-ion source (LIS) is expected to satisfy MUSES requirements. A test bench at RIKEN is now being developed to investigate the laser plasma for the pulsed-ion source. A schematic drawing of the test bench is shown in Fig. 1. A TEA CO$_2$ laser and a YAG laser are used for producing the laser plasma. The maximum energy and the pulse duration of the TEA CO$_2$ laser ($\lambda = 10.6 \, \mu\text{m}$) are 10 J and 100 nsec, respectively. A convex BeCu mirror (20$^\circ$, 5 t, R = 5 m) and a concave BeCu mirror (50$^\circ$, 10 t, R = 10 m) are used as a resonator system for the CO$_2$ laser. We have obtained an output energy of 5.7 J using this resonator system under the gas mixture condition (CO$_2$: N$_2$: He = 1 : 1 : 8). On the other hand, the Nd:YAG laser (INDI-50, Spectra-Physics; $\lambda = 1.064 \, \mu\text{m}$) has a maximum output energy of 500 mJ and the pulse duration of 6–7 nsec. The repetition rate is up to 10 Hz for both lasers. An aluminum target is located in the center of the vacuum chamber. The focused laser irradiates the target at an incident angle of 36 degrees. The laser plasma expands perpendicular to the target surface. Using a streak camera and CCD camera set, one can obtain data of the plasma expansion as a function of time. We obtained results using the Nd:YAG laser; a laser-produced plasma image using a 250 mJ laser pulse is presented in Fig. 2. After about 100 pulses, the crater shape became an ellipse with a long axis of 700 μm and a short axis of 500 μm, as shown in Fig. 3.

The power density [W/cm2] on the target surface can be estimated as 10^{10} W/cm2 from the size of the ellipse, the laser energy (250 mJ) and the laser-pulse duration (100 ns). From this value, it is expected that the charge state of aluminum ions is at least 3–4.

References
Generation of Heavy-Ion Pulses with Short Width and Long Interval

A. Yoneda and T. Kambara

A beam chopping and bunching system has been developed for the generation of nearly single-bunch pulses of a heavy-ion beam from the RILAC and RIKEN Ring Cyclotron. With this system, the beam-pulse frequency can be set to any value between DC and 1 MHz. The source timing signals are sent from either the control room of the Ring Cyclotron or an experimental site.

Figure 1 shows the system used to generate and monitor the short pulses. A heavy-ion beam is chopped by electric pulses at a vertical deflector after the 18 GHz ECR ion source. Then the beam is modulated by a subharmonic RF buncher for time focusing and accelerated by the RFQ linac, RILAC and Ring Cyclotron. The microscopic time structure of the beam is monitored by secondary-electron monitors before and after the acceleration by the Ring Cyclotron. In the monitor, the ion beam crosses a tungsten wire which emits secondary electrons. The wire has a 0.3 mm diameter and it negligibly affects the overall beam characteristics. The secondary electrons are collected by an electrostatic field and amplified by a microchannel plate (MCP). A similar monitor, with aluminum foil for the secondary-electron emitter, is also set on the experimental beam line (E5A).

The system has been tested with a Xe-ion beam accelerated up to 26 MeV/u. The accelerators were operated at a frequency of $f = 28$ MHz. The chopping voltage at the deflector had an amplitude of about 500 V, width of 250 ns for beam ON and interval of 25 ms. The subharmonic buncher was operated at a frequency of $f/7$. The time structure, shown in Fig. 2, was obtained at the E5A beam line. The highest peak had a width of about 3 ns. The additional periodical peaks with an interval of about 35 ns were microbunches, which were not collected by the sub-harmonic buncher. A relatively high peak later than the main peak by about 320 ns ($9 \times$ microbunch period) was a microbunch extracted from the cyclotron one turn later than the main bunch (the harmonic number of the Ring Cyclotron was 9). The number of ions in a pulse was estimated to be in the range of 10^4. The beam leakage, that is the beam intensity in the OFF status, was lower than 10^{-4} of that in the ON status.

This system has been successfully used in experiments reported elsewhere.\(^1\)

References

A Plan for a New Control System for the RIKEN Ring Cyclotron Using EPICS

M. Kobayashi-Komiyama, M. Kaji,*1 M. Nagase, I. Yokoyama, T. Tanabe, M. Sugimoto,*2 and M. Kase

With regard to the control system of the RIKEN RI beam factory (RIBF) project, it has become necessary to expand the present control system of the RIKEN ring cyclotron (RRC) to maintain compatibility with the RIBF project. Therefore, we are searching for the optimum means of extending the present system to improve its compatibility. In this paper, we report a plan which uses the Experimental Physics and Industrial Control System (EPICS).

Figure 1 shows a block diagram of the present control system of the RRC. It has been more than 13 years since system operation was started. The main concerns regarding this system are as follows:
(1) A host computer (minicomputers, Mitsubishi M60/500) is the only brain in the present control system. As a result, it plays many roles in the system. These roles include the operator interface, input/output control and data storage (which are the parameters of RRC operation). In order to aid in the tasks of the host computer, intelligent modules are used for the interface between CAMAC modules and control devices. Two types are used: one is a CAMAC module called a communication interface module (CIM), and the other is a terminal module for high-speed local control of accelerator devices, called a device interface module (DIM). Both module types were developed in our laboratory. The details of these modules are given in Refs. 3 and 4. As there is an expansion limit to the control ability of this system, it is not suited for expansion.
(2) The components of the system have become old. Thus, the system maintenance cost has become high. The age of the touch panel in particular has become a serious problem. Most man-machine interactions are performed using the touch panels: however, sometimes they do not respond during beam operation. Replacing the panels with new ones would require developing new applications; this would not be easy in any respect.
(3) Both control data and logic are written in the same application code. In other words, the current control system does not separate control data and logic. This type of system is not suited for extension.
In order to solve these problems, a plan for an alternative new control system of the RRC using EPICS was proposed last year. We employed part of the alternative system this year as a preliminary test.

The EPICS is the distributed supervisory control system which has many servers (usually on VMEbus). Present and future developments are being carried out cooperatively by the EPICS collaboration, originally developed by ANL and LANL. Currently, the collaboration is expanding and now includes several laboratories around the world (not only in the US). The real-time operating system VxWorks runs on the VME computers. As shown in Fig. 2, the operator interface (OPI) and input/output controllers (IOC’s) are connected using Ethernet, and thus the number of IOC’s is not limited. Therefore, the EPICS is suited for large

*1 Mitsubishi Electric Corporation
*2 Mitsubishi Electric Control Software Corporation
projects such as the RIBF when we take into consideration the cooperative development and control of many accelerators. The EPICS has been used at a number of sites not only in particle accelerators and telescopes but in general enterprises at more than 70 sites around the world. Furthermore, use of the EPICS is free for public research institutes.

The replacement plan using the EPICS is shown in Fig. 2. The M60 computer system is removed and VME computers and engineering workstations (EWSs) are installed in its place. Software on the M60 computer system is replaced by the EPICS and an Oracle (a relational database management system)-based software system. In the new control system, we plan to store all accelerator system data using in Oracle. This enables the sharing of data between users and prevents dual storage of the control data. This database manages the properties of the control devices such as device name, control address and specifications. As shown in Fig. 2, the remaining components, including the CAMAC loop, are not replaced. Taking into consideration the fact that the RRC is in operation, we plan to replace the M60 computer system and the man-machine interface components first, so as not to significantly influence the RRC operation. However, by replacing the M60 computer system with EWS and VME computers, the present equipment is expected to realize maximum control ability. A comparison between the present system and the new system is shown in Table 1.

We have tested the preliminary system for controlling the power supplies, profile monitors and Faraday cups of the RRC. The graphic user interfaces (GUIs) for controlling the above equipment were prepared, and they exhibited the same responses as the current system. Furthermore, the access speed between the OPI and the DIM was 30 times faster (3 ms) for each access in the new system; this speed is very fast and we expect smoother operation because of this. However, the test situations differed between both systems, so an accurate comparison of the two may not be possible. Therefore, it has been verified that fundamental operations can be performed using the preliminary system. From this point, the development of the control system replacement will continue and the actual replacement will be performed.

References
Low Power Test of CSM Resonators

The resonators of the first unit of the Charge-State Multiplier (CSM)1) have been constructed and low power tests were carried out.

Table 1 summarizes the design parameters of the first unit. It consists of two acceleration tanks and one deceleration tank, each of which has eight rf-gaps with a maximum gap voltage of 450 kV. The resonant frequency was chosen to be twice the fundamental frequency; it varies from 36.0 to 76.4 MHz. The designed voltage-gain of each tank is about 2.9 MV over the entire frequency range.

The resonator structure of the first unit is illustrated in Fig. 1. It is based on a $\lambda/4$-coaxial resonator with a movable shorting plate. By using the computer code MAFIA, the shape of the stems as well as the size of the coaxial part were optimized so that the current density on the sliding contact would be as small as possible.

In the final design, the current density is estimated to be 60 A/cm at the maximum gap voltage.

All three resonators have the same dimensions except for the drift tubes and the stems. The rf-power is fed through a capacitive feeder. A capacitive tuner is used for the fine tuning of the resonant frequency. Each resonator is equipped with a cryogenic pump of 4000 l/s and a turbomolecular pump of 500 l/s.

Cooling is one of the most significant problems associated with these resonators. According to the calculation, the maximum power loss in each end-stem amounts to 9 kW. Therefore, the arrangement of the cooling channels has been carefully designed based on the heat analysis. The maximum displacement of the drift tubes due to thermal deformation is estimated to be 0.06 mm in the vertical direction. Taking these analyses into account, the drift tubes have been aligned with an accuracy of ±0.15 mm in the transverse direction and ±0.3 mm in the longitudinal direction.

Figure 2 shows the resonant frequency of the fundamental mode in the first acceleration tank. As shown in the figure, movement of the shorting plate by a stroke of 1300 mm varies the resonant frequency from 34.8 to 81.5 MHz. The measured results are in good agreement with the MAFIA prediction. Similar results have been obtained in the other two resonators. We have also seen that the capacitive tuner changes the resonant frequency and ±0.3 mm in the longitudinal direction.

Figure 2 shows the resonant frequency of the fundamental mode in the first acceleration tank. As shown in the figure, movement of the shorting plate by a stroke of 1300 mm varies the resonant frequency from 34.8 to 81.5 MHz. The measured results are in good agreement with the MAFIA prediction. Similar results have been obtained in the other two resonators. We have also seen that the capacitive tuner changes the resonant frequency and ±0.3 mm in the longitudinal direction.

![Fig. 1. Schematic diagram of the resonator of the first unit. Dimensions are given in mm. All components of the three resonators are the same size except for the drift tubes and stems.](image1)

![Fig. 2. Measured resonant frequency of the first acceleration tank (solid line) along with the MAFIA calculations (dashed line).](image2)

<table>
<thead>
<tr>
<th>Tank</th>
<th>Accel.1</th>
<th>Accel.2</th>
<th>Decel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>36.0–76.4</td>
<td>36.0–76.4</td>
<td>36.0–76.4</td>
</tr>
<tr>
<td>m/q</td>
<td>24.7–5.5a</td>
<td>24.7–5.5b</td>
<td>12.0–2.7b</td>
</tr>
<tr>
<td>E_{in} (MeV/u)</td>
<td>0.65–2.91b</td>
<td>0.76–3.43b</td>
<td>0.88–3.96b</td>
</tr>
<tr>
<td>E_{out} (MeV/u)</td>
<td>0.76–3.43b</td>
<td>0.88–3.96b</td>
<td>0.65–2.91b</td>
</tr>
<tr>
<td>Number of gaps</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Gap voltage (kV)</td>
<td>450</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Bore radius (cm)</td>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>Inner length (m)</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Power loss (kW)b, d</td>
<td>58</td>
<td>61</td>
<td>58</td>
</tr>
<tr>
<td>Z_x (MΩ/m)b, d</td>
<td>147</td>
<td>152</td>
<td>146</td>
</tr>
</tbody>
</table>

a: At 36.0 MHz (lowest frequency)
b: At 76.4 MHz (highest frequency)
c: At 54.4 MHz
d: MAFIA prediction
nant frequency more than 0.5% in the whole frequency range.

The second and third higher modes appear around 100 and 150 MHz, respectively. These frequencies are well reproduced by the MAFIA calculation.

The measured Q-values of the first acceleration tank are shown in Fig. 3 along with the MAFIA calculations. As shown in the figure, the measured values are around 20000. They are approximately 63–71% of the calculated ones. The results for the other tanks are quite similar to that observed for the first tank. By comparing these results with the MAFIA calculations, the maximum power loss is estimated to be 90 kW.

We also measured the parallel shunt resistance \(R_s \) of the first tank by using the calibrated pickups of the resonator. \(R_s \) is related to the power loss \(P \) and the gap voltage \(V \) by \(P = V^2/(2R_s) \). The obtained values are about 1.5 MΩ over the entire frequency range, which gives the power loss of only 70 kW at the maximum gap voltage. It is known, however, that this measurement overestimates \(R_s \); an estimation given by the Q-value above would be more reliable.

Figure 4 shows the electric-field distribution of the fundamental mode on the acceleration axis, which was measured by means of a perturbation method. Since the gap length is long, the field strength is minimum at the center of each gap. Moreover, the strength on the upper drift tubes is larger than that on the lower ones, which reflects the vertical asymmetry of the resonator structure. These results are well reproduced by the MAFIA calculations, as shown in the figure.

The power amplifiers have already been fabricated based on a tetrode tube, SIEMENS RS2058CJ. The output power of 100 kW has been successfully achieved over the entire frequency range required for the operation. Details of the amplifiers are given in Ref. 2.

The three tanks will be installed in the RILAC building within the next year. Acceleration tests will be carried out after high power tests using the amplifier.

References
Construction of the IRC for RIKEN RI Beam Factory

The intermediate ring cyclotron (IRC) is a room-temperature ring cyclotron with four sectors that is utilized for the RIKEN RI-Beam Factory. It will be installed as the intermediate stage between the existing RIKEN Ring Cyclotron (RRC) and the Superconducting Ring Cyclotron (SRC). The IRC, having a K value of 980 MeV, accelerates the extracted beam from the RRC; The maximum acceleration energy and the maximum magnetic rigidity of the IRC is 126.7 MeV/nucleon and 4.57 Tm, respectively. Figure 1 shows a plan view of the IRC, which consists mainly of four sector magnets, two main RF resonators, one flattop resonator, and injection and extraction devices. The main components of the IRC are installed in an area of 14 meters square.

The IRC will be operated at a harmonic value of 7, while that of the RRC is 9. Thus, the injection radius of the IRC is determined to be 7/9 of the extraction radius of the RRC. The main parameters of the IRC are listed in Table 1.

The fundamental structure of the sector magnet of the IRC is similar to that of the RRC. The main coils of the sector magnets are designed to be of a low power consumption type. The maximum power of the main coils is suppressed at 70% of that of the RRC, although the maximum magnetic field is higher than that of the RRC. The temperature increase of the cooling water due to the main coils is calculated to be less than 10 degrees.

Manufacturing of the sector magnets is in progress at the Niihama works of Sumitomo Heavy Industries, Ltd. The machining of yoke plates and poles for four sector magnets has already been completed. Figure 2 shows a photograph of the lower yoke of the first sector magnet (E-sector) being assembled. Figure 3 shows the main coil of the sector magnet.

The first sector magnet will be completed in February of year 2000. Magnetic field measurement of the sector magnet will start from March of year 2000. Firstly, measurement for one sector magnet will be performed. After that, two sector magnets will be aligned with a configuration that is the same as the actual one. Then, field mapping of a 180 degrees region will be performed in order to measure the coupling effect of the sector magnets. The field mapper of the IRC is designed to be able to measure 360 degrees mapping.

Table 1. Main parameters of the IRC.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-value</td>
<td>980 MeV</td>
</tr>
<tr>
<td>Number of sectors</td>
<td>4</td>
</tr>
<tr>
<td>Harmonics</td>
<td>7</td>
</tr>
<tr>
<td>Average radius</td>
<td></td>
</tr>
<tr>
<td>Injection</td>
<td>2.77 m</td>
</tr>
<tr>
<td>Extraction</td>
<td>4.15 m</td>
</tr>
<tr>
<td>Velocity gain factor</td>
<td>1.5</td>
</tr>
<tr>
<td>Number of cavities</td>
<td></td>
</tr>
<tr>
<td>Main</td>
<td>2</td>
</tr>
<tr>
<td>Flat-top</td>
<td>1</td>
</tr>
<tr>
<td>Cyclotron frequency</td>
<td>2.57-5.45 MHz</td>
</tr>
</tbody>
</table>

* Sumitomo Heavy Industries, Ltd.
after installation of the entire sector magnets into the RIKEN site.

Two types of resonators are adopted for the IRC: Two main resonators and one flattop resonator. The main resonators are of a single-gap type with flapping panels for changing the resonant frequency. Figure 4 shows the stainless steel wall of the main cavity being constructed. The flattop resonator is of a single-gap type with shorting plates. In order to realize ultra-high vacuum, a duplicated-wall structure is adopted. Manufacturing of the main resonators has been started and will be completed in the summer of 2000.

References
Model Test of the RIKEN-IRC* Main Resonator

N. Sakamoto, O. Kamigaito, Y. Miyazawa, T. Chiba, A. Goto, and Y. Yano

The intermediate-stage ring cyclotron, IRC, which is the first stage booster in the RIKEN RI beam factory,1) consists of four normal conducting sector magnets, two acceleration resonators and one flat-top resonator.2) The frequency range of the acceleration resonators is from 18.0 to 38.2 MHz. In order to obtain a sufficient turn separation as large as 6 mm at the extraction orbit, the acceleration voltage is required to be 1.2 MV/turn in the case of 38.2 MHz operation. The acceleration resonator is a single-gap-type resonator whose structure is basically the same as that of the Research Center for Nuclear Physics (RCNP), Osaka University, ring cyclotron. Its geometrical design has been optimized using a three-dimensional rf calculation code, MAFIA.3) In order to determine the accuracy of the calculated frequencies and the Q-values in comparison with the theoretical ones, a 1/5 scale model was built and test measurements were performed. A theoretical Q-value of the model is 1/√5 that of the actual resonator, while a resonant frequency is five times higher.

A schematic drawing of the model is shown in Fig. 1. A resonant frequency of the resonator is tuned by flapping two panels which are located symmetrically on the median plane. The calculated rf characteristics of the model are shown in Table 1.

In order to evaluate the Q-values accurately in comparison with the calculated ones, the mechanical design of the model was carefully carried out to simulate the structure of the actual resonator. To know the realistic Q-values is crucial in determining the rf power and the coupler size of the actual resonator.

The conductive parts of the model were made of copper. The contact fingers and contact strips were used to reduce the resistivity between the conductive parts. The overall geometrical misalignment was less than 0.3 mm. The rf power was fed using an inductive coupler which was located at the center of the rear wall, as shown in Fig. 1. The resonant frequencies and the Q-values were measured using a network analyzer with an S-parameter test set (HP8753E). Two pickup loops were used, one for excitation and the other for detection. These loops were identical and were very weakly coupled to the resonator. Figure 2 shows the measured resonant frequencies and Q-values. The measured resonant frequencies and Q-values were slightly high in comparison with calculated values (compare Tables 1 and 2). The Q-values were as large as 63–71% of the calculated values.

The coupler was an inductive type whose coupling could be varied by changing the cross section of the loop. A schematic drawing of the coupler for the model is shown in Fig. 3. A characteristic impedance of the coaxial part was set to be 50 Ω. By sliding the coupler position l = 14–35 mm, the input impedance of the resonator could be matched to 50 Ω and the

Table 1. The calculated resonant frequencies and Q-values using MAFIA.

<table>
<thead>
<tr>
<th>Flapping panel</th>
<th>0 deg.</th>
<th>90 deg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>89.8 MHz</td>
<td>193.6 MHz</td>
</tr>
<tr>
<td>Q-value</td>
<td>12970</td>
<td>16550</td>
</tr>
</tbody>
</table>

Fig. 1. Schematic drawing of the 1/5 scale model.

Fig. 2. Measured resonant frequencies and Q-values for the 1/5 scale model.
Table 2. Measured resonant frequencies and Q-values at the panel angles of 0 deg. and 90 deg.

<table>
<thead>
<tr>
<th>Flapping Panel</th>
<th>0 deg.</th>
<th>90 deg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>91.69 MHz</td>
<td>196.05 MHz</td>
</tr>
<tr>
<td>Q unloaded</td>
<td>8190 (63%)</td>
<td>11710 (71%)</td>
</tr>
<tr>
<td>loaded</td>
<td>4190</td>
<td>5840</td>
</tr>
</tbody>
</table>

Numbers in parenthesis indicate the ratio to the theoretical values listed in Table 1.

Fig. 3. Schematic drawing of the coupler.

S_{11} was less than -50 dB for the entire frequency range. The loaded Q-values were almost 50% of the unloaded ones (see Table 2). A measurement of the electric field distributions was performed using the perturbation method. A spherical field perturbator (3/8"ϕ) made of Teflon was used. By integrating the field strength distribution along the beam orbit,
gap voltages were obtained, as shown in Fig. 4. The voltage distribution was found to be in good agreement with the MAFIA calculation. According to the result of the frequency measurement, a gap size between the flapping panel and the dee surface at the panel position of 0 deg. was reduced by 5 mm (original 100 mm → new 95 mm) so as to reduce the lowest frequency. The size of the coupler was decided to be five times larger than the model coupler, that is, the margin of the coupling size is about 50%. The results of the model test are being considered in the design of the actual resonator which is now under construction.

References
Status of the SRC for the RIKEN RI Beam Factory

The layout of the SRC (Superconducting Ring Cyclotron) has been changed from the previous design, as shown in Fig. 1. The changes are as follows.

1. Injection and extraction are carried out in the same valley chamber.
2. An electrostatic inflexion channel (EIC) and an electrostatic deflection channel (EDC) are set in opposite valley chambers, so that the injection beam does not pass through holes of both channels but only the hole of EIC.
3. The flat-top resonator is placed beside one of the four acceleration resonators in the same valley chamber.

Fabrication of the prototype sector magnet is continuing. As of December 1999, both the upper and lower cold masses, including main coils, trim coils and poles, have been completed. Figure 2 shows a photograph of the upper and lower cold masses that have been preliminarily assembled. The cryostat is nearly complete and the assembly of the cold masses in the cryostat is about to start. Lower and side yokes have been installed at the factory test site. Scheduling of a test of the prototype sector magnet has been delayed due mainly to the electrical shorts in the main coil; a cool-down test of the entire system, as well as the measurement of magnetic fields, has been rescheduled to take place by the summer of 2000.
We encountered some serious problem in the course of the fabrication of the prototype sector magnet; electrical shorts were found in both the upper and lower main coils when the coil winding was almost completed, as well as in the trim coil. For details, see Ref. 1. We have made a major change in the method of fixing the main coil vessel to the pole of the prototype sector magnet. The "hooks" anchoring the main coil vessel to the pole in the upper cold mass have been replaced by two connecting plates covering the surfaces of the pole, as shown in Fig. 3.

The second international technical advisory committee (TAC) for the review of the sector magnet was held in May 1999.

Design and/or R&D of other components of the SRC, such as a superconducting injection channel and an rf resonator, are also being carried out. A prototype of superconducting inflection channel MIC2 is being fabricated, and will be tested in the prototype sector magnet. A 1/5-scale model of the resonator for the IRC, which is quite similar to that of the SRC, was fabricated and tested. A coaxial rf resonator has also been produced in order to develop rf contacts that can endure high current density.

References
Development and Construction of the SRC Sector Magnets

Six superconducting sector magnets\(^1\) are to be incorporated into the superconducting ring cyclotron (SRC)\(^2\) for the RIKEN RI beam factory. A full-scale prototype magnet\(^3\) is currently under construction. The construction status of the prototype at December 1999 is as follows: Two sets of the superconducting main and trim coils were completed; the vacuum vessel was completed; the 80 K thermal shield is under production; 14 sets of the thermal insulating support rods for fixing the coil position were completed; a group of sliced plates for the yoke, with a total weight of 730 tons, was completed and is now being assembled at a cold test facility. The assembly and the cooling/excitation test of the prototype will be completed in the spring and summer of 2000, respectively.

During prototype construction, we experienced some problems. The first problem was the occurrence of electric turn-shorts in the main coils. In the lower main coil, turn-shorts were found at 12 points after the closing of the bolt-type vessel.\(^3\) Uncoiling of the shorted lower coil and rewinding using the same superconducting wire were adopted as a remedy. As a result, it took another four months to obtain a satisfactory coil. Upon the uncoiling, all of the turn-shorts were observed in both turn-transition and layer-transition regions shown in Fig. 1. We concluded that the turn-shorts occurred because of the following causes. (1) The transition regions of the wire, initially formed into the designed shape by a forming tool, were stretched and deformed by winding tension. (2) The local coil size at the transition regions became larger than the size at the normal region due to the unmatched transition shape. (3) Coil pressing of the lower coil was carried out so as to obtain the same coil size. Thus, the transition regions were over pressed and some of the transition regions made the turn-shorts. The improved items applied to the lower coil are as follows. (1) The transition regions of the wire were initially over formed with a change of the forming tool shape, so as to be of the designed shape after the application of winding tension. (2) The winding tension was decreased from 260 kg to 170 kg. (3) The electric insulation of the transition regions was reinforced. (4) A continuous electric inspection was performed during the entire winding process. These improvements should be applied to the serial production of the SRC sector magnets.

In addition to those in the main coils, turn-shorts were found at two points in the upper coil after the final welding of the upper coil vessel. The upper coil was wound by a different company than the lower coils. The shorts were also located in the transition regions. The repair of the shorts was carried out by inserting additional insulating film between the shorted turns through two holes which were drilled in the coil vessel for the repair.

The second problem was regarding the structure design of the weld-type upper coil vessel. The maximum stress at the “Hook-connection”\(^3\) in the cold-pole was calculated to be 370 MPa against the main coil’s electromagnetic force. On the other hand, the measured result of the fatigue strength of pure iron which was used as the cold-pole material, showed the minimum strength to be 510 MPa after 10000 cycles of load at 78 K. The safety factor of 510/370 = 1.34 was much less than our criterion of 2.0. After some studies and discussions, the connection structure of the prototype was finally changed to the “Connecting-plate” shown in the figure of Ref. 4.

The third problem was again turn-shorts, this time in a trim coil. These shorts were caused by the me-

Fig. 1. Schematic drawing of the transition regions in the main coil winding.

Fig. 2. The proto-trim-coil vessel after the closing weld. The numerous circular marks indicate the stay-rod welds.
Fig. 3. The three-sector arrangement of the 1/6-scale test magnets for the magnetic force measurement.

Mechanical deformation of the trim coil vessel due to the stay-rod welds shown in Fig. 2. Many turn-shorts were found in one of the six sub-coils. In the end, this one sub-coil was electrically bypassed to allow the use of the five sound sub-coils. As the basic improvement for this problem has not yet been applied to the proto-trim-coil, the solution should be studied before the manufacture of the SRC sector magnets.

Other R&D works are mainly as follows.

(1) Measurement of the unbalanced magnetic forces
Three sets of 1/6-scale Cu/Iron magnets were fabricated, and the unbalanced magnetic forces between the coil/pole and yoke were measured in both one-sector and three-sector arrangements. Figure 3 shows a photograph of the three-sector arrangement. These test magnets were cooled to 78 K and excited in pulse for 1 to 2 seconds. The maximum magnetic field reached 4.0 T, which corresponds to 90% of the maximum value of the actual superconducting sector magnet. The measured results can be converted to the value for the full-scale magnet by using a scaling law. Table 1 shows the converted values in comparison with the calculated ones.

(2) Estimation of the eddy current loss in the cold-pole
For the study of the thermal effects on the helium cooling system, the eddy current loss in the cold-pole at the time of magnetic field change was estimated. The electric resistance of pure iron was measured at 4.2 K in 0 to 4 T, and a value of 1.0×10^{-8} to 1.2×10^{-8} Ohm-m was obtained as the specific resistance. Using this resistance number, the eddy current losses under two conditions were calculated. In the case of current ramping from 0 A to 5000 A (corresponding to 4.5 T) in 2 hours, the average eddy current loss was calculated to be 22 W per magnet. Also, in the case of current break with a time constant of 52 seconds for emergency safety operation at the magnet failures such as coil quench, the total loss during the current break was calculated to be 4 MJ per magnet. This value corresponds to 6% of the total magnetic stored energy of 65 MJ. These estimated values are not thought to be a cause of serious problems for the helium cooling system.

Table 1. Comparison of the calculated and measured results of the unbalanced magnetic forces at 6 MA/magnet in the case without trim coils.

<table>
<thead>
<tr>
<th>Direction</th>
<th>Arrangement</th>
<th>Calculated</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial</td>
<td>1-sector</td>
<td>-56 tons</td>
<td>-30 at 4.5 MA *1</td>
</tr>
<tr>
<td>Radial</td>
<td>3-sector</td>
<td>Not calculated</td>
<td>37 tons</td>
</tr>
<tr>
<td>Radial</td>
<td>6-sector</td>
<td>100 tons</td>
<td>72 tons *2</td>
</tr>
<tr>
<td>Vertical</td>
<td>1-sector</td>
<td>7 to 12 tons/mm</td>
<td>8 tons/mm *3</td>
</tr>
<tr>
<td>Azimuthal</td>
<td>1-sector</td>
<td>Not calculated</td>
<td>-0.8 ton/mm *3</td>
</tr>
<tr>
<td>Azimuthal</td>
<td>3-sector</td>
<td>Not calculated</td>
<td>-0.15 ton/mm *3</td>
</tr>
</tbody>
</table>

*1 The maximum occurred at 4.5 MA in the measurement.
*2 This is an estimated value from the three-sector measurement.
*3 Plus indicates decentering and minus recentering force.

References
Quench Analysis of Stagnant Normal Zone in the RIKEN Prototype Sector Magnet

J.-W. Kim, A. Goto, and Y. Yano

The prototype sector magnet under construction at RIKEN is designed to be cryostable with cooling by pool boiling. However, a quench may occur when conditions for cryostability is not met in the actual coil vessel. A likely quench scenario in a cryostable coil, besides accidents and unexpected quenches, is that heat generation larger than critical quench energy initiates a quench in a poorly cooled region where a section of conductor is exposed to helium vapor.

The effects of existence of uncooled conductor were studied using the one-dimensional heat diffusion equation. It is assumed that a normal conducting region is initiated in the $2L$ long section of uncooled conductor, and that the initial normal conducting region has no cooling throughout the quench propagation. The equation has a symmetry point at zero of the x-coordinate along the conductor length as given by

$$C(T)A \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(K(T)A \frac{\partial T}{\partial x} \right) + i(T)^2 \rho(x, T), \quad x < L, \quad (1)$$

$$C(T)A \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(K(T)A \frac{\partial T}{\partial x} \right) + i(T)^2 \rho(x, T) - h(T)(T - T_b), \quad x > L, \quad (2)$$

where $C(T)$ is the specific heat of conductor, $K(T)$ is the thermal conductivity, A is the cross sectional area, $\rho(x, T)$ is the resistivity, $h(T)$ is the heat transfer coefficient between the conductor and LHe, and T_b is the LHe bath temperature. The temperature distribution corresponding to a normal conducting domain is plotted in Fig. 1. It is prescribed in the ohmic heating term $i(T)^2 \rho(x, T)$ that the sharing of current in the temperature range between T_b and conductor critical temperature T_c is linear with temperature.1) The heat transfer is thought to be static because of the slow propagation of normal conducting region in the pool-boiling coil.

Because the cooling can deteriorate also in the regions outside the initially uncooled section, degradation of the cooling was taken into account by adapting cooling efficiency (ε) to the heat transfer term as $\varepsilon h(T)(T - T_b)$. The resultant partial differential equations were solved using the NAG Fortran Library employing a finite difference method.

There is a minimum uncooled length of the conductor, beyond which a normal conducting region can propagate at small perturbations, i.e. in the order of 10^4 J/m3 for the conductor of the prototype magnet. Critical lengths of the uncooled conductor (L_c) were calculated as a function of ε at the maximum excitation with a current of 5 kA as shown in Fig. 2. If the uncooled section is shorter than the critical length, minimum quench energies are appreciably high, so that quench is normally unexpected. When L is shorter than L_c, T_m’s are plotted in Fig. 3 for two given cooling efficiencies 1 and 0.5. The minimum quench energies are in the order of one hundred J, and the energy densities are over 10^6 J/m3, which are considered sufficiently large for the coil to be cryostable.

Figure 4 shows quench propagation initiated from a section of the uncooled conductor slightly longer than L_c. The cooling efficiency is set to be 0.5. It is clearly shown that the normal zone propagates slowly, namely a growing stagnant-zone is established. Part of the conductor is then overheated. Quench detection using

Fig. 1. Temperature distribution in a normal conducting domain used for the heat diffusion equation.

Fig. 2. Critical lengths of the uncooled conductor versus cooling efficiency.
Fig. 3. Temperature at the center of the normal conducting zone as a function of uncooled conductor length, when L is shorter than L_e, for two different cooling efficiencies.

Voltage taps cannot be facilitated in this case because of low levels of resistive voltage drop. For the prototype it appears that the supports and insulators laid in the coil vessel are configured to avoid a wide-range bubble trap.

Fig. 4. Propagation of the normal conducting zone when L is slightly longer than L_e. Temperature distributions are plotted along the conductor length at different times: $t_1 = 20$ s, $t_2 = 40$ s, and $t_3 = 60$ s.

References
Analysis of the Injection and Extraction Systems for the RIKEN Superconducting Ring Cyclotron

S. Fujishima, H. Okuno, A. Goto, and Y. Yano

Design of the injection and extraction systems for the RIKEN Superconducting Ring Cyclotron (SRC) is in progress. The purpose of the present analysis is the optimization of the layouts and specifications of the injection and extraction elements of the SRC. In the analysis, a lot of care was taken especially to minimize not only the required fields of the elements but also the differences between the trajectories in the elements.

The sector magnets of the SRC generate strong field of 4.3 T at the maximum, and also generate a stray field in the valley originated from saturation of the iron yokes. This stray field gets up to -0.6 T at the maximum and depends non-linearly on the magnetic rigidities of the beams. Thus, the trajectories of various beams differ considerably from each other. Large difference between the trajectories requires wide bore of the element. Besides, the injection and extraction elements should be installed in a small space limited with the vacuum chambers of the sector magnets. Because of the space limitation and high rigidity of the beam, the injection and extraction elements should generate considerably high fields. These difficulties make the design of the injection and extraction systems quite challenging.

Table 1 shows the energies and magnetic rigidities of three typical beams. The beam of 16O$^{7+}$ (1) has the lowest magnetic rigidity. On the other hand, the beam of 238U$^{58+}$ has the highest one. Between these two beams, the difference of trajectories is most remarkable. The beam of 16O$^{7+}$ (2) requires the highest electrostatic fields of the electrostatic channels.

In the first stage of the analysis, magnetic fields of the sector magnets were calculated with a three-dimensional computer code, "TOSCA". However, the design of the normal-conducting trim coils of the sector magnets has not been optimized perfectly, so the calculated fields of the sector magnets include about

<table>
<thead>
<tr>
<th>Beam</th>
<th>Energy [MeV/u]</th>
<th>B ρ [Tm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>16O$^{7+}$ (1)</td>
<td>74.2</td>
<td>200</td>
</tr>
<tr>
<td>16O$^{7+}$ (2)</td>
<td>126.7</td>
<td>400</td>
</tr>
<tr>
<td>238U$^{58+}$</td>
<td>58.0</td>
<td>150</td>
</tr>
</tbody>
</table>

Fig. 1. Schematic layout of the elements and trajectories of two typical beams.
Table 2. Specifications of the injection and extraction elements.

<table>
<thead>
<tr>
<th></th>
<th>Radius [cm]</th>
<th>Angle [deg.]</th>
<th>Length [cm]</th>
<th>B or E (max.) [T],[kV/cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIC</td>
<td>928~3217</td>
<td>variable</td>
<td>101.7</td>
<td>100</td>
</tr>
<tr>
<td>MIC1</td>
<td>112.7</td>
<td>45.5</td>
<td>89.5</td>
<td>0.30 (Normal)</td>
</tr>
<tr>
<td>MIC2</td>
<td>95.6</td>
<td>69.3</td>
<td>115.5</td>
<td>1.12 (Super)</td>
</tr>
<tr>
<td>BM1</td>
<td>117.0</td>
<td>49.0</td>
<td>100.1</td>
<td>4.70 (Super)</td>
</tr>
<tr>
<td>BM2</td>
<td>117.0</td>
<td>49.0</td>
<td>100.1</td>
<td>4.40 (Super)</td>
</tr>
<tr>
<td>BM3 straight</td>
<td>-</td>
<td>-</td>
<td>49.6</td>
<td>0.25 (Super)</td>
</tr>
<tr>
<td>BM4 straight</td>
<td>-</td>
<td>-</td>
<td>49.6</td>
<td>1.36 (Super)</td>
</tr>
<tr>
<td>BM5 straight</td>
<td>-</td>
<td>-</td>
<td>49.6</td>
<td>0.90 (Super)</td>
</tr>
<tr>
<td>BM6 straight</td>
<td>-</td>
<td>-</td>
<td>49.6</td>
<td>1.00 (Super)</td>
</tr>
<tr>
<td>EDC</td>
<td>1578~3611</td>
<td>variable</td>
<td>212.5</td>
<td>-105</td>
</tr>
<tr>
<td>MDC1</td>
<td>185.0</td>
<td>37.0</td>
<td>119.5</td>
<td>-0.15 (Normal)</td>
</tr>
<tr>
<td>MDC2</td>
<td>190.0</td>
<td>39.0</td>
<td>129.3</td>
<td>-0.27 (Normal)</td>
</tr>
<tr>
<td>MDC3</td>
<td>203.5</td>
<td>36.8</td>
<td>130.7</td>
<td>-0.51 (Normal)</td>
</tr>
<tr>
<td>EBM1</td>
<td>169.4</td>
<td>17.7</td>
<td>52.3</td>
<td>-4.00 (Super)</td>
</tr>
<tr>
<td>EBM2</td>
<td>152.4</td>
<td>39.1</td>
<td>104.0</td>
<td>-4.54 (Super)</td>
</tr>
</tbody>
</table>

0.3% error. Error of the field causes position error to the injection and extraction trajectories. To correct relative position error of the trajectories, the energies of the injection or extraction beams were slightly changed as the length of the first or the last equilibrium orbits become equal to the design value, respectively. And then, to trace the beam trajectories, the equation of motion was solved with using the Runge-Kutta-Gill method. In the calculation, the electric or magnetic field of each element was superimposed on the field of the sector magnets.

Figure 1 shows a schematic layout of the injection and extraction elements, and shows the trajectories of two typical beams of 16O$^{7+}$ (1) and 238U$^{58+}$. This layout has not been optimized completely, so it may be modified partly. Because of the stray field in the valley, two trajectories differ considerably from each other. The injection system consists of six bending magnets (BM1–BM6), two magnetic inflection channels (MIC1 and MIC2), and an electrostatic inflection channel (EIC). The extraction system consists of two bending magnets (EBM1 and EBM2), three magnetic deflection channels (MDC1, MDC2 and MDC3), and an electrostatic deflection channel (EDC). All MICs and all MDCs are installed between upper and lower coils of the sector magnets. The injection beams are introduced crossing the EIC, so that the EIC has a hole to pass the beams. To minimize the hole diameter, each trajectory was adjusted to cross at the same point on the electrode of the EIC.

Table 2 shows the specifications of the injection and extraction elements. The MIC1 and all MDCs consist of normal-conducting coils. The MIC2, all BMs and all EBMbs consist of superconducting coils. The BM1 and BM2 have identical structure and size to reduce fabrication costs. For the same reason, the BM3, BM4, BM5 and BM6 are identical. Each magnetic element consists of main dipole coils and compensation coils to suppress the fringe field on the first or the last equilibrium orbits. Gradient-field-coils are additionally built in the MIC2, BM1 and BM2 to adjust the injection beam envelopes. The length of each element was determined in consideration of the balance between the difference of the trajectories in the element and the required field of the element. Table 3 shows the differences of the trajectories and bores in the elements.

Table 3. Differences of the trajectories and bores in the elements.

<table>
<thead>
<tr>
<th></th>
<th>Difference [mm]</th>
<th>Bore [mm] verti. X horiz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIC (movable)</td>
<td>61</td>
<td>12 (horiz.)</td>
</tr>
<tr>
<td>MIC1</td>
<td>5</td>
<td>30 \times 35</td>
</tr>
<tr>
<td>MIC2 \sim BM2</td>
<td>\approx 13</td>
<td>30 \times 40</td>
</tr>
<tr>
<td>BM3 \sim BM6</td>
<td>\leq 70</td>
<td>30 \times 100</td>
</tr>
<tr>
<td>EDC (movable)</td>
<td>75</td>
<td>12 (horiz.)</td>
</tr>
<tr>
<td>MDC1 \sim EBM2</td>
<td>\approx 13</td>
<td>30 \times 40</td>
</tr>
</tbody>
</table>

References
A six-sectored superconducting ring cyclotron (SRC) is designed to boost the energy of the ion beams available from the Intermediate Ring Cyclotron (IRC).1) The extraction energies of the SRC beams will be 400 MeV/nucleon for light ions such as carbon and 150 MeV/nucleon for heavy ions such as uranium with an intensity of 1 pA. Figure 1 shows the trajectories of injected and extracted beams in the SRC consisting of six sector magnets2) and four acceleration resonators.3) Among the elements of the injection and extraction systems, the MIC2, BM1-2, EBM1-2 are difficult to design and further research and development are required, because their coils are curved very tightly and the required fields in the coils are as high as 6 T and because the spaces for the installation are limited. In this report, the plan and status of R&D for the MIC2 is described.

The main parameters of the MIC2 are listed in Table 1. It needs to generate a magnetic field of about 1 T on the base field of 4 T of the sector magnet, along the beam trajectory, which is curved with a curvature of about 1 m. Figure 2 shows the proposed cross section and 3D-view of the coil structure. Six current sheets (center coils and half of side coils) located close to the beam axis generate a magnetic field in the beam bore, and the other two current sheets (half of side coils) generate a field that cancels the fringe field from the six current sheets. Such configurations of the current sheets can realise the structure of coils that need not be bent up at the ends of the channel, which makes coil winding and coil supporting easier. The overall current density is required to be about 150 A/mm2 to achieve the required field for the MIC2. Rectangular monolithic (0.8 mm x 2.4 mm) wire was adopted for well-aligned winding. The conductor was coated with polyimide of 50 μm in thickness for electrical insulation. Polyimide was adopted because of its strength against radiation.

Coil winding is one of the key problems for the MIC2 production because the coils of the MIC2 have negative curvature, which cannot be wound with any tension. The winding method shown in Fig. 3 was adopted. In
the first step, the coil is wound into a shape with tension, which has no negative curvature. The circumference of the coil should be the same as that of the final shape of the MIC2 coil. After winding of one layer, the layer is pushed to the mandrel to form the proper shape of the coil. The merit of the method is that the time required for winding can be shortened without a decrease in performance. The coils are mainly supported in the horizontal and vertical directions with a pair of continuous clamps and bolts, respectively. The prestress required to maintain the coil compression when the magnet is excited is provided by set-screw bolts, a nut at the end of the set-screw bolt and vertical bolts as shown in Fig. 4. The support structure was adopted since so many zigs are not necessary to press the coils. Ti will be used for the inner mandrel of the center coil to decrease the degradation of the stress of the coil.

Two coils which simulate the center coils of the MIC2 were produced and are being tested. Their coil size, winding method/winding structure, support structure were designed to be as close as possible to those of the real one. The coils are tested in the field generated with a bias split coil in order to simulate the real operation as shown in Fig. 5. Table 2 shows a brief preliminary result for the first coil which was already tested. The result is promising because the quench current is fairly larger than the operational current. Fabrication and tests of the other coil are in progress.

Table 2. Preliminary results of the test of the first test coil for the MIC2. The operational condition is also indicated in the last column.

<table>
<thead>
<tr>
<th>No.</th>
<th>Bias Field (T)</th>
<th>Current (A)</th>
<th>Field in the Coil (T)</th>
<th>Overall (A/mm²)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>500</td>
<td>2.7</td>
<td>222</td>
<td>No Quench</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>500</td>
<td>4.5</td>
<td>222</td>
<td>No Quench</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>460</td>
<td>6.2</td>
<td>204</td>
<td>Quench</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>590</td>
<td>6.7</td>
<td>244</td>
<td>No Quench</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>800</td>
<td>4.2</td>
<td>356</td>
<td>No Quench</td>
</tr>
<tr>
<td>Operation 4</td>
<td>340</td>
<td>6.5</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References
A superconducting ring cyclotron (SRC) is to be built in the RIKEN RI-Beam Factory Project as one of the post accelerators of the existing KS40 ring cyclotron. The SRC is designed to have a K-value of 2500 MeV, and consists of six superconducting sector magnets. The cold part of each sector magnet consists of superconducting main coils, cold poles and superconducting trim coils, which are installed in a single cryostat. The superconducting active shield coils of a Helmholtz coil type will be installed outside of the SRC to decrease leakage of magnetic fields produced by the SRC. Figure 1 shows a plane view of the SRC and active shield coils, together with the injection and extraction systems.

The injection system of the SRC consists of five bending magnets (BM1, BM2, BM3, BM4, and BM5), two magnetic inflection channels (MIC1 and MIC2) and an electrostatic inflection channel (EIC). The extraction system consists of two bending magnets (EBM1 and EBM2), three magnetic deflection channels (MDC1, MDC2 and MDC3) and an electrostatic deflection channel (EDC). Five magnets in the injection system (MIC2, BM1, BM2, BM3, BM4, and BM5) and two magnets in the extraction system (EBM1 and EBM2) are superconducting.

Figure 2 shows a cooling system for the SRC and active shield coils. The cooling system will be a closed-circuit system without liquid nitrogen. It consists of a refrigerator, the cryostat of the SRC and the active shield coils, three compressors and five buffer tanks.

The refrigerator has a capacity of 850 W for the cooling of cold mass at 4.5 K, and 5000 W for the cooling of thermal shields at 70 K. The cooling capacity
for current leads is 70 l/h. The coil vessels which accommodate the main and trim coils are mechanically designed assuming a maximum pressure of 0.5 MPa. The cold mass weight of the six sector magnets is 360 tons. It will take 45 days to cool them from room temperature to 4.5 K. Three compressors will be operated in this case. After the cooling is finished, one of the three compressors will be stopped and maintained as a standby. Each buffer tank has a volume of 100 m3 and is connected through air valves to the compressors and the recovery tube line, as shown in Fig. 2. A recovery tube line will be used to introduce evaporated helium gas into the buffer tanks if an electric power failure suddenly happens. The active shield coils will be cooled down to 4.5 K by the forced cooling method, in which supercritical helium with a pressure of 1.2 MPa is used.

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Sector magnets and active shield coils</th>
<th>Injection and extraction systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coils at 4.5 K (W)</td>
<td>850</td>
<td>160</td>
</tr>
<tr>
<td>Thermal shield at 70 K (W)</td>
<td>5000</td>
<td>1000</td>
</tr>
<tr>
<td>Current lead (l/h)</td>
<td>70</td>
<td>12</td>
</tr>
</tbody>
</table>

The coil vessels of superconducting magnets in the injection and extraction systems will be designed assuming a maximum pressure of 0.3 MPa. Because the maximum pressure and the cooled volume of the magnets are small compared with those of the SRC, another cooling system will be used for the injection and extraction systems. Figure 3 shows the cooling system for the injection and extraction systems. The cooling system consists of a refrigerator, the cryostat of the magnets, a compressor and two buffer tanks. The refrigerator has a capacity of 160 W for cooling at 4.5 K, and 1000 W for the cooling of thermal shields at 70 K. The cooling capacity for current leads is 12 l/h. Each buffer tank has a volume of 50 m3 and is connected through air valves to the compressor and the recovery tube line. The cooling capacities of the refrigerator for the sector magnets and active shield coils, and the injection and extraction systems are listed in Table 1.

References
Design of the RIKEN-SRC* RF System

N. Sakamoto, O. Kamigaito, A. Goto, Y. Miyazawa, T. Chiba, H. Okuno, T. Mitumoto, and Y. Yano

For the RIKEN RI-Beam Factory (RIBF) the new booster ring cyclotrons, the Intermediate-Stage Ring Cyclotron (IRC) and the superconducting Ring Cyclotron (SRC), are planned to be constructed to boost the energy of heavy-ion beams from the RIKEN Ring Cyclotron (RRC) to the intermediate energy region of 60-400 MeV/\(\mu\)A with a beam intensity of 1 \(p\mu A\).

The SRC requires acceleration resonators with a wide frequency range from 18 to 38.2 MHz to suit the condition of the RRC operation. The maximum magnetic field of the SRC sector magnet is as large as 4.2 T. Because of the strong magnetic field, a high acceleration voltage is also required in order to obtain a large turn separation. A large turn separation at the extraction orbit is crucial to reduce the beam losses at the extraction devices. For example, in the case of \(^{16}\)O\(^{7+}\) ion acceleration up to the maximum energy of 400 MeV/\(\mu\)A at the rf frequency of 38.2 MHz with a harmonic number \(h = 6\), an acceleration voltage of 2.4 MV/turn is required to obtain a turn separation larger than 4 mm at the extraction orbit.

A flat-top system is also helpful in reducing the beam losses at the extraction because the energy spread of the accelerated beam can be reduced by flat-top acceleration. The phase acceptance \(\Delta \phi\), which is defined by \(|V(\Delta \phi)/V(\phi = 0)\| \leq 10^{-4}\), for non-flat-top acceleration and flat-top acceleration are \(\pm 0.81^\circ\) and \(\pm 7.3^\circ\), respectively.

In order to realize a large turn separation, four acceleration resonators are employed. The peak voltage of the resonators is set to be 600 kV/gap at the highest frequency operation. One flat-top resonator with the third-harmonic of the acceleration resonator is employed and its peak voltage is set to be about 11% of the acceleration voltage.

The key parameters of the present design of the resonators are listed in Table 1. Since the location of the flat-top resonator has been moved from the center region of the valley chamber to next to the acceleration resonator (see Fig. 1), a new design of the flat-top resonator has been introduced. The dimensions of the accelerator resonator have also been rearranged.

For the flat-top system the third-, fourth-, and fifth-harmonics are used. This is helpful for the mechanical design of the flat-top resonator because the frequency range becomes narrower. The frequency range of the new flat-top resonator is 85.97-114.6 MHz instead of 54.0-114.6 MHz which is for the third-harmonic system. The phase acceptances of the fourth- and the fifth-harmonic flat-top system (Fig. 2) are sufficiently large to accept the beam from the RRC.

The acceleration resonator is a single-gap type whose structure is basically the same as that of the RCNP ring cyclotron (RCNP-RC). The resonant frequency

| Table 1. Key parameters of the acceleration and the flat-top resonator for the SRC. |
|---------------------------------|-----------------|-----------------|
| resonators | accel. | flat-top |
| No. of units | 4 | 1 |
| Frequency [MHz] | 18-38.2 | 85.97-114.6 |
| Acc. gap | 250 | 120 |
| Aperture [mm x mm] | \(60^H\) \times \(2240^W\) | \(60^H\) \times \(1975^W\) |
| Coarse tuner | flapping panel | shorting plate |
| Tuner stroke | 0-90° | 500-1100 mm |
| Trimmer | block tuner | - |
| Feeder | inductive loop | - |
| Max.\(V_p \) [MV/gap] | 0.6 | 0.36 |
| Voltage stability | \(10^{-4}\) | \(10^{-3}\) |
| Phase stability | \(\pm 0.1^\circ\) | \(\pm 0.3^\circ\) |
| Max. power [kW] | 81 | 43 |
| Q-values | 37000 | 25000 |

* Superconducting Ring Cyclotron
is tuned by adjusting two flapping panels which are placed symmetrically to the median plane.

The rf characteristics of the acceleration resonator are calculated at the flapping panel positions of 0° and 90° by MAFIA, as shown in Table 2. Since the Q-value and the shunt-impedance of the actual resonator are expected to be 60–70% of the theoretical values, the maximum rf power dissipation of the actual resonator is estimated to be 115–135 kW. The calculated current density at the sliding contacts (see Fig. 3) is less than 60 A/cm.

The new design of the flat-top resonator for the SRC is shown in Fig. 2. Resonant frequency tuning is achieved by moving the shorting plates which are placed symmetrically with the median plane. By utilizing the multi-harmonic numbers of 3, 4, and 5, the required frequency range becomes 85.97–114.6 MHz. As shown in Fig. 4, the frequency range is successfully covered by moving the shorting plate from 500 to 100 mm with large Q-values (Fig. 5). The maximum wall loss is estimated to be 85 kW if the Q-value of the actual resonator is 50% of the theoretical value.

The main parameters of the rf amplifiers are listed in Table 3. The design of the final stage amplifier for the acceleration resonator is the same as that of the RRC. Since the transmitter tubes do not function in the strong magnetic field, the amplifiers are to be placed where the leakage field of the SRC sector magnets becomes smaller than 50 Gauss. The length of the power transmission lines is estimated to be 50 m.

Table 2. The calculated rf characteristics of the acceleration resonator obtained by MAFIA.

<table>
<thead>
<tr>
<th>Flapping Panel</th>
<th>Frequency [MHz]</th>
<th>Q-value</th>
<th>Rs [MΩ]</th>
<th>Vp [kV]</th>
<th>Pw [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>17.474</td>
<td>28200</td>
<td>0.63</td>
<td>250</td>
<td>50</td>
</tr>
<tr>
<td>90°</td>
<td>38.607</td>
<td>36649</td>
<td>2.23</td>
<td>600</td>
<td>81</td>
</tr>
</tbody>
</table>

Table 3. Characteristics of the RF amplifier.

<table>
<thead>
<tr>
<th>Frequency [MHz]</th>
<th>Wide band amp. [kW]</th>
<th>2nd stage</th>
<th>Output power [kW]</th>
<th>Final stage</th>
<th>Output power [kW]</th>
<th>Trans. line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RS2012CJ</td>
<td>15</td>
<td>RS2042SK</td>
<td>300</td>
<td>WX152D/50G</td>
</tr>
</tbody>
</table>

References
Vacuum System for the RIKEN Superconducting Ring Cyclotron

K. Sugii, K. Ikegami, S. Yokouchi, A. Goto, and Y. Yano

Beam transmissions are aimed to be above 99% for all ion beams available in the RIKEN Superconducting Ring Cyclotron (SRC). We have estimated the required pressure of the beam chamber on the basis of the relationships between pressure and beam loss which is caused by a change in the charge state of the beam due to collisions with residual gas. As an example, Fig. 1 shows the beam transmission of $^{238}\text{U}^{58+}$ ions as a function of pressure of the beam chamber, since the charge-exchange cross section of heavy ions such as $^{238}\text{U}^{58+}$ is very large. As can be seen from Fig. 1, the required pressure should be below 1×10^{-5} Pa in order to achieve the goal of 99% beam transmission.

The vacuum chamber of the SRC consists of six beam chambers each in the sector magnet, four RF resonators, a flattop resonator, two valley chambers, and beam pipes for injection and extraction (see Fig. 2). Table 1 gives the total volume of the vacuum chamber and the surface areas of the main materials in the vacuum chamber. We plan to use 18 cryopumps with a total pumping speed of 170 m3/s as the main pumping system in order to achieve the required range of pressure as quickly as possible.

Figure 3 shows the design of the pumping system for the vacuum chamber of the SRC. The pumping system consists of a roughing system, a high-vacuum system, an ultrahigh-vacuum system and a differential pumping system. The surface areas of the RF resonators and the flattop resonator are very large, since the resonators have a duplicated wall structure same as the IRC resonators; copper plates with a thickness of approximately 4 mm are located on 25 mm away from the stainless steel vacuum walls. We plan to evacuate the gas in the subvacuum space between the vacuum walls and the copper plates by a differential pumping system in order to reduce the gas load for the cryopumps. Therefore, it is necessary to minimize the leak rate from the subvacuum space to the ultrahigh-vacuum space. The roughing system is composed of a roots pump of 2600 m3/h and a rotary pump of 290 m3/h, and is installed at each valley chamber. The high-vacuum system is composed of a turbomolecular pump of 5.5 m3/s and a rotary pump of 155 m3/h. This high-vacuum system is installed at each RF resonator. The high-throughput-type turbomolecular pump will be used for the following reasons: (1) to shorten the pumping time prior to the ultrahigh-vacuum system by switching from the roughing system to the high-vacuum system at a high pressure (about 70 Pa), and (2) to prevent the contamination in the RF resonator.
caused by the backflow of oil vapor from a rotary pump by the same switch. If the ultrahigh-vacuum system with cryopumps starts to operate at a pressure of 1×10^{-3} Pa, the total pumping time required to reduce the atmospheric pressure to 1×10^{-3} Pa using the roughing pump and the turbomolecular pump is calculated to be approximately 22 hrs. The ultrahigh-vacuum system deploys 18 cryopumps: 16 of which are 10 m3/s and two of which are 5 m3/s. The 5 m3/s cryopumps are installed at the flattop resonator and the 10 m3/s cryopumps are distributed to the two valley chambers and each of the RF resonators. We chose cryopumps as the main pump for the ultrahigh-vacuum system, because they have high pumping speeds against the water vapor and hydrogen gas, both of which are the predominant residual gas components in an unbaked vacuum system. Furthermore, they can be operated even under a large environmental magnetic field. The total effective pumping speed of the cryopumps is approximately 75 m3/s. Considering this pumping speed and the published data for the outgassing rate of materials, the pumping-down time to achieve the order of 10^{-6} Pa is estimated to be a few hundred hrs.

The pressure in the vacuum chamber of the SRC will be measured with a nude-type hot ionization gauge during a nonoperation period of the SRC. During the SRC operation, a cold cathode gauge will be used, since a hot ionization gauge is impractical use due to a large leakage flux from the sector magnet. A cold cathode gauge is equipped with a permanent magnet, therefore, it is expected to be usable even in an external magnetic field. Measurement of pressure using a cold cathode gauge under an external magnetic field was reported. However, we also measured the influence of an external magnetic field on cold cathode gauges, because the pressure measurement is limited by a large leakage flux from the SRC magnet.

References
Influence of External Magnetic Field on the Performance of Cold Cathode Gauges

K. Sugii, K. Ikegami, M. Otake, S. Yokouchi, A. Goto, and Y. Yano

A Cold Cathode Gauge (CCG) is used to monitor the pressure of a vacuum chamber during the operation of the Superconducting Ring Cyclotron (SRC) sector magnet. To examine the effect of external magnetic fields on the performance of CCGs, an experiment using an electromagnet was carried out. Since the pressure required for the beam chamber of the SRC is estimated to be of the order of 10^{-6} Pa, the vacuum gauge used in the SRC beam chamber is required to have a minimum measuring range which is one order or more lower than the order of the required pressure. Therefore, we chose two types of CCGs available on the market, that is, (1) Balzers: IKR060 and (2) Leybold: PR36.

A schematic diagram of the experimental setup is shown in Fig. 1. Figure 2 shows a photograph of the CCG set in a magnet gap. Both CCGs were positioned in such a way that the direction of the magnetic fields generated by the permanent magnets coincided with those of the external magnetic fields. For testing in an external magnetic field with a gradient, the CCGs were placed around the pole edge. The gradient of the external magnetic field at that position was estimated to be about -0.74T/m at a uniform field of 1 T. The measurement was performed under the following four conditions: (1) without a permanent magnet in a uniform external magnetic field, (2) without a permanent magnet in a nonuniform external field, (3) with a permanent magnet in a uniform external field, and (4) with a permanent magnet in a nonuniform external field. For the measurement without a permanent magnet, the pressure at zero field was measured using a permanent magnet.

Figure 3 shows the changes in pressure as a function of the external magnetic field near IKR060 without a permanent magnet when the external field is uniform. The pressure increases as the external field increases in the case of a low initial pressure. Figure 4 shows the changes in pressure without a permanent magnet of both CCGs when the external field is not uniform. In the case of IKR060, the trend of change at pressures above 3×10^{-5} Pa is similar to that in the case of a uni-
form magnetic field. In the case of PR36, the change in pressure is larger than that for IKR060. The cause of this instability is thought to be due to the fact that the axis of PR36 was not exactly parallel to the lines of the external field; PR36 was located slightly away from the median plane of the magnet (see Fig. 2). Figures 5 and 6 show the changes in pressure as a function of the magnetic field near IKR060 with a permanent magnet. The results in the case of a uniform field are shown in Fig. 5. It can be seen from this figure that the pressure decreases suddenly in the range of 0–0.25 T and errors in measurement are observed when the pressure at zero field was above 10^{-5} Pa. The results in the case of a nonuniform field are shown in Fig. 6. It can be observed that the pattern of change in pressure is similar to that seen in Fig. 5.

We conclude that we can use CCGs to monitor the pressure of a vacuum chamber in leakage flux of the SRC sector magnet unless we wish to pursue a more precise measurement. It is recommended to use a CCG without a permanent magnet because the external magnetic field during SRC operation is expected to be below 0.3 T, in which range measurement using a CCG with a permanent magnet becomes erroneous for unknown reasons. Moreover, we must determine the cause of errors in measurements using a CCG without a permanent magnet when the external field is very small (0–0.1 T).

References
The beam transport system in the RI Beam Factory\(^1\) (RIBF) consists of four parts; one is a beam line from the RRC to the IRC. The maximum magnetic rigidity \(B_p\) required for the beam line is 2.94 Tm which corresponds to a 24.5-MeV/nucleon \(^{238}\text{U}^{58+}\) beam. The second is a beam line from the IRC to the SRC. The maximum \(B_p\) is 4.57 Tm corresponding to a 58.0-MeV/nucleon \(^{238}\text{U}^{58+}\) beam. The third is beam lines from the SRC to experimental halls through the Big-RIPS. The last one is a beam line that returns the beams accelerated by the IRC to the RARF. In this report, we will explain the present status of design studies on the beam line from the RRC to the IRC and that from the IRC to the SRC. The layout of the beam lines is illustrated in Fig. 1.

The beam line from the RRC to the IRC mainly consists of five bending magnets, eight quadrupole triplets, two quadrupole doublets and seven quadrupole singlets. In addition, there is another Q-doublet in the injection system of the IRC (QDI3). The functions required for the beam line are the dispersion matching, the matching of phase-space ellipses in the transverse direction (beam shaping) and the RF-phase matching.

For the dispersion matching, the bending magnet (BM1) in the injection system of the IRC is designed to produce the desired dispersion. The actual condition required for the beam line is to make a doubly achromatic beam immediately before the BM1. The spatial dispersion of the RRC beam is roughly 2.5 m at the Electric Deflection Channel (EDC). The angular dispersion is zero at the EDC. The 90-degrees bending magnet (BM90) in the E1 experimental hall makes a doubly achromatic beam (see Fig. 2). In addition, the section from the EDC to the QTE13 is an entirely doubly telescopic system. This enables us to perform an emittance measurement for a beam at the P1 point in the beam line. The momentum analysis will be also performed with the bending magnet BM90.

The beam shaping is carried out using four Q-singlets (QSI2-QSI5). To this end, the beam line is designed to have horizontal waists at the QSI2 and the QSI4, and to have vertical waists at the QSI3 and the QSI5. The section from the BM24-1 to the BM24-2 is doubly achromatic and matches the beam direction to the injection system of the IRC. The section from the BM30-1 to the BM30-2 is also doubly achromatic and lowers the beam line by 3 m. This vertically achromatic feature causes a beam to be defocused in the horizontal direction. To avoid the divergence of the beam, the Q-doublet QDI2 focuses the beam before this section.

We show the results of an ion-optical calculation in Fig. 2. The calculation was performed using the TRANSPORT code.\(^2\) The emittance of the beam is \(5\pi \text{ mm mrad}\) and the momentum spread is \(\pm 0.05\%\) in the present calculation. The assumed value of the emittance is based on the observation but depends on the actual beam tuning. For the momentum spread, here we use double the observed half-width. The maximum value of the quadrupole-filling factor is designed to be 50%.

With respect to the beam bunching, detailed investigations are necessary. The RF-phase width of the RRC is 10 degrees. On the contrary, the RF-phase acceptance of the IRC is 20 degrees because a flattop resonator is introduced. The first-order ion-optical calculation with \(\pm 0.05\%\) of the momentum spread predicts that the full width of the beam pulse at the Electric Inflection Channel (EIC) of the IRC is 24 degrees, which nearly corresponds to the RF-phase acceptance. Note that the assumed value of the momentum spread is double the observed half-width.

The functions required for the beam line from the IRC to the SRC are the dispersion matching and the beam shaping. The beam bunching is not necessary because the beam transport system is sufficiently short. The beam line consists of two bending magnets, seven Q-singlets and a Q-doublet. In addition, the injection...
system of the SRC has another Q-doublet. In the beam line, there are no sections that are doubly achromatic. Hence, the beam shaping and the dispersion matching couples mutually. The roles of the Q-magnets are as follows. The QSS1 changes the beam shape for both horizontal and vertical directions but has little effect on the dispersion. The QSS2 is very sensitive to the beam shaping in the horizontal direction. On the contrary, the QSS3 mainly changes the beam shape in the vertical direction. The QSS4 and the QSS6 are mainly used for the dispersion matching. Moreover, the first magnet of the QSD1 is important for both the beam shaping and the dispersion matching. By adjusting the six Q-magnets as mentioned above, the beam accelerated by the IRC is matched to the conditions in injecting to the SRC.

We show the result of an ion-optical calculation in Fig. 3. In this calculation, the matching conditions are given at the entrance of the BM2 magnet of the injection system of the SRC. From the BM2 to the EIC of the SRC, orbit calculations were performed. The assumed emittance of the beam is 3.3π mm mrad and the assumed momentum spread is ±0.05% in this calculation. The quadrupole-filling factor is less than 50% for this beam line. The dispersion (horizontal) calculated here is also shown in Fig. 3. It should be noted here that the matching conditions in the present calculation are given only for a 238U58+ beam that corresponds to the highest magnetic rigidity. In the area near the SRC, there exists the strong stray field from the sector magnets of the SRC that depends nonlinearly on the magnetic rigidity of the beam. In this sense, we need to study beams with low magnetic rigidity, even though the present design of the beam transport system is designed to match various conditions.

References
Design Study of Beam Transport Lines from SRC to Three Big RIPSs

K. Kusaka and T. Kubo

In the RI-Beam Factory (RIBF) project, energetic heavy-ion beams from the RIKEN superconducting ring cyclotron (SRC) will be delivered to projectile fragment separators, called Big RIPS, to produce RI beams. Constructions of three Big RIPSs are being planned. Two of them, called Big RIPS I and II, are dedicated to ordinary RI-beam experiments. The third Big RIPS will be for the Multi-USe Experimental Storage rings (MUSES), in which produced RI-beams are injected into the accumulator cooler ring (ACR). These three separators share the primary beams from SRC by means of time sharing. A design study of beam transport lines from SRC to Big RIPS's has been carried out, taking constraints of building layout and design of magnets into account.

In this design study, we consider the following time sharing system. Since ACR can accept short-pulsed beams with a small duty factor, we consider a kicker magnet (KM) to deliver primary beams to MUSES lines. A strong KM, which bends SRC beams by 7° at an orbit radius of 9 m in a period of ≈ 50 usec, is under consideration. The time sharing between Big RIPS I and II is designed to be realized by a fast pulse magnet (PM) with a ramping time of less than 50 msec. Its bending angle is 20° and the orbit radius is 5.5 m. R & D studies of these magnets are in progress. A high-field normal conducting bending magnet (HFBM) is also under consideration, since bending magnets with small orbit radii are indispensable for fitting the beam lines in a limited area of the new RIBF building. Although a superconducting magnet is possible, we prefer HFBM from the view point of cost and ease of operations. The maximum field of HFBM is assumed to be 2 T. A design study of HFBM has shown that it is possible to build such a high-field magnet with a good field uniformity of 10^{-4}.31

A possible layout of beam lines together with SRC and Big RIPS I is schematically shown in Fig. 1. Three quadrupole doublets (QDs) transport a primary beam from SRC to a bending magnet (BM). The BM changes the direction of the beam 30° making the beam achromatic together with two QDs, so that the beam focuses at the intermediate focus IF. A 60°-HFBM, together with two quadrupole triplets (QTs), transports the beam from IF to the KM. While the KM is excited, pulsed beams are delivered to the MUSES line. While the KM is off, on the other hand, an unkicked beam is transported to the pulsing magnet (PM). The PM, when excited, steers the beam to the beam line to the target T1 for Big RIPS I. The beam line after PM consists of QD—70°—HFBM—QT—QT. When the PM is off, the beam is delivered to a branch line to the target T2 for Big RIPS II which consists of QD—20°—BM—QD—70°—HFBM—QT—QT. The last QT pairs focus the beam on the targets T1 and T2. Both beam lines from IF to T1 and to T2 are achromatic point-to-point focusing. For the quadrupole multiplets, we have assumed two types of magnets. One has a 40 cm magnetic length and the others 75 cm. Figure 2 shows an example of calculated first order beam envelopes of these beam lines from the EBM2 exit to T1 and T2. The assumed beam is $^{238}\text{U}^{59+}$ with an energy of 150 MeV/u, emittance of $\varepsilon_x = \varepsilon_y = 5\pi$ mm mrad, and momentum spread of $\Delta p/p = \pm 0.05\%$. The calculated field gradients of quadrupoles are typically 10^{-15} Tim and the beam spot size on the target T1 and T2 is 1.2 mm in this case.

We have demonstrated that primary beams from SRC can be delivered to the three Big RIPSs by time sharing in the present floor-plan of the new RIBF building without introducing any superconducting magnet. Further optimization of the layout and magnet design is in progress.

Fig. 1. Schematic layout of the beam transport line from SRC to Big RIPSs.
Fig. 2. First-order beam envelope.

References
In this report, we describe the design of a high-field room-temperature dipole magnet to be used in the RIKEN RI-beam factory (RIBF) project.\(^1\)

In the RIBF project, heavy ion beams extracted from the superconducting ring cyclotron (SRC)\(^2\) are to be delivered to the target positions of BigRIPS (RIKEN projectile fragment separator)\(^3\) to produce RI beams. The beam transport lines between SRC and BigRIPS are being designed.\(^4\) According to the building layout for the project, the beam lines must be bent by a total of 150 degrees to reach the target positions. This bend is to be made using two dipole magnets, between which a number of quadrupole magnets, a kicker magnet, and a pulsing magnet are to be placed. The kicker and pulsing magnets are used for the time sharing of a primary beam.\(^4\) It is found that the limited space in the building makes it difficult to install these magnets, if the dipole magnets are designed to be conventional room-temperature magnets with the field strength of 1.5 to 1.6 T.\(^1\)

One solution to this problem is to build superconducting dipole magnets with high fields such as 3 T.\(^1\) In this case, although the fabrication cost is high, much more space becomes available, since the magnets become much smaller. Another solution is to build room-temperature iron-dominated dipole magnets with high fields. An optics design of the beam lines has shown that sufficient space becomes available if the field strength chosen is 2 T.\(^1\) The key points to be considered in this case are: (1) sufficiently good uniformity at such high fields, and (2) efficient water-cooling of magnet coils. We decided to examine the second solution, because not only can the room-temperature magnet be designed easily, but also it can be fabricated at a low cost, as compared with superconducting ones.

As for the type of dipole magnet, we chose the modified window-frame type as shown in Figs. 1 and 2, because a large space can be made available for the coils as compared with other types, hence facilitating the cooling, and it was expected that this type might have a good uniformity. We have developed the design by means of a two-dimensional field calculation, taking field uniformity into consideration. The coil cooling was also taken into account simultaneously. The calculation was carried out using the code OPERA-2d.

The modified window-frame-type dipole magnet has an inner coil and an outer coil as shown in Fig. 2. It was found in the course of designing that the field uniformity was sensitive to the coil geometry. Therefore, in the design we optimized the field uniformity by adjusting the horizontal and vertical dimensions of the coils, particularly those of the outer coil. The dimension of the hollow conductor as well as the horizontal and vertical turn numbers were adjusted in the optimization. The geometry of pole pieces such as chamfering of the side edge was also optimized. Figure 2 shows a cross-sectional view of a magnet thus optimized. Some basic parameters of the magnet are listed in Table 1. The inner and outer coils are connected in series, but consist of different conductors whose specifications are given in Table 1. The turn numbers per pole are 10 for the inner coil (horizontally, 5 and vertically, 2), and 60 for the outer coil (horizontally, 10 and vertically, 6). The nominal operation current is 723 A for 2 T. The coil cooling is divided into eight circuits (2 for the inner coil and 6 for the outer coil). The temperature rise of the coil at 2 T is estimated to be about 14 degrees at a cooling-water pressure of 3.5 kg/cm\(^2\), when the bending angle is 70 degrees.
Table 1. Main parameters of a 2 T dipole magnet.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic rigidity</td>
<td>7.52 Tm</td>
</tr>
<tr>
<td>Bending radius</td>
<td>3.75 m</td>
</tr>
<tr>
<td>Bending angle</td>
<td>60, 70 degree</td>
</tr>
<tr>
<td>Dipole field strength</td>
<td>2.01 T</td>
</tr>
<tr>
<td>Pole gap</td>
<td>60 mm</td>
</tr>
<tr>
<td>Turn number per pole</td>
<td>70</td>
</tr>
<tr>
<td>Turn number of inner coil per pole</td>
<td>10</td>
</tr>
<tr>
<td>Turn number of outer coil per pole</td>
<td>60</td>
</tr>
<tr>
<td>Hollow conductor of inner coil</td>
<td>11.5 mmW × 11.5 mmH- φ 8 mm</td>
</tr>
<tr>
<td>Hollow conductor of outer coil</td>
<td>16 mmW × 16 mmH- φ 10 mm</td>
</tr>
<tr>
<td>Nominal current</td>
<td>723 A</td>
</tr>
<tr>
<td>Good field region</td>
<td>±50 mm</td>
</tr>
<tr>
<td>Magnetic field uniformity</td>
<td>Better than 2×10^{-4}</td>
</tr>
</tbody>
</table>

Figure 3 shows field uniformity as a function of horizontal position on the median plane of the magnet. It is shown that the field uniformity of about 1×10^{-4} has been achieved at the horizontal position of ±50 mm up to the field strength of 2 T. It is surprising that an iron-dominated dipole magnet can exhibit such good uniformity at such a high field. It is interpreted that this is because the field distribution generated by the coils cancels well that generated by the iron pole pieces. Note that the field distributions of these two contributions behave in opposite ways: one increases while the other decreases at larger horizontal positions. It was found that suitable coil dimensions had to be selected, so that the two contributions could cancel each other well. For instance, if the turn number of the outer coil is chosen to be eight both horizontally and vertically, the uniformity becomes about 1×10^{-3}, which is 10 times worse than that shown in Fig. 3.

Figure 4 shows the excitation curve as a function of operation current. The power consumption is estimated to be about 100 kW at a 2 T in case of a bending angle of 70 degrees.

References
In the RIKEN RI-beam factory project, two new cyclotrons, IRC and SRC, are to be built as post accelerators of the existing cyclotron RRC. The cascade of these cyclotrons will be able to accelerate heavy ion beams up to e.g., 400 MeV/u for relatively light heavy ions like oxygen, 300 MeV/u for Kr ions, 200 MeV/u for Xe ions, and 150 MeV/u for U ions. The expected beam intensity is as high as 1 pμA. Such capability allows efficient production of radioactive isotope (RI) beams using the projectile fragmentation method, in which RI beams are produced by a magnetic spectrometer called the projectile-fragment separator. The separator collects and isotopically separates RI beams which are produced in heavy-ion collisions with target nuclei, such as projectile fragmentation of various heavy ions and projectile fission of uranium ions.

Three projectile-fragment separators, which are named BigRIPS separators, are planned to be built in the RI-beam factory project, and to be placed after the SRC cyclotron. The project is divided into two phases called the phase I project and phase II project (or MUSES project). Two BigRIPS separators are intended for use in the phase I project in which ordinary RI-beam experiments are to be carried out. The other BigRIPS separator is for use in the MUSES project in which RI-beam colliding experiments are to be carried out. These three BigRIPS separators are to share a primary heavy-ion beam from the SRC by means of time sharing. In this report, we describe the design of the BigRIPS separator for the phase I project.

As production reactions for the BigRIPS separator, we are planning to use projectile fission as well as projectile fragmentation, because projectile fission was found to be very powerful for the production of neutron-rich RI beams. The acceptance of the BigRIPS separator has been determined considering the kinematics of the reactions to be used.

The angular spread of projectile fragments is not very large in the case of projectile fragmentation. The most severe is the case when light projectiles are used to produce RI beams which are far from the projectiles. For instance, the full angular spread is estimated to be about 40 mr when 10 Li beams are produced from 18 O beams at 400 MeV/u. On the other hand, the spread is quite large in the case of projectile fission of U beams. The full angular spread is estimated to be as large as about 200 mr at 150 MeV/u. In designing the BigRIPS separator, we aimed to achieve a momentum acceptance of around 100 mr, so that the separator could cover half of the angular spread of fission fragments. The momentum spread of projectile fragments is estimated to be about 4% for the case mentioned above. The momentum spread of fission fragments is estimated to be as large as about 20%. However, due to the angle and momentum correlation in reaction kinematics, the spread is reduced to a few percent when the angular acceptance is assumed to be 100 mr. In the design, we aimed at achieving momentum acceptance of around 6%, considering the broadening of momentum spread due to energy loss in the production target as well as the momentum spread in the case of projectile fragmentation. Larger momentum acceptance allows the use of a thicker production target. These values of acceptance enable the collection of fission fragments at an efficiency of about 10%.

The maximum magnetic rigidity (B_p) of the separator was set at 9.5 Tm, considering light neutron-rich RI beams produced by projectile fragmentation. This B_p value, corresponding to fragments with A/Z (mass-to-charge ratio) of 3 and energy of 400 MeV/u, is about 26% larger than that of the SRC cyclotron (7.52 Tm). The maximum B_p value necessary for projectile fission is estimated to be 5 to 6 Tm.

We chose a mirror-symmetric achromatic system with four bends for the BigRIPS separator. Its schematic diagram is shown in Fig. 1. The configuration may be written as TQ-D-TQ-F-TQ-D-TQ-F-TQ-D-TQ-F-TQ-D, where TQ, D and F represent quadrupole triplet magnets, a dipole magnet and an intermediate focus, respectively. Not only the configuration but also the first-order optics are mirror-symmetric with respect to the midfocus, where the waist condition should be fulfilled. The wedge-shaped energy degrader is placed at the midfocus for isotope separation. We chose the mirror-symmetric achromatic system with four bends, because (1) two bends allow a high momentum resolution at the midfocus, hence a better isotope separation, (2) some geometrical aberrations disappear because of the symmetry, and (3) the system has high flexibility in terms of its optics design. A large value of image magnification at the midfocus gives rise to the emittance growth of RI beams.

![Fig. 1. A schematic diagram of the BigRIPS separator.](image-url)
beams when the energy degrader is placed. Hence we aimed at small values around 1. The system should have different operation modes, since two kinds of reactions are to be used.

Quadrupole magnets used for the BigRIPS separator should have not only large apertures but also high fields, because large acceptance and high \(B_0 \) values are required. In designing the separator, we assumed the use of the iron-dominated superconducting quadrupole magnets, by which high pole-tip fields such as 2.4 T can be achieved.\(^5\) Their aperture and length were determined based on the optics design, in which the maximum pole-tip fields were assumed to be 2.4 T. The dipole magnets were assumed to be room-temperature magnets with maximum fields of 1.6 T and a mean radius of 6 m. The bending angle was chosen to be 30 degrees, considering the constraints of the new building.

The optics design of the BigRIPS separator was made using the code GIOS and taking into account the aforementioned considerations and assumptions. The basic parameters of the BigRIPS separator are given in Table 1. The parameters are listed for two different operation modes of the same system, which may be called the high acceptance mode and high resolution mode. The high acceptance mode has a first-order momentum resolution of about 2400, almost achieving the desired acceptance for projectile fission. This momentum resolution is satisfactory because the isotope separation power is limited due to the energy straggling effects caused by the degrader. Although it has smaller acceptance values, the high resolution mode has a momentum resolution of about 4800, which is a factor of two better than that of the high acceptance mode. The maximum \(B_0 \) value of high resolution mode is 9.5 Tm, achieving the desired value for projectile fragmentation. Because of the large acceptance value, the correction of optical aberrations is necessary to improve the isotope separation. The important aberrations are the second-order chromatic term \((x/\delta x)\) and some third-order terms. The aberration correction is in progress using sextupole and octupole magnets.

The superconducting quadrupole magnets of the BigRIPS separator have large apertures. For example, the quadrupole triplets between the first and fourth dipole magnets have a pole-tip radius of 17 cm and a warm-bore radius of 12 cm. These triplets consist of three iron-dominated superconducting quadrupoles with effective lengths of 50, 80 (or 100), and 50 cm. Their maximum pole-tip fields are about 2.4 T as assumed in the optics design. Design studies of the superconducting quadrupoles have been made,\(^6\) and construction of a prototype triplet is in progress.

Table 1. Basic parameters of the BigRIPS separator.

<table>
<thead>
<tr>
<th></th>
<th>High acceptance mode</th>
<th>High resolution mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \theta) [mr]</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>(\Delta \phi) [mr]</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>(\Delta P/P) [%]</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>(\Delta \Omega) [msr]</td>
<td>8</td>
<td>3.2</td>
</tr>
<tr>
<td>((x/x))</td>
<td>1.48</td>
<td>1.02</td>
</tr>
<tr>
<td>((x/\delta x) [cm/%])</td>
<td>3.52</td>
<td>4.87</td>
</tr>
<tr>
<td>((y/y))</td>
<td>1.73</td>
<td>1.21</td>
</tr>
<tr>
<td>(P/\Delta P^*)</td>
<td>2380</td>
<td>4770</td>
</tr>
<tr>
<td>Max. (B_0) [Tm]</td>
<td>7.52</td>
<td>9.5</td>
</tr>
<tr>
<td>Length [m]</td>
<td>42.8</td>
<td></td>
</tr>
</tbody>
</table>

* First-order momentum resolution at the mid focus.

A beam spot size of 1 mm is assumed.

References
Design of a Superferric Quadrupole Magnet for the RIKEN RI-Beam Factory Project

In the RIKEN RI-beam factory project,1) radioactive isotope (RI) beams are to be produced using projectile fragment separators called BigRIPS.2) A BigRIPS separator is designed to be a magnetic spectrometer consisting of dipole, quadrupole, sextupole and octupole magnets. The quadrupoles must have a large aperture and a high field gradient, because a large acceptance as well as high magnetic rigidity are required for the BigRIPS separator. An optics design of the separator led us to conclude that the quadrupoles must be superconducting to meet the requirements. With respect to the type of superconducting quadrupoles, we considered two types: the superferric quadrupole (iron-dominated superconducting quadrupole) which has been developed at NSCL/MSU3,4) and the COS(2B) quadrupole. We have chosen the superferric quadrupole for the BigRIPS separator, considering the liquid helium consumption as well as the fabrication cost. A prototype of the superferric quadrupole will be built for R&D studies. The prototype will be a quadrupole triplet mounted in a single cryostat.

The prototype quadrupole triplet consists of three superferric quadrupoles with identical cross sections. They are installed in a single helium vessel and cooled by the liquid-He bath cooling method. Their schematic depiction is shown in Fig. 1. The quadrupoles have a pole-tip radius of 170 mm and a warm bore radius of 120 mm. The design effective lengths of the quadrupoles are 0.5, 0.8, and 0.5 m. The maximum pole-tip fields are chosen to be 2.4 T, corresponding to the field gradient of 14.1 T/m, because the uniformity of the field gradient is found to rapidly worsen at higher fields. Correction coils such as sextupole and octupole coils are to be installed in the gap between the pole tip and the inner pipe of the helium vessel.

In designing the prototype superferric quadrupoles, we studied two types which have different quadrupole coils. One is the race-track type (or flat-winding type) whose coils can be wound by ordered winding. The other is the NSCL/MSU type, which is essentially the same as that developed at NSCL/MSU.3,4) In this case, the coils are wound by random winding. The reason for choosing to also study the race-track type is that it was expected that ordered coil winding would be more feasible and coil quality could be controlled more easily, as compared with the NSCL/MSU-type random winding. Hereafter, these two types are referred to as type A and type B, respectively.

The uniformity of the field gradient has been optimized by means of a two-dimensional (2D) magnetic field calculation, in which the codes OPERA-2d and OPERA-3d/TOSCA5) were used. In order to derive quadrupole fields as well as higher multipole fields such as 12-pole and 20-pole fields, the calculated fields were analyzed by the multipole analysis method, in which the reference radius was chosen to be 120 mm. The cross-sectional shape and position of coils were adjusted looking at the 12-pole fields, since this component was expected to most strongly affect the uniformity. The current density of coils was kept at around

*1 Toshiba Corp.
*2 Hitachi Ltd.
100 A/mm², considering the quench protection and the superconducting wire to be used. Care was taken to prevent the interference between the correction coils and quadrupole coils at the coil end. The optimized cross sections are shown in Fig. 2 for both type A and type B quadrupoles. It can be seen that ordered coil winding is possible for type A, while it is difficult for type B. Some main parameters for the quadrupoles are listed in Table 1.

Figure 3 shows the 12-pole and 20-pole fields derived from the 2D calculation as a function of quadrupole field gradient. The 12-pole and 20-pole fields are shown as a ratio to the quadrupole fields. It can be seen that the 12-pole fields are the most important. The 12-pole fields of type A and B quadrupoles behave similarly at field gradients larger than 12.5 T/m. However, at lower field gradients, the 12-pole fields of type B are much smaller than those of type A. With respect to the 2D calculation, type B has better uniformity than type A.

A three-dimensional (3D) field calculation has been performed, since end effects were expected to be large due to the large aperture and the short magnet length.

Table 1. Main parameters of type A and B quadrupoles (0.5 m).

<table>
<thead>
<tr>
<th>Type</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective magnetic length (m)</td>
<td>≈ 0.54</td>
<td>≈ 0.53</td>
</tr>
<tr>
<td>Pole tip radius (mm)</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Winding of coil</td>
<td>orderly</td>
<td>random</td>
</tr>
<tr>
<td>Nominal current per pole (kA)</td>
<td>190</td>
<td>240</td>
</tr>
<tr>
<td>Nominal current (A)</td>
<td>127</td>
<td>136</td>
</tr>
<tr>
<td>Nominal turn number</td>
<td>1500</td>
<td>1760</td>
</tr>
<tr>
<td>Nominal current density (A/mm²)</td>
<td>111</td>
<td>104</td>
</tr>
<tr>
<td>Cross section of coil (mm²)</td>
<td>1720</td>
<td>2300</td>
</tr>
<tr>
<td>Straight length of coil (mm)</td>
<td>440</td>
<td>450</td>
</tr>
<tr>
<td>Total length of coil (mm)</td>
<td>640</td>
<td>626</td>
</tr>
<tr>
<td>Length of iron (mm)</td>
<td>440</td>
<td>450</td>
</tr>
<tr>
<td>Outer radius of yoke (mm)</td>
<td>475</td>
<td>480</td>
</tr>
</tbody>
</table>

The calculation was made using the code OPERA-3d/TOSCA. In this case, the multipole analysis was carried out position-by-position along the magnet axis, and then the derived fields were integrated over the axis. Figure 4 shows the integrated 12-pole and 20-pole fields at a radius of 120 mm. The fields are shown as a ratio to the integrated quadrupole fields, and are plotted as a function of quadrupole field gradient at the middle of magnet axis. It is can be seen that the 12-pole fields, which make dominant contributions, are much larger in low and high field-gradient regions as compared with those of the 2D calculation. Furthermore, the behavior of type A is very similar to that of type B quadrupoles. The results of the 3D calculation indicate the large end effects, as anticipated. In order to understand the end effects, the calculated fields were decomposed to two components: those generated by coil contributions and those by iron contributions.

It was found that the large 12-pole fields in the low field gradient region arose from the effects of the iron pole end, while those in the high field gradient region arose from the effects of the coil end part. Furthermore, it was found that the 12-pole fields in the low field gradient region could be reduced by chamfering the pole ends, and those in the high field gradient region could also be reduced by adjusting the distance between the pole end and the coil end part so that the two contributions could negate each other. The optimization of the magnet end is in progress.

The superconducting wire for the quadrupole coils was chosen mainly based on the requirements of low current operation, hence low helium consumption, and self-protection against quenching. The coils must not break down even if all the stored energy is dissipated into one of four quadrupole coils. Some of the main parameters of the chosen superconducting wire are listed in Table 2, and were determined based on the quench
Table 2. Main parameters of superconducting wire.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulated diameter (mmϕ)</td>
<td>1.15</td>
</tr>
<tr>
<td>Bare diameter (mmϕ)</td>
<td>1.10</td>
</tr>
<tr>
<td>Cu/super Ratio</td>
<td>6.6</td>
</tr>
<tr>
<td>RRR of Cu</td>
<td>100 - 150</td>
</tr>
<tr>
<td>Filament diameter (μmϕ)</td>
<td>75</td>
</tr>
</tbody>
</table>

Table 3. Calculated results of quench protection.

<table>
<thead>
<tr>
<th>Quad.</th>
<th>I</th>
<th>L</th>
<th>E,</th>
<th>T,</th>
<th>V,T</th>
<th>V,T</th>
<th>Rn</th>
<th>Tr</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>153</td>
<td>26</td>
<td>0.30</td>
<td>100</td>
<td>670</td>
<td>29</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>170</td>
<td>33</td>
<td>0.48</td>
<td>110</td>
<td>880</td>
<td>44</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

E, stored energy. V,T max, maximum voltage between layers. Rn, final resistance of the normal zone.

Fig. 5. Current decay, temperature rise and voltage development after quenching of the type A quadrupole whose effective length is 0.8 m.

The quench protection analysis was carried out for the quadrupole with the effective length of 0.8 m because it has the largest stored energy. For safety, the excitation current was chosen to be 20% larger than the nominal maximum value. As the worst case, it was assumed that the quenching occurs in one of four coils, while the rest of them remains superconducting. As the design criteria, the maximum allowable voltage and temperature were taken to be 1 kV and 100 K, respectively. The calculated results are listed in Table 3. Quench characteristics such as current decay, temperature rise and voltage development are shown in Fig. 5 for the type A quadrupole. It is shown that the quadrupole coils wound with the chosen wire can be self-protecting.

The basic design of the superferric quadrupoles which produce a maximum field gradient of 14.1 T/m over a 120 mm radius with the uniformity of about 0.5%, has been carried out with 2D and 3D magnetic field calculations. The mechanical design is being studied on the basis of the field calculation.

References
Estimation of Deposited Heat and Damage by Neutrons on the Downstream Superconducting Magnet of the Target Assembly

T. Mukhopadhyay, T. Kubo, and T. Maruyama

When radioactive ion beams are produced by the Big-RIPS separator, superconducting magnets located immediately after the production target are exposed to intense neutrons with high energy. The cooling capacity of the cryogenic system of the magnet must take into account the heat deposited by the neutrons on the magnet. Theoretical estimations of the power deposited by the neutrons on the magnet, assumed to be a solenoid for simplicity, in a geometrical setup as in Fig. 1, have been performed based on the measured or computed production yield of neutrons for several beam-target combinations. A study of radiation damage, based on the maximum absorbed dose per unit mass on the magnet, leads to estimates of lifetime of operation of the magnet. Similar radiation damage study on the epoxy of the magnet coil has also been carried out using KERMA (kinetic energy released in material) values.

First, the computed or measured differential yield or cross-section for neutron production in heavy ion collisions with the target material is necessary. Let \(\Sigma(E, \theta) \) be the double differential yield of neutrons as a function of neutron energy \(E \) and the angle \(\theta \) of the beam-target combination. Using the \(\Sigma(E, \theta) \) values we calculate the average number of neutrons \(\bar{n} \) per incident beam particle, covering the space at the entrance of the solenoid, is given by

\[
\bar{n} = 2\pi \int_{E_i}^{E_f} \int_{\theta_i}^{\theta_f} \Sigma(E, \theta) \sin \theta d\theta dE, \tag{1}
\]

where \(E_i - E_f \) is the total energy range of the neutrons and \(\theta_i - \theta_f \) is the angular space covered by the solenoid with respect to the centre of the target and the beam axis. Similarly, the average energy \(\bar{E} \) of the neutron produced is given by

\[
\bar{E} = 2\pi \int_{E_i}^{E_f} \int_{\theta_i}^{\theta_f} E \Sigma(E, \theta) \sin \theta d\theta dE/n. \tag{2}
\]

The total power in the space at the entrance of the solenoid is then given by \(P = C I_0 \bar{n} \bar{E} \), where \(I_0 = \) the primary beam intensity in particles per second and \(C = 1.60217733 \times 10^{-13} \) joules/MeV.

We next proceed to calculate the similar quantities, \(\bar{n}' \) and \(\bar{E}' \) in the space at the exit of the solenoid after the neutrons pass through the material of the solenoid. A simple method to carry this out is to assume that while the neutrons traverse through the material of the solenoid, the energy weighted neutron flux is attenuated exponentially with the distance travelled within the material, which is a current technique in accelerator shielding. This means that the quantity \(I_0 \bar{E}(E, \theta) \) at the entrance of the solenoid becomes \(I_0 \bar{E}(E, \theta) \exp(-L(\theta)/\lambda(E)) \) at the exit of the solenoid. The distance \(L(\theta) \) traversed within the solenoid by a neutron moving at an angle \(\theta \) with the beam axis can be determined easily from the geometry of the setup. For attenuation length \(\lambda(E) \) as a function of energy \(E \), we have used a set of \(\lambda(E) \) values calculated with HETC code, which is based on the cascade and evaporation model, to interpolate the values of \(\lambda \) at required energies. In this method, iron is assumed to be the only constituent material of the magnet. With the transformed variable \(\Sigma'(E, \theta) = \Sigma(E, \theta) \exp(-L(\theta)/\lambda(E)) \), the new average values \(\bar{n}' \), \(\bar{E}' \), and the power \(P' \) at the exit of the solenoid can be easily calculated. The power loss within the solenoid is then given by

\[
H = \Delta P = C I_0 (\bar{n} \bar{E} - \bar{n}' \bar{E}'). \tag{3}
\]

Results are shown in Table 1. Experimental measurements have demonstrated that such results of deposited neutron power based on the theoretical model are overestimated by a factor of 2.4-4.5. Although inaccurate, such results are useful in determining various scaling factors between theoretical and experimental estimates, between cases of thin and thick targets, and between different geometries. In spite of favorable scaling factors, the high values of deposited heat call for special arrangements for the cold part of the magnet.

We next study the distribution of radiation dose deposited per unit mass of the magnet, called the gray
value, expressed in Gray (≡ Joules/Kg). To calculate the gray value distribution, the solenoid is divided into smaller cells along its length and thickness. To calculate energy loss by a neutron in a particular cell, one has to account for the energy loss of the same neutron along its earlier journey in the solenoid. The energy loss in a cell can be calculated from

$$\Delta E = 2\pi I_0 \int \int E\Sigma' (\theta, E) [1 - e^{-\lambda / \lambda(E)}] \sin \theta d\theta dE, \quad (4)$$

where $\Sigma' (\theta, E) = \Sigma (\theta, E) * e^{-\lambda / \lambda(E)}$, l_c = path length in the cell, and l_e = path length traversed in the solenoid before entering the cell.

Based on the maximum gray value estimate and the radiation damage safety criteria of a maximum allowable dose of 1×10^7 Gy/year (1 year of operation time $\equiv 20\%$ of 4800 hr) on any part of the magnet and as-restrained coil wire motion, which can result in a quench. Considerable damage resulting in the degradation of the compressive strength of the epoxy can occur with radiation. Earlier studies have shown a 20% reduction in compression strength of the epoxy with a radiation dose of about 2×10^7 Gy. For our calculation we take 1×10^7 Gy as the total dose limit for acceptable coil lifetime.

Table 2. Calculations of yearly radiation dose to superconducting magnet.

<table>
<thead>
<tr>
<th>Case</th>
<th>Av. Gray (wt/Kg)</th>
<th>Max. Gray (wt/Kg)</th>
<th>Av. dose $\times 10^7$ GY/yr</th>
<th>Max. dose $\times 10^7$ GY/yr</th>
<th>Lifetime (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>0.024</td>
<td>0.327</td>
<td>8.294</td>
<td>0.1130</td>
<td>9</td>
</tr>
<tr>
<td>(ii)</td>
<td>0.0073</td>
<td>0.0644</td>
<td>2.516</td>
<td>0.0223</td>
<td>45</td>
</tr>
<tr>
<td>(iii)</td>
<td>0.0192</td>
<td>0.189</td>
<td>6.6555</td>
<td>0.0653</td>
<td>15</td>
</tr>
</tbody>
</table>

The calculation is similar to that of a dose to a tissue in biological applications using KERMA values. The KERMA is defined as the expectation value of the kinetic energy transferred to the charged particles per unit mass at a point in matter, whereas the KERMA factor refers to the KERMA per unit neutron fluence. The partial KERMA factor for a certain secondary charged-particle type is obtained from the product of the cross section σ and the average energy E_{m}, in units of b·MeV/atom which can be converted to the SI unit of Gy·m$^{-2}$.

Only the main molecular component in stycast epoxy, butyl glycidyl ether, $\left(C_2H_2O_2\right)_n$, where n is a large number, is considered in estimating the damage. Tables of KERMA factors for H, C, N, and O are available for neutron energies of 1 MeV to 150 MeV from Los Alamos T2 group Information Service. These factors are weighted by stoichiometric ratios, and then summed to obtain the effective KERMA value for the molecule as a function of neutron energy. For neutrons with energy higher than 150 MeV, these factors are extrapolated.

The energy delivered by neutron collisions to a 1 cm3 sample of epoxy placed at a distance and angle from the neutron source can be calculated using

$$D = I_0 \cdot \rho \cdot 10^{-3} \int \Sigma(E, \Omega_0) K(E) dE, \quad (5)$$

where $K(E)$ in Gy·cm$^{-2}$ is the effective KERMA value in epoxy at energy E, Ω_0 is the average solid angle subtended by the sample at the source, ρ in gm/cc is the density of the epoxy. The results, as shown in Table 3, show reasonably acceptable values.

Table 3. Calculations of radiation dose to superconducting coil epoxy (by KERMA). Cross-section set used was that of case (iii) in Table 1.

<table>
<thead>
<tr>
<th>Target-to-Coil</th>
<th>Coil angle (Degree)</th>
<th>Yearly Dose $\times 10^7$ Gy</th>
<th>Lifetime (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>1</td>
<td>0.1705</td>
<td>6</td>
</tr>
<tr>
<td>64</td>
<td>10</td>
<td>0.0301</td>
<td>33</td>
</tr>
<tr>
<td>64</td>
<td>20</td>
<td>0.0043</td>
<td>231</td>
</tr>
<tr>
<td>64</td>
<td>30</td>
<td>0.0010</td>
<td>981</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
<td>0.1005</td>
<td>10</td>
</tr>
</tbody>
</table>

References
1) N. Fukunishi: private communication.
4) T2 Information Service: http://t2.lanl.gov/
We have studied the radiation shield of the RI Beam Factory for two years. New experimental results were obtained this year, which are very useful for the precision check of our method of estimating the radiation dose. One of these results are from shielding experiments performed with 400-MeV/u 12C beams accelerated by the HIMAC of the NIRS. Two of the authors (S. I. and Y. U.) contributed to one of these experiments. We summarize in Table 1 the comparison between the experimental results and our estimated results. We find that our method reproduces well the experimental results, except for the 0-degree direction, where we find a large discrepancy between the estimated results and the experimental results. This discrepancy comes from the fact that we neglect the diffusion effect of neutron flux in the shielding material due to the multiple scattering of neutrons in the present estimation. The diffusion effect is marked when the distance from the source to the shield is small (1.5 meters in the experiment) in the 0-degree-direction shielding. We estimated the reduction of the radiation dose due to the diffusion effect with the HETC-3step code. The reduction factor is 43% for a 1.5-meter-thick shield of normal concrete. The shielding thickness in the experiment is 2.8 meters. As the numerical simulation for the actual experimental setup is too time-consuming, we did not execute it.

Other useful experimental results were given by Kurosawa et al. They measured the double-
differential neutron yields for various combinations of beams and targets. From these experiments, we can determine how the radiation dose depends on the mass number and the energy of the ion that hits the target. Our speculation was that the effective dose which originated from a heavy-ion beam was proportional to the ion mass and the square of the ion energy per particle. The series of experiments revealed that our speculation was valid. We hence chose a 300-MeV/u-Kr beam as a model beam for the shielding design of the RIBF because the radiation produced by this beam is predicted to be the most serious concern in the RIBF.

Here, we shall explain some results of the shielding calculations. We illustrate in Fig. 1 the effective dose on the roof of the SRC room, which is 3-meter-thick normal concrete. In addition, there also exists a 3-meter-thick local shield of normal concrete placed just above the EDC of the SRC. The EDC is assumed to be the main source of radiation. We found that a 6-meter-thick shield of normal concrete is sufficient for a beam loss of 10 pnA. Another example is the shield of the Big-RIPS which is shown in Fig. 2. Downstream from the second bending magnet, secondary neutrons are the most serious radiation. The words “secondary neutrons” indicate the neutrons generated by the neutrons bombarding the iron shield. To estimate the reflection rate of radiation on the iron shield, we calculated double differential albedo functions of the effective dose using the HETC code. Results are shown in Fig. 3 for the case when neutrons are injected into the iron shield at an injection angle of 75 degrees. The design of the local iron shield shown in Fig. 2 was determined taking into account this effect. More detailed aspects of our estimation are summarized in Ref. 7.

References
1) Two 0-degree data are from Y. Kumamoto: private communication.
2) Other data are from S. Ito et al.: private communication.
Refinement of Accumulator Cooler Ring Lattice Design

K. Ohtomo and T. Katayama

Preliminary lattice design of the Accumulator Cooler Ring (ACR)\(^1\) has been focused on the accumulation and cooling of radioactive isotope (RI) beams. Beam momentum spreads of \(\delta p/p = \pm 0.5\%\) after passing through a fragment projectile separator (BigRIPS), will be reduced to \(\delta p/p = \pm 0.15\%\) by a buncher cavity\(^2\) located 80 m downstream of the BigRIPS. Devices for multiturn injection and RF stacking are needed to enhance the beam current. Then beam emittance and momentum spreads should be cooled by the electron cooling and stochastic cooling devices in the ACR. The lattice of the ACR should be designed by taking the following device constraints into account:

1. The electron cooler (EC) requires a long straight dispersion-free space (over 12.0 m long). The horizontal betatron function at an EC should be less than 5 m because an electron beam size covers the RI beam size.
2. Stochastic cooling devices require a few pairs of dispersion-free spaces for a pickup and a kicker, and the phase advance of the betatron oscillation between them should be nearly \(k\pi/4\) (\(k\): odd).
3. Multiturn injection requires sections where the phase advance of the betatron oscillation is nearly \(\pi\), to arrange kickers and septum magnets.
4. RF stacking requires a dispersion in the multiturn injection section and a space for a tunable RF cavity.
5. Accumulation of high current beams requires a large acceptance in the horizontal plane \(\epsilon_x = 125 \pi \cdot \text{mm} \cdot \text{mrad}\) and a large momentum spread \(\Delta p/p = \pm 2.0\%\).

Refined design of the lattice is shown in Table 1 and Figs. 1 and 2.

The ACR lattice consists of four arc sections, two long straight sections and two short straight sections, as shown in Fig. 1 and is described as follows:

\[
\text{ACR} = \text{STRL-ARC-STRS-ARC-STRL-ARC-STRS-ARC},
\]

where STRL denotes a long straight section, STRS a short straight section and ARC an arc section.

An ARC is symmetric and is based on the FODO lattice cell.

\[
\text{ARC} = \text{QF-B-QD-QD-B-QF-QF3-QD3-(INJ)-QD3-QF3-QF-B-QD-QD-B-QF},
\]

where QF and QD are the main focusing and

Table 1. Parameters of the ACR

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>168.4836 m</td>
</tr>
<tr>
<td>Max. magnetic rigidity</td>
<td>8 Tm</td>
</tr>
<tr>
<td>Max. beam energy ((A/Z = 2.3))</td>
<td>400 MeV/u</td>
</tr>
<tr>
<td>Injected beam emittance ((\text{Hor./Ver.}))</td>
<td>10/10 (\pi \cdot \text{mm} \cdot \text{mrad})</td>
</tr>
<tr>
<td>Injected beam momentum spreads</td>
<td>(\pm 0.15%)</td>
</tr>
<tr>
<td>Stored beam emittance ((\text{Hor./Ver.}))</td>
<td>125/10 (\pi \cdot \text{mm} \cdot \text{mrad})</td>
</tr>
<tr>
<td>Stored beam momentum spreads</td>
<td>(\pm 2.0%)</td>
</tr>
<tr>
<td>Betatron tune ((\text{Hor./Ver.}))</td>
<td>3.440/3.540</td>
</tr>
<tr>
<td>Transition gamma</td>
<td>4.533</td>
</tr>
<tr>
<td>Max. beta functions ((\text{Hor./Ver.}))</td>
<td>28.58 m/28.04 m</td>
</tr>
<tr>
<td>Max. dispersion</td>
<td>3.96 m</td>
</tr>
</tbody>
</table>

Fig. 1. The layout of the ACR.
Fig. 2. Twiss parameters. The periodic solid line represents the horizontal betatron function, the periodic dashed line the vertical betatron function, the periodic dotted line the dispersion function, the increasing dashed-dotted line the horizontal phase advance and the increasing solid line the vertical phase advance.

defocusing quadrupoles, respectively, QF3 and QD3 the dispersion adjustable quadrupoles, and the B bending magnets. The drift space between QD3s is assumed as an injection point. The ARC functions are assumed as dispersion suppressers. Four families of sextupoles are installed each drift space for chromaticity correction.

The long straight section is defined as follows:

$$STRL = -QF2- QD1-QF1-QF1-QD1-QF2-$$

where QF1, QD1 and QF2 are quadrupoles. The triplets make the horizontal betatron function at the symmetry point less than 5 m. The middle straight section, which has a length of 15 m, is assumed to be the position of the electron cooler or an equipment for experiments. At both end straight sections, of 6 m length, stochastic cooler devices and extraction kickers are installed.

The short straight section is defined as follows:

$$STRS = -QD2-QD2-$$

where QD2s are quadrupoles to adjust the tune and beta functions’ amplitude at STRS. A tunable RF cavity will be located in this section.

Horizontal tune is selected to be nearly a half integer because the betatron tune advance between every opposite pair of straight sections become nearly a quarter integer, i.e., constraint (2) is satisfied (Fig. 3). The large acceptable momentum spread operation makes the half integer stop band large. It causes a betatron modulation with a different momentum. However, the modulation amplitude was turned to be at a tolerable level.

Dynamic aperture of the lattice without a horizontal or vertical orifice has been calculated (Fig. 4).

Fig. 3. Tune diagram. Operation points are represented by a thick bent line.

Solenoids and deflections by troidals of the electron cooler causes the dynamic aperture to shrink but no severe influence is noted under the condition where a first ordered compensation had been added.

Discussion about the momentum compaction factor between stochastic cooler pickup and kickers to shorten stochastic cooling time is underway. The scalable transition gamma lattice will be considered in future research.

References
3) M. Wakaugi: MUSES Meet.
Development of ACR Electron Cooler (2)
T. Tanabe, K. Ohtomo, T. Rizawa, and T. Katayama

The highlight of the cooler design in the accumulator cooler ring (ACR) in MUSES project1,2 is the gun section which utilizes a He-free superconducting solenoid with an output of 4 T. To optimize the cost and uniformity of the solenoid field, a smaller gun and an acceleration tube are preferred. However, without the possibility of placing vacuum pumps in the vicinity of the cathode, high-vacuum conductance must be maintained through to ensure ultra-high vacuum (UHV.) Poor vacuum would cause contamination of the cathode surface, lowering of the discharge limit due to a high voltage (HV), and an increase of unnecessary radiation hazard. Both Egun3 and SAM4 are used to examine the behavior of an electron beam (e-beam) to optimize the design. Figure 1 shows results of EGUN simulation with the current design.

Optimization of the design of the magnetic shield and solenoids is directed toward the uniformity of the field over the acceleration area, the minimization of the shield thickness, and the reduction of the adiabatic parameter, which is defined as

\[\chi = \frac{\lambda_c}{B} \frac{dB}{dz} \]

(1)

where \(B \) is the solenoid magnet field and \(\lambda_c \) is the spiral length of the cyclotron motion

\[\lambda_c = \frac{2\pi}{eB} \sqrt{2m_eE_c} \]

(2)

A cross-sectional view of the design of an electron gun, an acceleration tube, a superconducting solenoid, a warm solenoid, and magnetic shielding are delineated in Fig. 2. The magnetic field distribution and the adiabatic parameter are shown in Fig. 3.

The electrons are further perturbed when they pass through the toroidal sections. This perturbation is observed in electrons which are displaced from the equilibrium axial trajectory. When the electrons pass through a toroidal magnet, additional drift velocity appears which is inversely proportional to the square of the radius of the axial electron trajectory in the toroidal section5. Hence, the discontinuity of the magnetic field at the entrance/exit of toroidal magnets generates additional transverse temperature which can be reduced by increasing the toroidal radius and decreasing the adiabatic parameter at the entrance/exit of toroidal magnets.

The initial design of the ACR collector was based on the TARN II collector. Various improvements have been incorporated during the past year. The geometry of the new collector section is given in Fig. 4.

The ratio of the current density of the reflected secondary electrons that escape a collector to those of the incoming beam is proportional to

\[\frac{j_{ref}}{j} \propto \sigma_e \left(\frac{\phi_{min}}{U_{col}} \right)^2 \frac{B_{col}}{B_{\phi_{min}}} \]

(3)

where \(j \) is the incoming beam current, \(\sigma_e \approx 1 \) is the secondary emission coefficient, \(B_{col} \) and \(U_{col} \) is the magnetic field and voltage on the collector surface, respectively, \(\phi_{min} \) is the minimum potential on the axis and \(B_{\phi_{min}} \) is the magnetic field in the region of minimum potential value. The types of modifications applied were as follows:

(1) The collector diameter was increased to reduce the magnetic field on the collector surface, \(B_{col} \).
(2) To increase \(B_{\phi_{min}} \), a permanent magnet coil was
Fig. 4. The design of the collector. 1 indicates the drift chamber, 2 the deceleration tube, 3 the repeller, 4 the collector electrode, 5 the solenoid of electron cooling, 6 magnetic shielding, 7 the permanent magnet coil placed at the collector entrance, and 8 the permanent magnet coil placed on the collector surface.

placed inside the repeller electrode with a magnetic field of 2 kG.

(3) A permanent magnet coil was placed on the collector surface to reduce B_{col}.

(4) The collector radius was reduced at the entrance to shift the position of the virtual cathode to a region of higher magnetic field.

The collector perveance is estimated as $P_{col} = \frac{I}{U_{col}^{3/2}} \approx 25 \sim 30 \mu \text{A}/\sqrt{\text{V}}$. The permanent magnets produce a negative radial magnetic field on the collector surface in the region of $44 \text{ cm} < z < 51 \text{ cm}$ (magnetic-insulated region). Consequently, the current loss was reduced by one order of magnitude compared to the old design.

A diagnostic setup for an e-beam can be separated in two categories of devices: Conventional and special ones. The conventional diagnostic devices measure electrode potential, e-beam current and e-beam loss current. The special devices are used for the measurement of the transverse electron temperature, the parameters of the neutralized electron beam, and the characteristics of the secondary electrons and ions. The details of the designs have yet to be established.

Table 1 shows the latest parameters of the device.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration Voltage</td>
<td>30 ~ 250 kV</td>
</tr>
<tr>
<td>Magnetic Field (gun/cooling)</td>
<td>4 T / 0.2 T</td>
</tr>
<tr>
<td>Field Uniformity (gun/cooling)</td>
<td>$1 \times 10^{-4} / 2 \times 10^{-5}$</td>
</tr>
<tr>
<td>Cathode Diameter</td>
<td>12.7 mm</td>
</tr>
<tr>
<td>Maximum E-Beam Current</td>
<td>4 A</td>
</tr>
<tr>
<td>Gun Pervance</td>
<td>0.79 μP</td>
</tr>
<tr>
<td>Anode-Cathode Voltage</td>
<td>30 kV</td>
</tr>
<tr>
<td>Main Solenoid Length</td>
<td>3.6 m</td>
</tr>
<tr>
<td>Toroidal Angle / Radius</td>
<td>90° / 1.5 m</td>
</tr>
<tr>
<td>Collector Efficiency</td>
<td>> 99.98%</td>
</tr>
</tbody>
</table>

Fig. 5. Cross-sectional view of the MUSES-ACR EC. The gun section is on the right-hand side and the collector section is on the left-hand side.

Table 1. Parameters of ACR-EC.

References
Study of Pickup for Stochastic Cooling

N. Inabe, M. Wakasugi, M. Kanazawa, and T. Katayama

Stochastic cooling\(^1\) is used for beam cooling of Accumulator Cooler Ring (ACR)\(^2\). The cooling time in ACR should be short (~100 ms) since fast beam cooling must be realized for Radioactive Isotope (RI) beams with very short intrinsic lifetimes. The stochastic cooling system is composed of pickups, preamplifiers, amplifiers, filters, and kickers; it forms a feedback loop from the pickups to the kickers. In order to obtain a short cooling time a large gain, a low noise and a wide frequency band are required for the system.\(^3\) To develop such a system we need a highly sensitive pickup, a low-noise preamplifier and a large gain amplifier for a wide frequency region (0.3–2.0 GHz). As the first developmental step, we fabricated a pickup and tested it using a beam from the HIMAC\(^4\) synchrotron.

Figure 1 depicts a pickup system. The pickup system is composed of 16 pairs of electrodes, a ground box, and a vacuum chamber. Each electrode is a loop typed coupler and its length (50 mm) is chosen so as to be maximally sensitive around 0.5–1 GHz. The electrode width (81 mm) and gap (60 mm) are determined so as not to disturb HIMAC beam. The signal picked up by the electrode is sent to two terminals located at either edge of the electrode through a stripe-line of 50 Ω composed of the electrode and the ground box. Each terminal is connected by a coaxial cable (Dipsol Co. Ltd.; Cu-s5DDS-08) having a wide frequency band and low outgas and the signal is sent outside the vacuum chamber through an original feed-through connector. Since the voltage of the output signal from the terminal depends on the beam velocity, we prepared two terminals so that we can choose the larger signal of the two terminals. When using the system, the terminal with the smaller signal is terminated by the 50-Ω terminator.

In order to have adequate vacuum pressure (~10\(^{-10}\) Torr) in the synchrotron the vacuum chamber has two ion pumps (400 l/s each). Before the pickup system was installed into the synchrotron we backed it. The baking temperature was raised to 180°C over two days and kept at the temperature for another two days. One week after the end of baking, the vacuum pressure became 2 × 10\(^{-9}\) Torr. One month after installation the pressure was 5 × 10\(^{-10}\) Torr.

A beam test for the pickup system was performed using a carbon beam of 290 MeV/\(\mu\) from the HIMAC synchrotron. The intensity of the beam was 1.9 × 10\(^9\) particles per second and it was very stable. In the test we measured signals picked up by the electrodes for a bunched beam and a coasting beam after acceleration with respect to the time and frequency domains. In the measurement for the coasting beam the RF voltage of the cavity was turned off. Figure 2 shows an electrical circuit for the measurement. A pulse from the synchrotron produced at the finishing time of acceleration was used as a gate signal for the measurement. For the measurement of the bunched beam, an RF signal was used to mark the time origin. The signal from the electrode was sent to a sampling oscilloscope for the time-domain measurement and a spectrum analyzer for the frequency-domain measurement. In the measurement, when the signal from one terminal was

Fig. 1. Schematic depiction of the pickup system.

Fig. 2. Electrical circuit for measurement of the pickup signal.
measured, the other terminal was terminated. Since this measurement was the first test of the pickup system, we concentrated on observing any signals and did not use a preamplifier.

Figures 3 and 4 show the time- and frequency-domain signals for the bunched beam. The interval between peaks in Fig. 3 shows the time interval between bunches. The interval between peaks in Fig. 4 shows the RF frequency of the synchrotron. The measured values of 166 ns in Fig. 3 and 6 MHz in Fig. 4 were consistent with RF frequency set for the synchrotron (5.998 MHz). In Fig. 4 one can see that the peak height decreases as the frequency becomes higher. The bunch length of the beam was long and the electromagnetic field produced by this long bunched beam has a strong component in the low-frequency region. The tendency of decreasing peak height results from the long bunch length.

We attempted to reproduce the time-domain signal on the basis of theoretical calculation.5) In the calculation, the distribution of the bunched beam was assumed to be the Gaussian part plus the flat parts and frequency up to 100 MHz was taken into account from Fig. 4. The widths of the Gaussian and the flat part as well as the sensitivity of the pickup were parameters for the reproduction. Here, sensitivity is a quantity defined by $V_{\text{out}}/I_{\text{beam}}$, where V_{out} is the output voltage measured in the sampling oscilloscope and I_{beam} is the average beam current. In Fig. 5, the reproduced spectra for the two terminals of one electrode are shown with measured signals. In the figure, widths of the Gaussian and the flat parts are common for the two curves. The obtained half-width of the Gaussian part is 2.0 m and that of the flat part is 0.85 m. The obtained sensitivity of the pickup around 100 MHz is 5 n for the upstream terminal and 1.5 n for the downstream terminal. These values are rather high compared to the ones from the theoretical calculation.

Unfortunately, we cannot measure the frequency spectrum of the coasting beam because the signal is very small. However, this is not inconsistent with the theoretical calculation. In the next experiment scheduled on January in 2000, we will measure the spectrum by using of a preamplifier and obtain a sensitivity up to 2 GHz. Moreover, we will examine how to combine signals from various electrodes using the pickup system.

References
We reported on a ferrite test cavity in the last issue of this annual report, used for measuring the characteristics of ferrite at the same high rf power level as that planned for the booster synchrotron of the Multi-Use Experimental Storage rings (MUSES) project: an accelerating cavity is required to generate 25 kV in the frequency range of 25 to 53 MHz. In this issue, we report on the further improvement and calibration of the system. Figure 1 shows a schematic of the cavity.

Improvement of the system: In the first step of the experiment with the cavity, unstable behavior of the Q value of the cavity itself, without the ferrite, was identified. This behavior was caused by a malfunction of the contact fingers used on the cylindrical surfaces a, b, c, d and e shown in Fig. 1. Improvements were made by replacing the contact fingers with a Helicoflex metal gasket at a and c, a flat face metal-metal contact at b and another type of contact spring at d and e.

Calibration of the system: The system is divided into two parts, as seen in Fig. 1, by taking the junction plane at S. The admittance of the upper half with the ferrite is denoted by Y_m and that of the lower half, by Y_c. The entire system is formed by the parallel connection of Y_m and Y_c. Y_m is inductive at the resonance frequency and Y_c, capacitive. Hereafter, G and B denote the real and imaginary parts, respectively, of the admittance Y, e.g., $Y_m = G_m + iB_m$ and $Y_c = G_c + iB_c$. The resonance condition is given by $B_m = -B_c$.

The relative permeability, μ, and magnetic Q value, Q_m, of ferrite are determined from Y_m. This process depends on the electrical model describing the ferrite vessel containing the ferrite. The simplest model is

![Schematic diagram of the ferrite test cavity.](image)

The relative permeability, μ, and magnetic Q value, Q_m, of ferrite are determined from Y_m. This process depends on the electrical model describing the ferrite vessel containing the ferrite. The simplest model is
one that ignores the radial dependence of μ due to the bias field and assumes a low frequency limit. This yields an effective μ by $(f \cdot Bm \cdot \mu_0 \cdot t \cdot \ln(b/a))^{-1}$ and Qm by $|Bm|/Gm$, where f is the measuring frequency, μ_0 is the permeability of vacuum, and t, b and a are the thickness and the outer and inner radii of the ferrite ring, respectively. We use a model based on the transmission line approximation, in which the vessel is treated as a radial mode transmission line and a radially constant μ is assumed. This model is appropriate for the frequency range studied here and can be solved numerically.

With the value of voltage, V, across Ym, and input power, P, at the resonance frequency, Gm is directly obtained from $(P/V^2) - Gc$ using a precalibrated value of Gc. Bc is dependent on the frequency and the value of the tuning capacitor, Ct, while the impedance matching capacitor contributes only a small correction. Bc can be estimated with reasonable precision on the basis of the transmission line calculation but Gc must be estimated by measurements, because of the contribution from the resistance of the structural contact surfaces and the loss factors of the tuning capacitor. Therefore, both quantities were estimated using calibration measurements as a function of frequency and division number of the revolution dial of the tuning capacitor.

Four types of reference admittance are provided. They are nearly equivalent to the admittance of ferrite rings (8" outer diameter, 5" inner diameter and 1" thick) with μ equal to 1, 4, 8.5 and 16.5. They consist of simple coaxial stubs whose admittance, $Gr + iBr$, is easily calculated. Replacing the ferrite vessel with a reference stub, the resonance frequency and the conductance of the entire system, Gs, are measured using an impedance analyzer connected to the junction point on plane S. Thus, Yc is determined at the resonance frequency as $Yc = (Gs - Gr) - iBr$. For each reference stub, calibration is made at 12 positions of the tuning capacitor between the number of dial divisions $Ct = 38$ to 60, which corresponds to a real capacitance of 642 to 70.5 pF. Results are shown in Fig. 2 (a) for the real part and Fig. 2 (b) for the imaginary part.

μ and Qm are calculated from the measured data by linear interpolation between the calibration points; measured data are f (MHz), Ct (division), V (volt) and P (watt).

References
Development of the Kicker Magnet for BSR

T. Ohkawa, T. Katayama, M. Wakasugi, and Q. You

In the booster synchrotron ring (BSR), kicker magnets are used for ion-beam injection and ion-beam and electron-beam fast extraction. The injection and extraction kicker field must rise and fall from approximately 5% to 95% of full strength during the time interval between bunches (about 50 ns). The high performance of the kicker magnet is crucial for the efficiency of beam injection and extraction. In this paper, the development of a kicker magnet for BSR is presented.

We have adopted the Pulse Forming Network (PFN)-type kicker magnet which is often used to generate a high magnetic field with a rapid rise and fall time. The characteristic impedance \(Z \) is related to the inductance \(L_0 \) and capacitance \(C_0 \) of the unit cell by

\[
Z = \sqrt{\frac{L_0}{2C_0}}
\]

and the transmission time \(\tau_m \) of the total magnet is calculated by

\[
\tau_m = N\sqrt{\frac{L_0}{2C_0}}.
\]

where \(N \) is the cell number. The relationship between \(Z \) and \(\tau_m \) is obtained by Eqs. (1) and (2) as

\[
\tau_m = \frac{NL_0}{Z}.
\]

Therefore, decreasing the impedance causes an increase of the transmission time. In order to generate a magnetic field of the design value in a core gap of 30 mm, PFN voltage is required up to 100 kV. When the PFN is added with 100 kV, the kicker magnet can produce a magnetic field of 0.084 T with a flat top of 1 \(\mu s \) and a rise time of 65 ns. The design parameters are listed in Table 1. The height and width of the kicker magnet aperture are 30 mm and 130 mm, respectively. The kicker magnet has a transmission-line structure of nine cells and the characteristic impedance is 25 \(\Omega \).

The characteristic impedance and the transmission time are measured using a low-voltage short pulse. A schematic of the measurement system is depicted in Fig. 1. The kicker magnet and pulse generator are connected by the 50 \(\Omega \) transmission cable. In order to match the impedance, a matched resistor \(R_1 \) is installed between the inlet of the magnet and the 50 \(\Omega \) transmission cable and the outlet of the magnet is terminated in the matched resistor \(R_2 \). The reflected signal follows the input pulse and can be presented in the same oscilloscope record. The amplitude of the reflected pulse serves as an indicator of the matching. In the ideal case the pulse travels to the matched resistor and there should be no reflected pulse. Figure 2 presents the results of the 0.5 V pulse with a flat top of 1 \(\mu s \) and a rise time of 65 ns. Figures 2 (a) and (b) show the reflected voltage pulses when one of the matched resistors \(R_1 \) and \(R_2 \) is changed while the other

![Fig. 1. Schematic of the measurement system.](image)

![Fig. 2. Low-voltage pulse and reflection.](image)

\(\text{Table 1. Design parameters for the kicker magnet.} \)

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESIGN VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap height</td>
<td>30 mm</td>
</tr>
<tr>
<td>Gap width</td>
<td>130 mm</td>
</tr>
<tr>
<td>Total core length</td>
<td>225 mm</td>
</tr>
<tr>
<td>Cell number</td>
<td>9</td>
</tr>
<tr>
<td>Inductance of unit cell</td>
<td>0.136 (\mu)H</td>
</tr>
<tr>
<td>Capacitance of unit cell</td>
<td>108.9 pF</td>
</tr>
<tr>
<td>Characteristic impedance</td>
<td>25 (\Omega)</td>
</tr>
<tr>
<td>Gap field</td>
<td>0.084 T</td>
</tr>
<tr>
<td>Coil current</td>
<td>2000 A</td>
</tr>
<tr>
<td>PFN voltage</td>
<td>100 kV</td>
</tr>
<tr>
<td>Field rise time</td>
<td>65 ns</td>
</tr>
</tbody>
</table>
one is kept constant.

The reflected pulse is delayed by approximately 160 ns with respect to the initial signal because we observe both of them on the same oscilloscope. Figure 2 shows that the characteristic impedance of the kicker magnet is 23 Ω.

The voltage pulses at the electrodes of each cell are shown in Fig. 3.

The measurement shows that the transmission time of the kicker magnet is 59 ns and the field rise time is 69 ns. The calculated results of the inductance L_0 and capacitance C_0 of the unit cell are obtained by Eqs. (1) and (2) as $L_0 = 0.14 \ \mu$H, $C_0 = 136 \ \text{pF}$. The calculated value of the inductance is almost the same as the designed value, but the calculated value of the capacitance is larger than the design value. The reason why the capacitance of the unit cell is larger than the design value is that there is floating capacitance between the electrodes and the housing.

We designed, produced and tested the PFN-type kicker magnet. We determined that the characteristic impedance of the kicker magnet is 23 Ω, the transmission time of the kicker magnet is 59 ns and the field rise time is 69 ns. The measurements demonstrate that the design of the kicker magnet for BSR is quite realistic. We intend to perform further tests and study the kick strength and the amplitude stability.

References
Development of a High-Intensity Slow-Positron Source for Cooling of Highly Charged Ions

We study positron cooling of highly charged ions in an electromagnetic trap in which more than 10^8 positrons must be prepared. In order to stack such a large number of positrons at a high accumulation rate, a high-intensity slow-positron source is under development.

Slow positrons are generally produced by moderation of fast positrons which can be obtained by β^+ decay of radioisotopes or pair production using an accelerator. Fast positrons injected into a moderator lose their energy via inelastic collisions and a considerable fraction is ejected into vacuum as slow positrons. The energy spread of slow positrons is typically less than 3 eV, hence, slow positrons are controllable as a beam by beam optics.

In our study, rare-gas-solid moderators such as those made from Ne, Ar, and Kr are used. Rare-gas solids are well known to be efficient moderators of positrons.\(^1\) When the positron energy becomes less than the inelastic threshold of the moderator, the positron energy loss is reduced drastically since phonon excitation becomes the dominant process of the energy loss. Threshold energies are relatively large in rare-gas solids, therefore, positrons can diffuse long distances about 1 μm, and the reemission probability into vacuum increases.

Figure 1 shows a schematic of the slow-positron source. An encapsulated 22Na positron source is mounted on the top of a refrigerator and is cooled down to 5 K, so that a rare-gas-solid moderator is formed on its front face (see, Fig. 2). Slow positrons are then extracted using an electrostatic field and guided magnetically to an electromagnetic trap.

The trap is set in a superconducting magnet which generates a strong magnetic-field, $B_T = 5$ T, to achieve a stable confinement of positrons. When positrons are injected into a strong magnetic field, they are subject to a repulsive force. This is called the magnetic mirror effect. Under the assumption that positrons are guided adiabatically into the trap, the positrons must have a kinetic energy of greater more than a threshold energy E_a to overcome the magnetic mirror effect. E_a is calculated as $E_a = E_{\text{kin}} B_T / B_0$, where B_0 is the magnetic-field strength.

<table>
<thead>
<tr>
<th>Source</th>
<th>22Na (50 mCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam intensity</td>
<td>10^7 positrons/sec</td>
</tr>
<tr>
<td>Beam energy</td>
<td>0–500 eV</td>
</tr>
<tr>
<td>Energy spread</td>
<td>2 eV</td>
</tr>
<tr>
<td>Beam diameter</td>
<td>5 mm</td>
</tr>
<tr>
<td>Magnetic field strength</td>
<td>0–0.25 T</td>
</tr>
</tbody>
</table>

field strength at the moderator and $E_{\perp}(= 2 \text{ eV})$ is the positron kinetic energy component perpendicular to the magnetic field at the moderator. We designed coils around the moderator which can form a magnetic field of up to $B_0 = 0.25 \text{ T}$; hence, E_a is expected to be only 40 eV. Consequently, almost of all of the generated slow positrons can be injected into the trap at an energy of more than 40 eV.

The expected specifications of the new slow-positron source are listed in Table 1. The high-intensity slow-positron source will be used not only for a positron cooling study but also for other experiments, such as positron-ion collisions and a positronium beam production, and simulations of antihydrogen formation techniques.

References
Preliminary Studies on CORBA-based RIBF Control System

T. Tanabe, T. Masuoka, and M. Kase

The common object request broker architecture (CORBA)\(^1\) provides a means of communication between applications regardless of their physical location or design. The object request broker (ORB) allows client objects to invoke methods in a server object without having to know specific information about the machine the server is running on, its programming language, or where it is located. The ORB intercepts method calls and attempts to find an object which can perform the request. The Internet inter-ORB protocol (IIOP), which is used for communication among ORBs, is expected to become one of the next standard communication protocols for the internet.

CORBA would prevent us from becoming vendor dependent because it allows different operating systems (OSes) and platforms to communicate with each other. It would also make integration of legacy controls easier, which is suited for the RIBF project as it is an expansion of existing facilities. There are several accelerators and telescopes currently in operation around the world whose controls are based on CORBA. However, the use of ORBs on real-time operating systems (RTOSes) in VME is just starting and very few examples exist. Therefore, as a part of the R&D work for the RIKEN RIBF control system, we have conducted various tests of ORBs for RTOSes on VME/CPCI.

The main purposes of our R&D are:

1. To establish CORBA-based communications among different CUIs (created in C++ and Java) and VME/CPCI running different RTOSes.
2. To estimate the total operational overhead due to the use of CORBA.
3. To confirm interoperability through IIOP among different ORBs.
4. To clarify the deficiencies, if any.

In addition to the interoperability test, the ORB chosen for use in all components was VisiBroker\(^2\) due to the availability of both VxWorks\(^3\) and pSOSystem\(^4\) as well as its widespread use throughout the Netscape browser. Visual C++ 6.0 is used for C/C++ applications and Visual Cafe for Enterprise Edition\(^5\) is used for Java applications. Figure 1 shows the system configuration for this R&D.

Fig. 1. CORBA test system configuration.

A few CUI applications are written using C++ which utilizes conventional socket functions to communicate with VxWorks running on a PowerPC 604 based VME (Motorola MVME 2600). We have installed and tested the function of a variety of VME I/O boards with a VxWorks driver. Then, sources for each layer were modified and compiled with links to CORBA libraries. Using CORBA, one can discard routines for socket functions which require detailed information on the hardware characteristics of both sending and receiving sides. The client, who may not know the details of the server, simply invokes the server object to complete a two-way communication.

Under normal circumstances for accelerator controls, the interface information is known and static. Therefore, static invocation interface (SII) is adequate. Dynamic invocation interface (DII) can be used when the types of parameters used in the programs are unknown. The program of the client using DII will be more complex because operations, such as looking up the argument of the server and returning the value must be carried out dynamically. As far as RIBF controls are concerned, DII is deemed unnecessary. A naming service (NS) is useful in the case one type of ORB is used for the entire system.

For comparison, the response times for various I/O boards have been measured for three different methods. Test routines include the following: (a) Server returns I/O values at the request of a client. (b) Client invokes the object 100 times and the elapsed time is measured. This routine is repeated 10 times to obtain more reliable statistics.

In addition to VisiBroker, a free ORB (for non-commercial use only) such as ORBacus,\(^6\) was used to evaluate the interoperability among different ORBs. The interoperable naming service is not available until CORBA 3.0\(^1\) so one way to pass the object reference across different ORBs is as follows: (1) Interoperable object reference (IOR) is changed into a string, and a server side writes it to the file. (2) A client side reads the file created on the server side, and returns a string to IOR. A file is delivered with FTP, NFS, and so on. The times for two-way calls for different configurations have been measured and compared. The method is as follows: (a) Server returns a random number (float)
when it is called upon by a client. (b) Client invokes the object 10000 times and the elapsed time is measured. This routine is repeated 10 times to obtain more reliable statistics.

One of our goals is to establish a heterogeneous environment for the accelerator controls. Therefore, a RTOS other than VxWorks should be tested. A pSOSSystem has been chosen due to the availability of ORBs, particularly VisiBroker. A compact PCI CPU board (AVIAL DATA ACP-100)\(^7\) is used as the main controller. A DIO board by the same manufacturer\(^8\) is installed for comparison as a corresponding VME board. However, numerous unforeseen problems prevented us from completing this test in time for publication.

For the measurement of response times for various I/O boards, Windows-NT 4.0 is used as the client OS, and Visual C++ 6.0 is used as the compiler. For the server, VxWorks 5.3.1 running on PowerPC 604 and its C++ compiler are employed. VisiBroker is used for both the client and server. Table 1 lists the measurement times in msec for different methods. It seems that the rather large fluctuation in the response for socket communication is due to the use of an event-driven socket library (CAsyncSocket). Events not related to this test might have affected the results during transmission. As for the DII cases, this particular test somewhat sacrifices the generality. The server interface definition languages (IDLs) are given a priori so that the time during which the DII searches for the stringified objects.

The results of interoperations among different ORBs and OSes are listed in Table 2. The numbers with an asterisk indicate that a VisiBroker function utilizing interprocess communication is used. So far, only ORBacu& for Java has been tested for Java/CORBA implementation. JDK 1.2 has been used for the evaluation. It suggests that Java client implementation for this particular ORB is approximately 2.5-3.5 times slower than C++ implementation for the same task. It is yet not certain whether variations in response among different OSes are due to those in hardware performance or in software design. It appears that VxWorks as a server gives smaller fluctuations in response than other OSes as expected for RTOS.

For comparison, the times using socket programming are shown in Table 3. Instead of the event driven socket library (CAsyncSocket), winsock.dl is used to measure genuine elapsed time for socket communication.

It is now preferable to create GUIs for OP1 in Java because of its portability among different platforms. Sharing codes with other laboratories is one of the most important benefits of using Java/CORBA. Visual Cafe has been tested to create GUIs using JavaBeans\(^9\) component. We also plan to test more Java implementation of ORBs both as a client and a server to augment the matrix for interoperation. An object oriented database management system (OODBMS) may replace the relational database management system (RDBMS) for CORBA-based accelerator controls. Objectivity/DB for Linux\(^10\) is being tested for future application.

It has been shown that replacing socket communication with a CORBA layer significantly improves the manageability of accelerator controls. There appears to be no significant problem associated with VisiBroker on VxWorks. For the pSOS version, there appear to be more problems, but these may also be due to our lack of experience on this OS. Interoperability between ORBacu& and VisiBroker is found to be satisfactory and response times do not vary greatly with different combinations. Without using product dependent CORBA services, the flexibility of the system codes can be improved at the expense of finding ways to share the stringified objects.

References
1) http://www.omg.org/
2) http://www.borland.com/visibroker/
4) http://www.isi.com/
5) http://www.microsoft.com/
6) http://www.ooc.com/
7) http://www.avaldata.co.jp/jpn/index.html
8) http://elc.aska.or.jp/electro/index.html
9) http://www.javasoft.com/
10) http://www.objectivity.com/
Spin Tracking with “Real” Siberian Snakes in Relativistic Heavy Ion Collider (RHIC)

M. Xiao and T. Katayama

To achieve high-energy polarized proton collision in Relativistic Heavy Ion Collider (RHIC), the polarized protons should be accelerated to a high energy without losing their polarization, which requires an understanding of the evolution of spin during acceleration and the tools to control it. The spin of a polarized proton in external magnetic fields is governed by the Thomas-BMT equation:

$$\frac{d\vec{S}}{dt} = \left(\frac{e}{\gamma m} \right) \left[(1 + G\gamma) \vec{B}_\perp + (1 + G) \vec{B}_\parallel \right] \times \vec{S},$$

(1)

where the polarization vector \vec{S} is expressed in the frame that moves with the particle. \vec{B}_\perp and \vec{B}_\parallel are the magnetic field components perpendicular and parallel to the velocity \vec{v} of the particle, respectively. G is the anomalous gyromagnetic g-factor, $G = 1.7928$ for the proton. $\gamma = E/mc^2$ is the energy of the moving particle. The orbit motion of the particle is governed by the Lorentz force equation as follows:

$$\frac{d\vec{v}}{dt} = -\left(\frac{e}{\gamma m} \right) \vec{B}_\perp \times \vec{v}.$$

(2)

From the comparison of these two equations it can readily be seen that in a pure vertical field, the spin rotates $G\gamma$ times faster than the orbital motion. In this case, the factor $G\gamma$ gives the number of full spin precessions for every full revolution, and we define it as spin tune, ν_{sp}.

The polarization of polarized protons can be destroyed at many energies during the acceleration in RHIC, known as the depolarizing resonances with two types, the intrinsic resonances and imperfection resonances. Intrinsic resonances arise from the spin motion coupling with horizontal magnetic fields due to vertical betatron oscillations. Imperfection resonances are caused by orbit distortions due to field errors. The resonance conditions are $\nu_{sp} = kP \pm \nu_\beta$ for intrinsic resonances and $\nu_{sp} = k$ for imperfection resonances. Here, k is an integer and P is the superperiodicity of the accelerator; $P = 3$ in RHIC. ν_β is a vertical betatron tune; $\nu_\beta = 29.18$ for RHIC.

The Siberian Snake is a local spin rotator, which is proposed to rotate the spin by 180° around a horizontal axis with no effect on the orbit motion of the particle. Figure 1 shows the rotations of three components of the spin in the ring with two Siberian Snakes installed. It was found that the kick of transverse magnetic field perturbations on spin can be cancelled every two revolutions if the axes of the two Siberian Snakes are perpendicular to each other. Therefore, with the installation of two Siberian Snakes in each ring of the RHIC, the spin tune becomes one-half and is independent of the beam energy. Clearly, the depolarizing resonance conditions cannot be satisfied anymore, and no depolarization would occur.

The depolarization due to the resonances can be studied by numerically tracking protons with spin. The equations of spin motion are linear, and hence the transformation of the spin variables can be described by a matrix, whose elements depend only on the orbital quantities. The spin rotation matrices of some ordinary magnets such as dipole, quadrupole and sextupole magnets were obtained. Based on the numerical field map generated by TOSCA, the study of spin precession and orbital motion in a Siberian Snake was completed. The work gave the energy-dependent numerical symplectic orbital matrices and unitary spin matrices of the snakes and the results were used in spin tracking with “real” Siberian Snakes in RHIC for the entire acceleration and storage period.

The tracking code SPINK 3 was upgraded for the spin tracking with “real” snakes in RHIC. The general idea is to track one or a certain number of protons, located on the contour of a phase-space ellipse or randomly generated inside a phase-space volume with Gaussian distribution, through the machine lattice. Each proton is characterized by four normalized...

Fig. 1. Rotations of three components of the spin in the ring with two Siberian Snakes.
transverse canonical variables of phase space, \((x, p_x = P_x/p_s, y, p_y = P_y/p_s)\), the longitudinal one pair of canonical variables, \((-c\Delta t, p_t = \frac{\Delta E}{p_c})\) and three components of a real unitary vector of spin, \(\vec{S} = (s_x, s_y, s_z)\).

The quantities \(P_x\) and \(P_y\) are transverse momenta, and \(p_s\) is the momentum of the particle. \(\Delta E = E - E_0\), where \(E\) and \(E_0\) are the total and design energies, respectively. \(\delta_t\) is defined as \(\frac{\Delta E}{E_0}\) and \(\Delta t\) is the relative time respect to synchronous particle. We define \(\vec{y}\) as the vertical coordinate for a horizontal ring.

Orbital tracking is carried out using symplectified first-order “transport” maps provided directly by the optical code MAD. To study the problems of lattice misalignments and field errors, MAD transmits to SPINK on the errors (measured or randomly assumed) of each machine element and corrected closed orbit distortion. SPINK accordingly displaces and rotates the corresponding orbit transport maps.

The numerical matrices of two types of Siberian Snakes in RHIC are inserted into the lattice as follows

\[
M = [D_{L/2}][M_{effect}][D_{L/2}],
\]

(3)

where \(M\) represents both \(M_T\) and \(M_s\). \(M_T\) is a 6-D symplectic orbital map of the snakes, and \(D_{L/2}\) is the drift matrix of the half length of the snake. Since both orbital maps and spin matrices of the snakes are energy-dependent, their interpolation is necessary at a certain energy during the acceleration of the polarized proton. Special care has been taken to keep the interpolated orbital map symplectic and the spin matrix unitary. The spin tracking with real Siberian Snakes in RHIC has been completed through the acceleration from the injection energy 25 GeV to the top energy 250 GeV. The momentum gain per turn is \(3 \times 10^{-5}\) GeV/C. Figure 2 gives the single particle tracking results in RHIC with no misalignment in the lattice. The particle is extracted from the contour of phase space, with an emittance of 5 \(\pi\)mm·mrad, 10 \(\pi\)mm·mrad, 15 \(\pi\)mm·mrad and 20 \(\pi\)mm·mrad, shown in (a)–(d) respectively. The depolarizations of the spin in this figure are only caused by intrinsic resonance. Figure 3 indicates the single particle tracking results in RHIC with the misalignments assigned randomly by a truncated Gaussian distribution, the r.m.s value of 0.2 mm for the position in \(x\) and \(y\) directions and 1 mrad for the rotation angle around the \(s\)-direction. The corrected closed orbit distortion is 0.2 mm (r.m.s.). The depolarizations of the spin in this figure are caused by both intrinsic and imperfection resonances.

It has been shown that (1) “real” Siberian Snakes can maintain the polarization of the protons through the acceleration of more than 95% in a RHIC machine with no closed orbit distortion, and of more than 88% in a machine with corrected closed orbit distortion of 0.2 mm (r.m.s) if the polarized proton is extracted from a contour of less than 10 \(\pi\)mm·mrad. (2) symplectic problems on orbital motion are one of the key issues for the spin tracking for over \(10^7\) turns. We solve this problem, and make it possible to predict the “actual” operation conditions in RHIC with real Siberian Snakes.

References
Ion Optics Study of RHIC OPPIS

T. Takeuchi, M. Okamura, and A. Zelenski

A new optically pumped polarized ion source (OPPIS)1 has been developed for the relativistic heavy-ion collider (RHIC) which is now under construction at Brookhaven National Laboratory (BNL), New York, United States of America. In order to achieve a luminosity of $2 \times 10^{32}/s \ cm^2$ in RHIC, the new source is designed to deliver polarized protons of 1.5 mA and 200 μs with a polarization of more than 85%. We have studied the beam optics and depolarization effect of this beam extraction system at this high current.

A schematic view of the OPPIS is shown in Fig. 1. The protons pick up a polarized electron in the Rb cell to become neutral. The neutralized H beam drifts, without being affected from the magnetic fields to the sodium cell, where it picks up an electron to become H$^-$. The H$^-$ beam then leaves the OPPIS under the influence of the fringing field of the ionizer solenoid. The beam emittance and the polarization are determined at the ionizer solenoid, which consists of a solenoid magnet and a sodium jet cell.

To investigate the effect of multiple charge exchange processes and the degradation of a longitudinal spin polarization caused by a fringing field of the solenoidal magnet, the optics and the polarization of the particles were tracked by a combination of the Runge Kutta method and the Monte Carlo method. A magnetic field map (B_r,B_z) in the Runge Kutta simulation was obtained by OPERA-2D and the Monte Carlo method for the charge exchange processes. Further details on the numerical simulation have already been published.2

In this simulation, 5000 particles of H0 atoms, were tracked from 20 cm upstream of the center of the sodium cell ($[20 \ cm] \times \phi([20 \ cm])$, to 30 cm downstream of it. The assumed incident H0 beam was almost parallel, the phase ellipse of which was (± 10 mm: circle) \times (± 1 mrad). We assumed H0 \rightarrow H$^-$ and H$^-$ \rightarrow H0 as charge exchange processes (CEP) between hydrogen and sodium atoms, with cross sections of about $0.03 \times 10^{-14} \ cm^2$ and $0.30 \times 10^{-14} \ cm^2$, respectively, which are obtained from Ref. 3, respectively. At the beam energy of 3.5 keV from the ECR ion source, other cross sections for CEP are some orders of magnitude smaller than the cross sections of the processes mentioned above and are negligible for this calculation. The sodium vapor distribution was assumed to be Gaussian and the total vapor thickness was set to be 10^{15} atoms/cm2. In the spin calculation, it was assumed that the nuclear spin of incident H0 atoms has 100% polarization.4,5

Figure 2 shows the calculated results of the beam trajectory. The point Z = 0 is the center of the sodium vapor cell (length = 20.0 cm). In Fig. 2(a), the thick and thin solid lines indicate the magnetic field distribution and the sodium vapor density distribution with $\sigma = 3.0$ cm, respectively. Figure 2(b) and (c) shows the H0 and H$^-$ trajectories of the transverse X projection, respectively, where only 100 particles are shown. It is clearly seen that the H$^-$ ions diverge from the Z axis due to the existence of the fringing field.

![Fig. 1. Schematic view of RHIC OPPIS.](image)

![Fig. 2. The beam trajectory and charge exchange points in the case of the sodium vapor density distribution of $\sigma = 3.0$ cm.](image)
Fig. 3. Motion of the longitudinal spin polarization. The thick line indicates the field strength along the beam axis. Thin lines indicate the longitudinal spin polarizations.

emanating from the solenoid magnet. On the other hand, many of the H^0 atoms pass straight through the sodium jet ionizer cell. The points where the charge exchange of $H^0 \rightarrow H^-$ or $H^- \rightarrow H^0$ occurs are plotted in Fig. 2(d). The H^- ion production yield was estimated to be 9.0%. The beam radius and the normalized beam emittance for the H^- ion are about 13 mm and 2.4 π mm mrad, respectively. Figure 3 shows the degradation of the nuclear spin polarization. The nuclear spin polarization is 94–100% at 30 cm downstream of the sodium ionizer cell.

Based on the results of the simulation described above, the beam extraction system and the low energy transport line were optimized and are being fabricated at BNL.

References
Ultraslow Muon Production Using the Resonant Ionization Method

Muons have been used in numerous research fields, such as muon-catalyzed fusion, material sciences, and fundamental physics. In particular, the use of polarized muons as spin probes in matter (μSR method) has been used by many researchers, and it is widely recognized that the μSR method provides a unique tool for studying various aspects of matter.

The muon beam for μSR is delivered from an accelerator facility, such as ISIS, where the RIKEN-RAL muon facility operates. Certain characteristics of the muon beam, however, may limit its application. For example, the energy of the produced muons is in the MeV range and their energy spread is approximately 10%. In practice, this limits the application of the μSR method to the study of characteristics of bulk matter only. In order to study surface characteristics or different implantation depths in a material, it is essential to use a polarized muon beam with variable energy from a few eV to a few tens of keV, with small energy distribution. The realization of such a muon beam will open new possibilities for μSR studies.

An apparatus for production of ultraslow muons is under construction now at the RIKEN-RAL muon facility.

A muon beam with an energy of approximately 4 MeV is injected into a thin tungsten foil which is heated up to about 2000 K. Muonium atoms with thermal kinetic energy are evaporated from the surface after its formation following electron-capture in the foil. Then, the electrons of the muonium atoms are removed by irradiation with VUV laser light to produce ultraslow muons (Fig. 1).

This resonant ionization method has been developed at the Meson Science Laboratory of High Energy Accelerator Research Organization (KEK). Another method using cryogenic moderators has been developed at the Paul Scherrer Institute (PSI) and is also used on the RAL EC site (DEVA area). Using the cryogenic moderator method at a pulsed muon facility, the time resolution for μSR experiments is determined by the pulse width of the primary muon beam, which is approximately 100 ns (or 450 ns at higher intensities). The laser resonant ionization method offers a much better time resolution since the time structure is determined by the temporal width of the VUV laser pulse, which is approximately 5 ns. That is, by using the resonance ionization method, we can also overcome the current limitation of time resolution of pulsed muon beams.

The experimental apparatus mainly consists of two parts. One is the laser system for generation of the VUV laser light to ionize muonium in the region of the hot tungsten target. The second part is the beam transport system, in which the ultraslow muons are extracted and delivered to the sample region.

We ionize muonium through the 1S→2P→unbound transitions. The energy difference between 1S and 2P states is 122.05 nm in the case of muonium atom. To obtain the required 122 nm photon, we adopt the sum-difference frequency mixing method, using two photons of 212.55 nm for two-photon excitation of the 4P5 5P[1/2, 0] state in krypton, subtracted by a photon of a tunable difference wavelength.

To generate 212.55 nm light, we first obtain single-mode 850 nm light with an OPO(Optical Parametric Oscillator) system. Then, the 850 nm light is amplified by a Ti:Sapphire crystal which is pumped by frequency-doubled Nd:YAG laser light. The output energy of the amplifier is approximately 230 mJ/pulse with a 25 Hz repetition rate. This beam is split into two light paths. By using Ba2BO4 crystals for frequency-quadrupling, two beams, each with a wavelength of 212.55 nm and an energy of 6 mJ/pulse, are generated.

The difference wavelength is generated by a system consisting of OPO and OPA(Optical Parametric Amplifier) crystals which is driven by a frequency-doubled Nd:YAG laser. We obtain 25 mJ/pulse at a wavelength of 820 nm and with a 25 Hz repetition rate.

Another 355 nm of photons from a frequency-tripled Nd:YAG laser are used to remove electron through transition from the 2P state to an unbound state. This scheme is illustrated in Fig. 2.

![Fig. 1. Schematic diagram of the resonant ionization method to produce ultraslow muons.](image-url)
Fig. 2. Diagram of the laser system which is used in the resonant ionization method to obtain 122 nm photons and 355 nm photons for ionizing muonium atoms.

Fig. 3. Layout of the RIKEN-RAL muon facility and the laser cabin constructed for the ultraslow muon generation experiment. The temperature in the cabin is stabilized within 1 K.

The ultraslow muons generated at the production region are accelerated up to 10 keV, and then transported to a microchannel plate (MCP) detector located at the end of the transport system. The muons are identified by their charge(Q)/mass ratio which was selected by adjusting the magnetic field of a bending magnet in the transport system, and by their time-of-flight (TOF) spectrum.

The construction of the apparatus is now underway. The laser cabin was constructed next to the Port 3 experimental area at the RIKEN-RAL muon facility (Fig. 3). Installation of the laser system is now in progress. The beam transport system is currently being tested in Japan. The installation of the optics will be carried out in spring of year 2000, and we aim to start the experiment in June 2000.

References
VI. RADIATION MONITORING
Radiation Safety Control System for the RIKEN Ring Cyclotron

S. Fujita, S. Nakajima, S. Ito, H. Sakamoto,·1 A. Fujiwara,·2 A. Uchiyama,·2 M. Kase, and Y. Uwamino

The radiation safety control system(1) was in operation from 1986 until the first of February 1999. This system, based on a minicomputer MITSUBISHI MX-3000, is now out-of-date and trivial troubles, such as data transfer errors through an optical fiber, often occurred. We replaced the old system with a new network system when the Ring and AVF cyclotrons were shut down for the relocation of the electric power source. The new system consists of five different subsystems;

1) Radiation monitoring system
2) Access control system
3) Beam application system
4) Interlock control system
5) Central surveillance system.

The subsystems, based on a personal computer and/or UNIX server, are interconnected via a network system. A block diagram of this connection is shown in Fig. 1. The radiation monitoring system observes the status of the radiation monitors and collects the data from them. The collected data can be shown as numerical values or on a graph. These data are transmitted to the central surveillance system through the network, edited and stored on data acquisition equipment.

Several functions have been added to the new system. One of them is the display of names of people staying in the safety controlled room on the monitor screen set on the gate bar console, as is shown in Fig. 2. The new system has been working continuously since the middle of April 1999.

References

*1 Sumijyu Accelerator Service, Ltd.
*2 Faculty of Science, Science University of Tokyo
Routine Work for Radiation Safety in the Ring Cyclotron Facility

S. Fujita, S. Nakajima, S. Ito, H. Sakamoto,*1 A. Fujiwara,*2 A. Uchiyama,*2 M. Kase, and Y. Uwamino

Measurement of Residual Radioactivity

Residual radioactivities in the ring cyclotron facility were measured on the surface at various locations using ionization-chamber survey meters. The measurements were performed during the routine overhaul period as well as after almost every beam experiment.

An experiment was carried out with a 59Co beam of 80 MeV/nucleon in the E6 experimental vault from July 31 to Aug. 3, 1999, as the last beam experiment of the spring term. The routine overhaul started just after that date. The dose rates in the ring cyclotron and in the AVF cyclotron were measured from Aug. 9 to 31. The results are shown in Figs. 1 and 2 along with the date of measurement.

In the period from Oct. 1, 1998 to Sept. 30, 1999, dose rates were measured along the beam lines. The spots a–z, marked by bullets in Fig. 3, are the places where the dose rates exceeded 50 μSv/h. Table 1 summarizes the observed dose rates and gives the dates when the measurements were performed. The maximum dose rate was found to be 17 mSv/h (17000 μSv/h) at the target chamber, denoted by x in Fig. 3. Whenever we observed a high dose rate, we roped off the area and posted a sign warning that it was dangerous to remain for long a time in that place.

Fig. 1. Measured locations around the RIKEN Ring Cyclotron: EDC, electrostatic deflection channel; MDC1, magnetic deflection channel 1; MDC2, magnetic deflection channel 2; MDP1, main differential probe 1; MDP2, main differential probe 2; and MDP3, main differential probe 3. The numbers are dose rates in units of μSv/h. The measurements were carried out on *1, Aug. 26 and *2, Aug. 31 (1999).

Table 1. Summary of the dose rates measured along the beam lines with ionization-chamber survey meters. The detection points a–z indicate the measured locations shown in Fig. 3.

<table>
<thead>
<tr>
<th>Detection point</th>
<th>Measured dose rate (μSv/h)</th>
<th>Date</th>
<th>Particle Energy (MeV/u)</th>
<th>Intensity (enA)</th>
<th>Period (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>100</td>
<td>Jul 9, '99</td>
<td>135</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>110</td>
<td>Jul 9, '99</td>
<td>135</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>75</td>
<td>Jul 9, '99</td>
<td>135</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>240</td>
<td>Apr 15, '99</td>
<td>25</td>
<td>500</td>
<td>2</td>
</tr>
<tr>
<td>e</td>
<td>650</td>
<td>Apr 15, '99</td>
<td>25</td>
<td>500</td>
<td>2</td>
</tr>
<tr>
<td>f</td>
<td>85</td>
<td>Apr 15, '99</td>
<td>25</td>
<td>500</td>
<td>2</td>
</tr>
<tr>
<td>g</td>
<td>140</td>
<td>Sept 24, '99</td>
<td>135</td>
<td>630</td>
<td>1</td>
</tr>
<tr>
<td>h</td>
<td>80</td>
<td>Nov 9, '98</td>
<td>95</td>
<td>750</td>
<td>3</td>
</tr>
<tr>
<td>i</td>
<td>280</td>
<td>Nov 13, '98</td>
<td>Xe-136</td>
<td>7.6</td>
<td>1000</td>
</tr>
<tr>
<td>j</td>
<td>150</td>
<td>Jan 5, '99</td>
<td>Co-59</td>
<td>80</td>
<td>350</td>
</tr>
<tr>
<td>k</td>
<td>1650</td>
<td>Apr 15, '99</td>
<td>Xe-136</td>
<td>7.6</td>
<td>4500</td>
</tr>
<tr>
<td>l</td>
<td>300</td>
<td>Sept 24, '99</td>
<td>C-12</td>
<td>135</td>
<td>1200</td>
</tr>
<tr>
<td>m</td>
<td>50</td>
<td>Jun 9, '99</td>
<td>C-13</td>
<td>100</td>
<td>3200</td>
</tr>
<tr>
<td>n</td>
<td>90</td>
<td>Nov 27, '98</td>
<td>Ne-20</td>
<td>135</td>
<td>1600</td>
</tr>
<tr>
<td>o</td>
<td>60</td>
<td>Nov 27, '98</td>
<td>Ne-20</td>
<td>135</td>
<td>1600</td>
</tr>
<tr>
<td>p</td>
<td>55</td>
<td>Nov 13, '98</td>
<td>Kr-84</td>
<td>70</td>
<td>7.5</td>
</tr>
<tr>
<td>q</td>
<td>90</td>
<td>Nov 26, '98</td>
<td>Ne-20</td>
<td>135</td>
<td>1600</td>
</tr>
<tr>
<td>r</td>
<td>105</td>
<td>Dec 1, '98</td>
<td>C-12</td>
<td>135</td>
<td>2000</td>
</tr>
<tr>
<td>s</td>
<td>80</td>
<td>Jul 12, '99</td>
<td>N-14</td>
<td>135</td>
<td>1500</td>
</tr>
<tr>
<td>t</td>
<td>3500</td>
<td>Jul 12, '99</td>
<td>N-14</td>
<td>135</td>
<td>1500</td>
</tr>
<tr>
<td>u</td>
<td>1950</td>
<td>Dec 1, '98</td>
<td>C-12</td>
<td>135</td>
<td>2000</td>
</tr>
<tr>
<td>v</td>
<td>100</td>
<td>Jun 17, '99</td>
<td>d</td>
<td>135</td>
<td>250</td>
</tr>
<tr>
<td>w</td>
<td>220</td>
<td>Jul 9, '99</td>
<td>d</td>
<td>135</td>
<td>100</td>
</tr>
<tr>
<td>x</td>
<td>17000</td>
<td>Jun 17, '99</td>
<td>d</td>
<td>135</td>
<td>250</td>
</tr>
<tr>
<td>y</td>
<td>450</td>
<td>Jul 9, '99</td>
<td>d</td>
<td>135</td>
<td>100</td>
</tr>
<tr>
<td>z</td>
<td>1100</td>
<td>Jun 21, '99</td>
<td>d</td>
<td>135</td>
<td>250</td>
</tr>
</tbody>
</table>

Measurement of Leakage Radiation Level

Having analyzed the collected data of leakage neutrons, we found that the radiation levels in the controlled area were much less than the allowable dose limit. Leakage of γ-rays and neutrons was below the...
Fig. 3. Layout of the RIKEN Ring Cyclotron facility as of 1999. Measured locations of residual radioactivities along the beam lines are shown by bullets a–z.

detection limit of the environmental monitors. We evaluated the radiation level at the boundary of the accelerator facility using the leakage recorded with the monitor which was installed in the computer room on the ground floor just above a bending magnet which guided the beams from the ring cyclotron vault to the distribution corridor. As a result, we obtained a radiation level of about 3 μSv/year which was much less than the permissible dose limit (1 mSv/year).
VII. LIST OF PUBLICATIONS

1. Accelerator development and accelerator physics

2. Nuclear physics and nuclear instrumentation

3. Atomic and solid-state physics

Y. Awaya, T. Kambara, and Y. Kanai: “Multiple K- and L-shell ionizations of target atoms by collisions

N. Kuroda, N. Ishikawa, Y. Chimi, A. Iwasse, S. Okayasu, H. Ikeda, R. Yoshizaki, and T. Kambara: “Vortex dynamics in Bi$_2$(Sr,La)$_2$CuO$_{4+x}$ and Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ single crystals with columnar defects”, Physica C 321, 143-150 (1999).

4. Radiochemistry, radiation chemistry, and radiation biology

5. Material analysis

5. Material analysis

VIII. LIST OF PREPRINTS

1999

RIKEN-AF-NP

303 V. B. Carlson and D. Hirata: “The Dirac-Hartree-Bogoliubov approximation for finite nuclei”

305 A. Ansari, M. Oi, N. Onishi, and T. Horibara: “High exotics in osmium isotopes”

306 A. Ansari, M. Oi, N. Onishi, and T. Horibara: “High spin structure of \(^{182,184}\)Os in tilted axis cranking approach”

308 H. Madokoro and M. Matsuzaki: “Relativistic and non-relativistic mean field investigation of the super-deformed bands in \(^{62}\)Zn”

309 N. Saito: “Measurement of anti-quark polarization in the proton and its flavor decomposition with PHENIX at RHIC”

310 Y. Goto: “Gluon polarization measurement with photon detection at PHENIX”

311 M. R. Ahmady and E. Kou: “A more careful estimate of the charm content of \(\eta\)”

313 Y. Mochizuki, T. Izuyama, and I. Tanihata: “Dynamics of exotic nuclear rod formation for the origin of neutron star glitches”

314 N. Itagaki and S. Okabe: “Nucleon-alpha chain states in \(^{10}\)Be”

315 N. Dinh Daung, K. Tanabe, and A. Ariina: “Evolution of the hot giant dipole resonance as a manifestation of the order-and-chaos coexistence”

316 A. Kohama, K. Yazaki, and R. Seki: “Correlation and finite interaction-range effects in high-energy electron inclusive scattering”

317 T. Suzuki, H. Sakai, and T. Tatsumi: “The Landau-Migdal parameters, \(g'_{NN}\) and \(g'_{N\Delta}\) and pion condensation”

318 T. Suzuki: “\(E1 \times E1\) and \(E1 \times E2\) giant resonances*: Effects of the exchange current on the excitation of double giant resonance states”

319 H. Okamura: “Three-body treatment of the (d, \(^{2}\)He) reaction on the basis of the adiabatic approximation”

320 V. Yu. Denisov and S. Yamaji: “One and double-phonon giant monopole resonances in the nonlinear approach”

322 Y. Goto: “Sensitivity to gluon polarization at RHIC”

323 N. Saito: “RHIC spin physics-status of the polarized collider and spin-flavor structure of the nucleon”

324 N. Dinh Dang, K. Eisenman, J. Seitz, and M. Thoennessen: “Statistical analysis of the hot giant dipole resonance with the phonon damping model”

325 N. Dinh Dang, K. Tanabe, and A. Arima: “Damping of multiphonon giant resonances”

326 A. Ansari, N. Dinh Dang, and A. Arima: “Hot giant dipole resonance in static path approximation”

327 H. Kurasawa and T. Suzuki: “Effects of the Dirac sea on the giant monopole states”

328 T. Maruyama and S. Chiba: “Isoscalar giant quadrupole resonance state in the relativistic approach with the momentum-dependent self-energies”

329 N. Itagaki and S. Aoyama: “Systematic study on He-isotope with antisymmetrized molecular dynamics plus generator coordinate method”

331 N. Dinh Dang, T. Suzuki, and A. Arima: “Giant dipole resonance in neutron-rich nuclei within the phonon damping model”

333 N. Itagaki and S. Okabe: “Molecular orbital structures in 10Be”

335 M. Oi, A. Ansari, T. Horibata, and N. Onishi: “Wobbling motion in the multi-bands crossing region”

336 K. Tanabe and N. Dinh Dang: “Exact form of the random phase approximation equation at finite temperature including the entropy effect”

RIKEN-AF-NC

12 S. Biri, T. Nakagawa, M. Kidera, Y. Miyazawa, M. Hemmi, T. Chiba, N. Inabe, M. Kase, T. Kageyama, O. Kamigaito, A. Goto, and Y. Yano: “Production of highly charged ions in the RIKEN 18 GHz ECR ion source using an electrode in two modes”

13 G. Shirkov: “Multicomponent consideration of electron fraction of ECR source plasma”

14 E. Syresin, T. Tanabe, T. Rizawa, T. Katayama, and I. Mashkov: “Simulation and design of an electron cooling system for ACR”

277
15 S. Kondrashov: “Laser ion source-intense pulsed source of highly-charged ion beams for RIKEN MUSES Project”

16 P. Zenkevich and T. Katayama: “Storage of ion beams in ACR by use of charge-exchange injection”
IX. PAPERS PRESENTED AT MEETINGS

1. Accelerator development and accelerator physics

T. Tanabe, Y. Watanabe, and M. Kase: “RIKEN-RIBF control system”, 2nd Workshop on PCs and Particle Accelerator Control (PCaPAC ’99), (KEK), Tsukuba, Jan. (1999).

O. Kamigaito: “A pre-injector RFQ and a charge-state multiplier system of the RIKEN heavy ion linac”, 4th Korea-Japan Joint Symp. on Cyclotrons and Nuclear Science, (Korea Cancer Center Hospital), Seoul, Korea, Mar. (1999).

A. Goto and Y. Yano: “RIKEN Superconducting Ring Cyclotron (I): Overview and status”, 60th Meet. on Cryogenics and Superconductivity, (Cryogenics Association of Japan), Sapporo, June (1999).

S. Bhattacharjee and H. Amemiya: “Build up characteristics of a plasma produced by high power short pulse microwaves”, 24th Int. Conf. on Phenomena in Ionized Gases (ICPIG), Warsaw, Poland, July (1999).

H. Madokoro and M. Matsuzaki: “Systematic study of
Y. Mochizuki: "Seeking mysterious universe with RI",
T. Matsuzaki, K. Nagamine, K. Ishida, S. N.
T. Suzuki: "E1 x E1 and E1 x E2 giant resonances",
K. Ishida: "Super-super muon channel at RAL",
K. Ishida: "Muon catalyzed fusion experiments,
S. Yamaji: "Damping of isoscalar monopole resonance
H. M. Shimizu, T. Ikeda, H. Kato, H. Kawai, H.
K. Ishida: "Second phase of RIKEN-RAL",
A. Ozawa, O. Bochkarev, L. Chulkov, D. Cortina-Gil,
H. Geissel, M. Hellsroem, M. Ivanov, R. Janik,
K. Kimura, T. Kobayashi, A. A. Korsheninnikov,
G. Muenzenberg, F. Nickel, A. A. Ogloblin, M.
Pfützner, V. Pribora, C. Sheidenberger, H. Simon,
B. Sitar, T. Suzuki, P. Strmen, K. Stemmmerer,
I. Tanihata, M. Winkler, and K. Yoshida: "Measurements
of interactions across sections for oxygen isotopes",
K. Sekiguchi, H. Sakai, H. Okamura, N. Sakamoto, T.
Uesaka, A. Tamii, Y. Satou, T. Ohnishi, T. Wakasa,
of cross sections and vector and tensor analyzing powers
for d-p elastic scattering at E_d = 270 MeV”,
Asia Pacific Conf. on Few-Body Problems in Physics (APFB 99), (Science University of Tokyo), Chiba,
T. Uesaka, H. Sakai, H. Okamura, J. Tamii, Y. Satou,
T. Ohnishi, N. Sakamoto, K. Itoh, K. Sekiguchi,
K. Yako, S. Sakoda, K. Suda, and T. Wakasa:
\(^{3}\text{He}(d, p)^{4}\text{He} \) reaction at intermediate energies",
Asia Pacific Conf. on Few-Body Problems in Physics (APFB 99), (Science University of Tokyo), Chiba,
sigma model at finite temperature using the nonperturbative renormalization group”,
Kiken ‘Thermal Field Theory and Its Application’, (Yukawa Institute for Theoretical Physics, Kyoto University),
T. Uesaka, H. Sakai, H. Okamura, A. Tamii, Y. Satou,
T. Ohnishi, N. Sakamoto, K. Itoh, K. Sekiguchi,
K. Yako, S. Sakoda, K. Suda, and T. Wakasa:
\(^{3}\text{He}(d, p)^{4}\text{He} \) reaction at intermediate energies”,
4th Workshop on Polarized Nuclear Fusion, (Research Center for Nuclear Physics, Osaka University), Os-

H. Madokoro, M. Matsuzaki, and M. Matsuzaki: “Largely deformed states in nuclei close to the $N=Z$ line”, YITP Workshop on Structure and Reaction of Unstable Nuclei, (Yukawa Institute for Theoretical Physics, Kyoto University), Kyoto, Nov. (1999).

K. Sumiyoshi: “Unstable nuclei and EOS table for supernova and r-process simulations in relativistic many body approach”, YITP Workshop on Structure and Reaction of Unstable Nuclei, (Yukawa Institute for Theoretical Physics, Kyoto University), Kyoto, Nov. (1999).

T. Suzuki: “A few topics on giant resonance states”,

3. Atomic and solid-state physics

I. Shimamura: "Hyperspherical close-coupling calculations on the dynamics of three-body systems", Int. Lectures on Atomic and Molecular Physics, Asia Pacific Center for Theoretical Physics (APCTP), Seoul, Korea, Apr. (1998).

A. Koyama: "Auger electron spectra induced by heavy ion impact", 15th Int. Conf. on the Application of Accelerators in Research and Industry, (University of North Texas), Denton, USA, Nov. (1998).

Y. Nakai, T. Kambara, A. Itoh, H. Tsuchida, and Y. Yamazaki: “Asymmetric fission of multiply charged C$_{60}$ ion by fast C$_{6}^{+}$ impact”, 21st Int. Conf. on the Physics of Electronic and Atomic Collisions (XXI-ICPEAC), (Society for Atomic Collision Research, Japan, Physical Society of Japan, and Chemical Society of Japan), Sendai, July (1999).

A. Fukaya, I. Watanabe, S. Ohira, and K. Nagamine: “Muon spin resonance of Haldane-gap systems, Ni(C2H6N3)2NO2(CIO4) and Ni2O4 2(2-methylimidazolide)”, 8th Int. Conf. on Muon Spin Rotation, Relaxation and Resonance, (Paul Scherrer Institut, EPS, Universitas Turicensis, ETH), Les Diablerets, Switzerland, Aug. (1999).

A. Fukaya, W. Higenomo, M. Hagiwara, and K. Nagamine: “πSR study of a spin ladder system (Cu1-xZnx)2[(1,4-diazacycloheptane)2Cl]”, 8th Int. Conf. on Muon Spin Rotation, Relaxation and Resonance, (Paul Scherrer Institut, EPS, Universitas Turicensis, ETH), Les Diablerets, Switzerland, Aug. (1999).

Y. Iwai: “Soft X-ray spectroscopy of slow highly...
4. Radiochemistry, radiation chemistry, and radiation biology

K. Ushida, K. Ishioka, and M. Kitajima: “Coherent phonon spectroscopy applied to the surface...

T. Matsuyama, T. Abe, R. Kiuchi, T. Nakano, T.

5. Material analysis

K. Hasegawa, K. Maeda, S. Nakayama, A. Tonomura, and H. Hannonka: “In-air high-resolution PIXE system with a multiwire proportional chamber”, 8th

J. Arai, T. Ishiguro, K. Nakai, I. Amano, I. Watanabe, and K. Nagamine: “Muon spin relaxation... of \(\mathrm{La}_{2-x}\mathrm{Sr}_x\mathrm{Cu}_{1-y}\mathrm{Zn}_y\mathrm{O}_4\) studied by \(\mu\)SR”, 1999 Fall Meet. of Physical Society of Japan, Morioka, Sept. (1999).

X. LIST OF SYMPOSIA

(Jan.-Dec. 1999)

1) Symp. on Studies on Condensed Matter Physics, Atomic Physics, Nuclear Chemistry, and Biomedical Science Using RIKEN Accelerators
 2 Feb., Wako, Cellular Physiology Lab., RIKEN

2) RBRC Workshop on Hard Parton Physics in High-Energy Nuclear Collisions
 1–5 Mar., New York, USA, RIKEN BNL Research Center

3) RBRC Workshop on Event Generator for RHIC Spin Physics
 15–19 Mar., New York, USA, RIKEN BNL Research Center

4) RIKEN Symp. and Workshop on Selected Topics in Nuclear Collective Excitations
 20–24 Mar., Wako, Cyclotron Lab., RIKEN

5) RBRC Workshop on Numerical Algorithm at Non-Zero Chemical Potential
 27 Apr.–1 May, New York, USA, RIKEN BNL Research Center

6) RBRC Workshop on Gauge-Invariant Variables in Gauge Theories
 27–29 May, New York, USA, RIKEN BNL Research Center

7) Int. Workshop on Space Factory on JEM/ISS
 7–9 June, Tsukuba, Computational Science Div., Advanced Computing Center, RIKEN

8) RBRC Workshop on OSCAR II: Predictions for RHIC
 9–16 July, New York, USA, RIKEN BNL Research Center

9) Int. Workshop on Atomic Collisions and Atomic Spectroscopy with Slow Antiprotons
 19–21 July, Yokohama, Atomic Physics Lab., RIKEN

10) RIKEN Int. Symp. on Models and Theories of the Nuclear Mass
 19–23 July, Wako, RIBF Project Office, Cyclotron Center, RIKEN

11) 15th Symp. on Academic Activities for Waste Management
 22–23 July, Wako, Safety Center, RIKEN

12) RIKEN Symp. on the Theory of Atomic and Molecular Processes (VII)
 31 July–1 Aug., Wako, Atomic Physics Lab., RIKEN

13) RIKEN Int. Conf. on Astrophysics High T and Low Tau
 8–14 Aug., Sedona, USA, RI Beam Science Lab., RIKEN

14) RBRC Workshop on Coulomb and Pion Asymmetry Polarimetry and Hadronic Spin Dependence at RHIC Energies
 18 Aug., New York, USA, RIKEN BNL Research Center

15) 7th RIKEN Workshop for RI-Beam Physics
 23 Aug., Wako, RI Beam Science Lab., RIKEN

16) 8th RIKEN Workshop for RI-Beam Physics on Unstable/Hyper Nuclei
 2–3 Sept., Wako, RI Beam Science Lab., RIKEN

17) RBRC Workshop on RHIC Spin Physics
 6–8 Oct., New York, USA, RIKEN BNL Research Center

18) 12th Symp. of Accelerator Science and Technology
27–29 Oct., Wako, RIKEN Accelerator Research Facility

19) RIKEN Symp. on Frontiers of Magnetism Studies with Microscopic Probes: Space-Time Correlation of Spins
 29–30 Oct., Kofu, Muon Science Lab., RIKEN

20) RIBF Workshop on Physics on eA collider at MUSES
 1–2 Nov., Wako, RI Beam Science Lab., RIKEN

21) RIKEN Symp. on Large Scale Calculation of Electronic States: Exploring Dynamical Properties of Materials
 4–5 Nov., Wako, Computational Science Div., Advanced Computing Center, RIKEN

22) 9th RIKEN Workshop for RI-Beam Physics
 23–24 Nov., Wako, RI Beam Science Lab., RIKEN

23) RIKEN Symp. on Production of Ultra Slow Highly-Charged Ions and Its Application
 2–3 Dec., Wako, Atomic Physics Lab., RIKEN

24) Int. Symp. on Quasiparticle and Phonon Excitations in Nuclei in Memory of Professor Vadim Soloviev
 (Soloviev 99)
 4–7 Dec., Wako, Cyclotron Center, RIKEN
XI. LIST OF SEMINARS

(Jan.–Dec. 1999)

Radiation Lab., RI Beam Science Lab., and Beam Technology Div.

1) K. Turner, BNL (USA), 12 Jan.
 “W charge asymmetry at the tevatron”

2) S. N. White, BNL (USA), 19 Jan.
 “Luminosity measurement”

3) N. Saito, RIKEN (Saitama) and RBRC (USA), 26 Jan.
 “Report of hadron collider physics XIII in India”

4) B. A. Brown, Michigan State University, NSCL (USA), 1 Feb.
 “Single-nucleon knock out from halo nuclei”

 “Subbarrier heavy ions fusion enhanced by sub-barrier nucleons transfer and sub-barrier fusion of nuclei far from the beta-stability line. Formation of superheavy elements (SHEs) in cold fusion reactions”

6) L. C. Bland, Indiana University (USA), 4 Feb.
 “Determining the gluon contribution to the proton’s spin with STAR”

7) J. Symons, Lawrence Berkeley National Laboratory (USA), 9 Feb.
 “Photon detection with the STAR detector at RHIC”

8) J. Moss, Los Alamos National Laboratory (USA), 9 Feb.
 “Spin-flavor structure of the nucleon”

9) V. Rykov, Wayne State University (USA), 9 Feb.
 “CP-odd single and double spin asymmetries in W/Z-production by polarized hadrons and leptons”

10) N. Itagaki, Graduate School of Science, Hokkaido University (Hokkaido), 10 Feb.
 “Development of cluster structure in neutron rich nuclei”

11) K. Goeke, University of Bochum (Germany), 16 Feb.
 “Deeply virtual compton scattering: Skewed parton distributions and their theory”

12) W. Vogelsang, State University of New York, Stoney Brook (USA), 16 Feb.
 “Spin asymmetries in drell-yan production of lepton pairs”

13) P. Moller, Los Alamos National Laboratory (USA), 17 Feb.
 “Topology of 1000000 grid-point fission potential-energy surfaces”

14) A. de Roeck, DESY (Germany), 18 Feb.
 “The polarized HERA project: Machine aspects and physics program”

15) L. N. Satpathy, Institute of Physics, Bhubaneswar (India), 23 Feb.
 “How to go from finite nuclei to infinite nuclear matter”

16) E. Shuryak, State University of New York, Stoney Brook (USA), 23 Feb.
 “Why and how the nucleon spin penetrates into the glue and the sea quarks”

 “Effect of neutrino-driven wind during a supernova explosion on nucleosynthesis through the r-process”

18) M. Perdekamp, RBRC (USA), 2 Mar.
 “Determination of ∆G in compass”

19) T. Blum, RBRC (USA), 9 Mar.
 “Spin on lattice”

20) R. L. Jaffe, MIT (USA), 16 Mar.
 “Transversity and interference fragmentation functions”

21) N. Makins, University of Illinois (USA), 18 Mar.
 “Spin measurements from HERMES”

22) S. Ohta, KEK (Tsukuba), 23 Mar.
 “Spin on lattice II”

23) A. Deshpande, Yale University (USA), 30 Mar.
 “Bj sum, ∆G, and ωs(Q2) using pQCD analysis of g1”

24) B. Ibrahin, Cairo University (Egypt), 5 Apr.
 “A method for calculating the complete expansion of the Glauber amplitude and its application to p+6He scattering”

25) M. Tannenbaum, BNL (USA), 6 Apr.
 “kT issues”

26) D. Kharzeev, RBRC (USA), 13 Apr.
"Onia and ΔG"

27) T. Nakatsukasa, RIKEN (Saitama), 19 Apr.
 "Self-consistent determination of collective coordinates"

28) M. Perdekamp, RBRC (USA) et al., 27 Apr.
 "Report from DIS99"

29) W. Vogelsang, State University of New York, Stoney Brook (USA), 4 May
 "Further discussions on DIS99 and on the HERMES measurement of two-hadron production"

30) J. Meng, Peking University (China), 10 May
 "The surface diffuseness and the spin-orbital splitting in relativistic continuum Hartree-Bogoliubov theory"

31) M. Perdekamp, RBRC (USA), 11 May
 "More news from DIS99"

32) S. Pittel, Bartol Research Institute, University of Delaware (USA), 12 May
 "An improved single-particle basis for nuclear structure studies far from stability"

33) J. Pretz, BNL (USA), 18 May
 "SMC’s semi-inclusive measurements"

34) H. Spinka, Argonne National Laboratory (USA), 25 May
 "Polarimetry/luminosity issues"

35) G. Schrieder, Technische Universität Darmstadt (Germany), 27 May
 "1) Fragment-neutron correlation in fragmentation of Halo Nuclei; 2) Tentative plans for a HI-Electron-Photon Collider at GSI"

36) G. Roepke, University of Rostock (Germany), 28 May
 "Clusters in dense nuclear matter"

37) A. Deshpande, Yale University (USA) and G. Bunce, BNL and RBRC (USA), 1 June
 "Highlights of the Hamburg meeting on polarization at HERA"

38) T. Roser, BNL (USA), 8 June
 "Machine aspect of HERA-spin workshop"

39) W. Vogelsang, State University of New York, Stoney Brook (USA), 15 June
 "Prompt photons"

40) A. Ogawa, Pennsylvania State University (USA), 22 June
 "Transversity at STAR"

41) A. Bruell, MIT (USA), 29 June
 "HERMES results"

42) D. A. Kosower, Sacley (France), 29 June
 "Parton distribution with errors"

43) S. Xu, Institute of Modern Physics, Chinese Academy of Sciences (China), 13 July
 "Beta-delayed proton decay near the proton-drip line"

44) E. J. Stephenson, Indiana University (USA), 13 July
 "Spin dependence in charge exchange scattering"

45) S. Nagataki, University of Tokyo (Tokyo), 26 July
 "Explosive nucleosynthesis in SN 1987A: Jet-like explosion inferred from the observations of 44Ti and Fe"

46) M. Anselmino, Torino University (Italy), 10 Aug.
 "Single transverse spin asymmetries"

47) K. Imai, Kyoto University (Kyoto), 17 Aug.
 "Polarimetry at collision point"

48) Y. H. Zhang, JAERI and IMP (China), 20 Aug.
 "Rotational band structures in odd-odd 178,180Ir"

49) J. Tostevin, University of Surrey (UK), 23 Aug.
 "Theoretical methods for reactions of composite nuclei"

50) J. Tostevin, University of Surrey (UK), 23 Aug.
 "Exotic nucleus spectroscopy using nuclear reactions"

51) E. Leader, University of London (UK), 24 Aug.
 "How well do we understand the spin structure of the nucleon?"

52) A. Ansari, Institute of Physics, Bhubaneswar (India), 27 Aug.
 "A microscopic study of giant dipole resonances in hot and rotating nuclei"

53) E. Leader, University of London (UK), 31 Aug.
 "Collins effect"

54) M. Matsuzaki, Fukuoka University of Education (Fukuoka), 1 Sept.
 "Constructing relativistic effective nucleon-nucleon interaction for superfluid gap equation"

55) J. Meng, Peking University (China), 1 Sept.
"The structure of superheavy elements newly discovered in the reaction of 86Kr with 208Pb"

56) S. Sasaki, RBRC (USA), 7 Sept.
"Spin on lattice III"

57) A. Contogouris, Athens University (Greece), 21 Sept.
"Determinations of the polarized gluon distribution"

58) N. Buttimore, University of Dublin (Ireland), 28 Sept.
"Spin flip in proton-carbon polarimetry"

59) E. Stein, Regensburg University (Germany), 15 Oct.
"Higher twist effects for g1"

60) J. Q. Chen, Nanjing University (China), 18 Oct.
"Nucleon-pair shell model calculations of the even-even Xe and Ba nuclei"

61) K. Yabana, Institute of Physics, University of Tsukuba (Ibaraki), 19 Oct.
"Time-dependent mean-field theory applied to finite electronic systems"

62) Z. Feng-Shou, Institute of Modern Physics, Chinese Academy of Sciences (China), 26 Oct.
"Chemical instability and nuclear multifragmentation in heavy ion collisions"

63) S. Kretzer, Dortmund University (Germany), 26 Oct.
"Charm production in charged current DIS"

64) R. Johnson, Surrey University, (UK), 29 Oct.
"Applications of the adiabatic approximation to transfer reactions, break-up and scattering of halo nuclei"

65) G. Baur, IKP, FZ, Julich (Germany), 29 Oct.
"New possibilities for Coulomb dissociation"

66) Y. Chen, China Institute of Atomic Energy (China), 8 Nov.
"The axial symmetry break in superdeformed nuclei"

67) T. Blum, RBRC (USA), 16 Nov.
"Spin on lattice IV"

68) T. Roser, BNL (USA), 16 Nov.
"New idea to operate snake at RHIC"

69) K. Kaneko, Kyushu Sangyo University (Fukuoka), 19 Nov.

"Proton-neutron interactions in an extended P+QQ force model"

70) G. Levai, Institute of Nuclear Research of the Hungarian Academy of Sciences (Hungary), 22 Nov.
"Symmetry aspects of nuclear cluster systems"

71) H. Sato, Kyoto University (Kyoto), 23 Nov.
"Open heavy flavor production"

72) M. Wiescher, Notre Dame University (USA), 24 Nov.
"Trigger and endpoint of the rp-process"

73) Y. Zhuo, China Institute of Atomic Energy (China), 24 Nov.
"Brownian motors driven by non-equilibrium fluctuations"

74) P. Bonche, Saclay (France), 24 Nov.
"Survey of mean-field theories and beyond, from Hartree-Fock to projected configuration mixing"

75) R. Seki, California State University, Northridge, and Kellogg Radiation Laboratory, Caltech (USA), 30 Nov.
"Nuclear physics in atmospheric neutrino oscillation"

76) D. Boer, RBRC (USA), 30 Nov.
"Transverse spin effects: Theory"

77) M. Perdekamp, RBRC (USA), 7 Dec.
"Transverse spin effects: Experiment"

78) M. Junker, Laboratori Nazionali del Gran Sasso (Italy), 10 Dec.
"LUNA: An underground accelerator facility for nuclear astrophysics"

"Hadronic and quark/gluon degrees of freedom in hadron interactions"

"Consistent study of asymmetric nuclear matter and interaction potential between neutron-rich nuclei"

81) F. Ivanyuk, Institute for Nuclear Research, Kiev (Ukraine), 20 Dec.
"The pairing and shell effects in the transport coefficients of collective motion"
Atomic Physics Lab.

1) M. Kawai, T. Yoneda, and H. Okuyama, RIKEN (Saitama), 26 Jan.
 “Behavior of hydrogen on surfaces”

2) S. Huldt, Lund University (Sweden), 29 June
 “Instrumentation and applications for optical spectroscopy”

3) B. Zygelman, University Nevada (USA), 5 Feb.
 “Spin exchange in cold collision of hydrogen atoms”

4) P. C. Stancil, Oak Ridge National Laboratory (USA), 26 Mar.
 “Atomic and molecular processes in the early universe”

5) M. Wada, RIKEN (Saitama), 19 Apr.
 “Trapping unstable nuclear ions from RIPS and their applications”

6) C. Guet, CEA-Grenoble (France), 20 Apr.
 “Theoretical approaches to collisions of metal clusters with ions and electrons”

7) T. Miura, University of Tsukuba (Ibaraki), 21 Mar.
 “Modified interatomic potential in atom-C_{60} collisions”

8) N. Cherepkov, State University of Aerospace Instrument (Russia), 4 June
 “Photoionization of fixed-in-space molecules, or complete photoionization experiments
 with diatomic molecules”

9) K. Yamanouchi, University of Tokyo (Tokyo), 10 June
 “Chemistry in intense laser field”

10) Y. Yoshida, Shizuoka Institute of Science and Technology (Shizuoka), 11 June
 “Material science with Mössbauer spectroscopy at RI Beam Factory”

11) T. Suda, RIKEN (Saitama), 18 June
 “Production of linearly polarized photons by coherent bremsstrahlung, and a pair polarimeter”

12) M. Inokuti, Argonne National Laboratory (USA), 25 June
 “Topics of my current and unfinished research”

13) S. J. Buckman, Australian National University (Australia), 8 July
 “Cooling and trapping of metastable helium”

14) A. Kheifets, Australian National University (Australia), 8 July
 “Determination of energy-momentum distribution of electron in solids by electron momentum spectroscopy”

15) J. Sanderson, University College London (UK), 12 July
 “Coulomb explosions of simple molecules in intense femtosecond laser pulses”

16) F. A. Gianturco, University of Rome (Italy), 13 July
 “Molecular physics at the millikelvins: Do Efimov states exist in He clusters?”

17) R. Janev, Research Center for Energy Macedonian Academy of Sciences and Arts (Macedonia), 15 Oct.
 “Atomic and molecular processes in fusion plasmas”

18) Y. Iwata, Cluster Science Laboratory, ETL (Ibaraki), 12 Nov.
 “New cluster beam source developed for nanometer scale patterned media technologies”

19) I. Sakurai, RIKEN (Saitama), 26 Nov.
 “Anomalous gas amplification of Xe + CO_{2} proportional counter”

20) H. Shiromaru, Tokyo Metropolitan University (Tokyo), 20 Dec.
 “Molecular structure and equilibrium nuclear configuration revealed by Coulomb explosion”

RIBF Project Office

1) Y. Mori, KEK (Ibaraki), 12 Jan.
 “High-gradient RF cavity”

2) Y. Batygin, A. Goto, and J. Kim, RIKEN (Saitama), 27 Jan.
 “High current beam dynamics problems in RIBF project”

3) T. Satow, NIFS (Chiba), 18 Mar.
 “The first excitation of the Large Helical Device (LHD)”

4) M. Kaji, Mitsubishi (Tokyo), 23 Apr.
 “EPIC”

5) S. Kato, KEK (Ibaraki), 23 Apr.
 “How to wash surfaces of vacuum chambers”

6) J. Hasegawa, Tokyo Institute of Technology (Tokyo), 23 Aug.
“Development of a high brightness laser ion source”

7) S. Runkel, Frankfurt University (Germany), 16 Sept.
“The Frankfurt ECR- (ve) RFQ-Facility”

8) T. Mukhopadhyay, VECC (India), 15 Oct.
“Calculation of neutron heat loads and damages to superconducting magnets”

9) K. Chouffani, Hiroshima University (Hiroshima), 22 Oct.
“Parametric X radiation and diffracted transition radiation at REFER electron ring”

Radioisotope Technology Div.

1) K. Komatsu, Hiroshima University (Hiroshima), 4 Oct.
“Cloning and protein function of DNA double-strand break repair gene NBS1”

2) A. Grosovsky, University of California (USA), 12 Nov.
“Radiation-induced genomic instability”

Computational Science Div.

1) R. Osman, Mount Sinai Medical University (USA), 18 Mar.
“MD simulation of biopolymer”

2) M. Payne, University of Cambridge (UK), 19 Mar.
“Finite temperature simulations of metal surfaces and zeolites”

3) Y. Kobayashi, Soka University (Tokyo), 25 Mar.
“Physicochemical mechanism of protein folding”

4) H. Iwamori, University of Tokyo (Tokyo), 1 Apr.
“Material circulation in subduction zones”

5) T. Yama-moto, RIKEN (Saitama), 13 May
“Application of the molecular orbital calculation to the atomic spectroscopy of low-Z elements”

6) K. Ohguchi, RIKEN (Saitama), 20 May
“Molecular mechanism of binary nucleation in vapor phase”

7) M. Matsui, Kyusyu University (Fukuoka), 11 June
“Molecular dynamics simulation of mantle minerals”

8) F. Phicherri, RIKEN (Saitama), 17 June
“Probing DNA modifications by means of quantum-chemistry”

9) Y. Hamahata, Tohoku University (Miyagi), 22 June
“Molecular Dynamics (MD) estimation of the elastic wave velocity and anisotropy of MgO and MgSiO3 perovskite under the lower mantle conditions”

10) T. Narumi, RIKEN (Saitama), 29 June
“Progress report on the development of MDM: Special-purpose computer for molecular dynamics simulations”

11) Y. Oono, RIKEN (Saitama), 8 July
“TOMBO Project performance of prototype”

12) R. Susukita, RIKEN (Saitama), 26 Aug.
“MDGRAPE-2: A special-purpose computer for molecular dynamics”

13) K. Sato, RIKEN (Saitama), 15 Sept.
“The effect of quasi-liquid layer in the unstable growth of snow crystals”
XII. LIST OF PERSONNEL

RIKEN ACCELERATOR RESEARCH FACILITY
TANIHATA Isao 谷畑勇夫 (Facility Director)
YANO Yasushige 矢野安重 (Vice Facility Director)

Linac Division
IKEZAWA Eiji 池沢英二
KOHARA Shigeo 小原重夫

Ring Cyclotron Division
FUJITA Jiro 藤田二郎
INABE Naohito 森内尚人
KAMIGAITO Osamu 上垣外一
KOHARA Shigeo 小原重夫
NAGASE Makoto 長瀬誠
OGIWARA Kiyoshi 萩原清

Experimental Support Division
ICHIHARA Takashi 市原卓
KANAI Yasuyuki 金井保之
MATSUZAKI Teiichiro 松崎貞市郎
WATANABE Yasushi 渡辺庸

Radioisotope Facilities Division
KOBUYASHI Yoshio 小林義男

Radiation Protection Group
FUJITA Shin 藤田新*1
NAKAJIMA Shunji 中島淳二

Administration Division
NAKAMURA Toshiko 中村とし子
TAKEYAMA Ken-ichi 武山謙一*2

Steering Committee
ASAHI Koichiro 旭耕一郎
HANAOKA Fumio 花岡文雄
ISHIHARA Masayasu 石原正泰
KASE Masayuki 加瀬昌之*1
KATSUMATA Koichi 勝又穂一
NAGAMINE Kanetada 永嶺謙治
TAKEYAMA Ken-ichi 武山謙一
YAGI Eiichi 八木英一
YANO Yasushige 矢野安重
YOSHIDA Shigeo 吉田茂男

KASE Masayuki 加瀬昌之*1
IKEGAMI Kumio 池上九三男
KAGEYAMA Tadashi 影山正
KASE Masayuki 加瀬昌之*1
KUBO Toshiyuki 久保敏幸
NAKAGAWA Takahide 中川孝秀
OKUNO Hiroki 奥野広樹

IKIENAGA Takashi 神原正*1
KUMAGAI Hidekazu 熊谷秀和
MORITA Koustee 森田浩介
YATAGAI Fumio 谷田英文

YATAGAI Fumio 谷田英文*1
ITO Sachiko 伊藤祥子
OGIWARA Kiyoshi 萩原清

NUMATA Shigeo 沼田茂男
GOTO Akira 後藤 彰
ICHIHARA Takashi 市原卓
KAMBARA Tadashi 神原正
KATAYAMA Takeshi 片山武司
MATSUZAKI Teiichiro 松崎貞市郎
SAWA Hiroshi 澤宏
TANIHATA Isao 谷畑勇夫
YAMAZAKI Yasunori 山崎泰規*3
YATAGAI Fumio 谷田英文

*1 Group Leader, *2 Manager, *3 Chairperson
Cosmic Radiation Laboratory

Members
KATO Hiroshi 加藤 博

Visiting Members and Postdoctoral Fellows
GOKA Tateo 五家 健夫 (NASDA)

KATO Chihiro 加藤 千尋 (Fac. Sci., Shinshu Univ.)
KOGA Kiyokazu 古賀 清一 (NASDA)
KOSHIISHI Hideki 越石英樹 (NASDA)
MATSUMOTO Haruhisa 松本 博久 (NASDA)
MUNAKATA Kazuoki 宗像 一 (Fac. Sci., Shinshu Univ.)

Trainees
MIYASAKA Hiromasa 宮坂 浩正 (Grad. Sch. Sci. Eng., Saitama Univ.)

Radiation Laboratory

Head
ISHIHARA Masayasu 石原 正泰

Members
ICHIHARA Takashi 市原 卓
SAITO Naohito 齊藤 直人
TAKETANI Atsushi 竹谷 鞘
YOSHIDA Atsumasa 吉田 鞘正

Visiting Members and Postdoctoral Fellows
ABE Yasuhisa 阿部 慎久 (YITP, Kyoto Univ.)
ANDO Yoshiaki 安藤 哲 (Coll. Sci., Rikkyo Univ.)
AOI Nori 青井 章 (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
ASAI Masato 浅井 雅人 (JAERI)
AWAYA Yoko 楊 哲 子 (Musashino Art Univ.)
BECK F. A. (CRN, France)
BENTZ Wolfgang (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
BROGLIA R. (Univ. Milano, Italy)
BROOKS Melynda L. (LANL, USA)
CASTEN Rick (Phys. Dept., BNL, USA)
CRIST Norman (Columbia Univ., USA)
DOOI Makoto 堂井 明 (Inst. Phys., Univ. Tsukuba)
EN’YO Hideto 延野 秀人 (Fac. Sci., Kyoto Univ.)
FUCHI Yoshihide 藤本 好秀 (KEK, Tanashi)
FUJII Hirotatsu 藤井 宏史 (Grad. Sch. Arts Sci., Univ. Tokyo)
FUJIKAWA Kazuo 藤川 和男 (Fac. Sci., Univ. Tokyo)
FUKUDA Mitsunori 福田 光順 (Grad. Sch. Sci., Osaka Univ.)
FUKUDA Tomokazu 福田 元 (KEK)
FURUTAKA Kazuyoshi 古部 宏 (JAERI)
GELBERG Adrian (Koln Univ., Germany)
GONO Yasuyuki 郷野 靖之 (Fac. Sci., Kyushu Univ.)
GOTO Yuji 後藤 雄二
HARAGAWA Hideki 浜垣 秀樹 (Cen. Nucl. Study, Univ. Tokyo)
HARABECRO Miki 浜生 隆子 (Lund Inst. Technol., Lund, Sweden)
HATISUDA Tetsuo 初田 哲男 (Fac. Sci., Kyoto Univ.)
HAYASHI Naoki 林 直樹
HAYASHIGAKI Arata 林 均 (YITP, Kyoto Univ.)
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIRAI Masaaki</td>
<td>平井正明 (Fac. Integr. Human Studies, Dept. Fundamental Sci., Kyoto Univ.)</td>
</tr>
<tr>
<td>HORIUCHI Hisashi</td>
<td>堀内 明 (Grad. Sch. Arts Sci., Univ. Tokyo)</td>
</tr>
<tr>
<td>HOSAKA Masahito</td>
<td>保坂 骏人 (KEK, Tanashi)</td>
</tr>
<tr>
<td>HOTTA Tomohiro</td>
<td>坂井 智洋 (Grad. Sch. Arts Sci., Univ. Tokyo)</td>
</tr>
<tr>
<td>ICHIMURA Munetake</td>
<td>市村 宗武 (Grad. Sch. Arts Sci., Univ. Tokyo)</td>
</tr>
<tr>
<td>IZUKA Kenichi</td>
<td>石井 勝利 (JPERS)</td>
</tr>
<tr>
<td>JIN Genming</td>
<td>鈴木 伸明 (Inst. Modern Phys., Chinese Acad. Sci., China)</td>
</tr>
<tr>
<td>KAKI Kaori</td>
<td>菊池 和美 (Fac. Sci., Shizuoka Univ.)</td>
</tr>
<tr>
<td>KAMAE Tsuneooshi</td>
<td>釜江 純好 (Fac. Sci., Univ. Tokyo)</td>
</tr>
<tr>
<td>KASAGI Jirotu</td>
<td>Kusama 東 (Lab. Nucl. Sci., Tohoku Univ.)</td>
</tr>
<tr>
<td>KATAYAMA Ichiro</td>
<td>片山 一郎 (Cent. Nucl. Study, Univ. Tokyo)</td>
</tr>
<tr>
<td>KATO Seigo</td>
<td>藤原 慎吾 (Fac. Ed., Yamagata Univ.)</td>
</tr>
<tr>
<td>KATORI Kenji</td>
<td>麗取 謙二 (Lab. Nucl. Studies, Fac. Sci., Osaka Univ.)</td>
</tr>
<tr>
<td>KAWASHIMA Hideo</td>
<td>川島 純雄 (KEK, Tanashi)</td>
</tr>
<tr>
<td>KIM Jong Chan</td>
<td>金 崇典 (Dept. Phys., Seoul Natl. Univ., Korea)</td>
</tr>
<tr>
<td>KISTENED Evouard</td>
<td>岡田 有男 (Phys. Dept., BNL, USA)</td>
</tr>
<tr>
<td>KODAIRA Jirou</td>
<td>小出 喜郎 (Fac. Sci., Hiroshima Univ.)</td>
</tr>
<tr>
<td>KOHAMA Akihisa</td>
<td>小濱 英一 (Fac. Sci., Univ. Tokyo)</td>
</tr>
<tr>
<td>KOIKE Yuji</td>
<td>小池 裕司 (Fac. Sci., Niigata Univ.)</td>
</tr>
<tr>
<td>KUBONO Shigeru</td>
<td>久保野 大 (Cent. Nucl. Study, Univ. Tokyo)</td>
</tr>
<tr>
<td>KUMANO Shunzo</td>
<td>熊野 俊三 (Fac. Sci. Eng., Saga Univ.)</td>
</tr>
<tr>
<td>KUNIHIRO Teiji</td>
<td>宮平 俊 (Ryukoku Univ.)</td>
</tr>
<tr>
<td>KUSAKARI Hideshige</td>
<td>草刈英柵 (Fac. Ed., Chiba Univ.)</td>
</tr>
<tr>
<td>LOMON Earle</td>
<td>洛蒙 (Massachusetts Inst. Technol., USA)</td>
</tr>
<tr>
<td>LUCCIO Alfredo</td>
<td>路奇 (Phys. Dept., BNL, USA)</td>
</tr>
<tr>
<td>MAO Yajun</td>
<td>毛 岩 (Phys. Dept., BNL, USA)</td>
</tr>
<tr>
<td>MATSUDA Satoshi</td>
<td>松田 秀人 (Fac. Integr. Human Studies, Dept. Fundamental Sci., Kyoto Univ.)</td>
</tr>
<tr>
<td>MATSUI Tetsuo</td>
<td>弾井 哲男 (YITP, Kyoto Univ.)</td>
</tr>
<tr>
<td>MATSUYANAGI Kenichi</td>
<td>松井 俊一 (Fac. Sci., Kyoto Univ.)</td>
</tr>
<tr>
<td>MENGONI Alberto</td>
<td>梅格尼・阿方・巴羅 (Phys. Div., ENEA, Italy)</td>
</tr>
<tr>
<td>MIN Byung-Joo</td>
<td>金丙植 (Korea Atorn. Energy Res. Inst., Korea)</td>
</tr>
<tr>
<td>MIZOYU Takeshi</td>
<td>(Fac. Sci., Kyushu Univ.)</td>
</tr>
<tr>
<td>MIZUTANI Ita</td>
<td>(Fac. Sci., Kyushu Univ.)</td>
</tr>
<tr>
<td>MIZUYAMA Masanori</td>
<td>(Fac. Sci., Saga Univ.)</td>
</tr>
<tr>
<td>MIZUYAMA Hiroshi</td>
<td>宮武 哲也 (KEK, Tanashi)</td>
</tr>
<tr>
<td>MIZUTANI Yutaka</td>
<td>溝田 芳也 (Fac. Humn Dev., Kobe Univ.)</td>
</tr>
<tr>
<td>MOYAMA Tsuneyasu</td>
<td>森谷 忠雄 (Fac. Sci., Kyushu Univ.)</td>
</tr>
<tr>
<td>MORINOBU Shunpei</td>
<td>森尾 英平 (Fac. Sci., Kyushu Univ.)</td>
</tr>
<tr>
<td>MORIYAMA Yoshihiko</td>
<td>森山 好彦 (Coll. Sci., Rikkyo Univ.)</td>
</tr>
<tr>
<td>MOTTELSON Ben R.</td>
<td>(Nordita; Nordisk Inst. Theoretisk Fysik, Denmark)</td>
</tr>
<tr>
<td>MUELLER Ludwig</td>
<td>(Phys. Dept., Univ. Padova, Italy)</td>
</tr>
<tr>
<td>MURAKAMI Takeshi</td>
<td>村上 俊 (Nat. Inst. Radiol. Sci.)</td>
</tr>
<tr>
<td>NAGAI Yasuki</td>
<td>永井 泰樹 (RCNP, Osaka Univ.)</td>
</tr>
<tr>
<td>NAGAMII Shoji</td>
<td>永谷 希 (KEK)</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>NAKAJIMA Mitsuo</td>
<td>Grad. Sch. at Nagatsuta, Tokyo Inst. Technol.</td>
</tr>
<tr>
<td>NAKAMURA Takashi</td>
<td>Natl. Supercond. Cycl. Lab., Michigan State Univ., USA</td>
</tr>
<tr>
<td>NAKAMURA Masanobu</td>
<td>Fac. Sci., Kyoto Univ.</td>
</tr>
<tr>
<td>NAKAYAMA Shintaro</td>
<td>Fac. Integr. Arts Sci., Univ. Tokushima</td>
</tr>
<tr>
<td>NEMOTO Yukio</td>
<td>RCNP, Osaka Univ.</td>
</tr>
<tr>
<td>NISHIMURA Syunji</td>
<td>Natl. Supercond. Cycl. Lab., Michigan State Univ., USA</td>
</tr>
<tr>
<td>NAKAMURA Shogo</td>
<td>RCNP, Osaka Univ.</td>
</tr>
<tr>
<td>NAKAMURA Takashi</td>
<td>Grad. Sch. at Nagatsuta, Tokyo Inst. Technol.</td>
</tr>
<tr>
<td>NAKAMURA Masanobu</td>
<td>Fac. Sci., Kyoto Univ.</td>
</tr>
<tr>
<td>NAKAYAMA Shintaro</td>
<td>Fac. Integr. Arts Sci., Univ. Tokushima</td>
</tr>
<tr>
<td>ODAHARA Atsuko</td>
<td>Nishinippon Inst. Technol.</td>
</tr>
<tr>
<td>OGAWA Masao</td>
<td>Tokyo Inst. Technol.</td>
</tr>
<tr>
<td>OHTA Shigemi</td>
<td>RCNP, Osaka Univ.</td>
</tr>
<tr>
<td>OI Makito</td>
<td>Cen. Nucl. Study, Univ. Tokyo</td>
</tr>
<tr>
<td>OOISHI Ryutaro</td>
<td>Inst. Phys., Univ. Tsukuba</td>
</tr>
<tr>
<td>OYAMA Ken</td>
<td>Tokyo Inst. Technol.</td>
</tr>
<tr>
<td>OSHIMA Masumi</td>
<td>RCNP, Osaka Univ.</td>
</tr>
<tr>
<td>OTSUBA Takaharu</td>
<td>Fac. Sci., Univ. Tokyo</td>
</tr>
<tr>
<td>PIERROUTSAKOU Dimitra</td>
<td>Sez. Napoli (INFN), Italy</td>
</tr>
<tr>
<td>REN Zhongzhou</td>
<td>Nanjing Univ., China</td>
</tr>
<tr>
<td>SAKAGUCHI Harutsaka</td>
<td>Fac. Sci., Kyoto Univ.</td>
</tr>
<tr>
<td>SAKAI Kenji</td>
<td>Tokyo Inst. Technol.</td>
</tr>
<tr>
<td>SAKURAI Hiroyuki</td>
<td>Fac. Sci., Osaka City Univ.</td>
</tr>
<tr>
<td>SATO Hikaru</td>
<td>KEK</td>
</tr>
<tr>
<td>SATO Hiroki D.</td>
<td>Fac. Sci., Kyoto Univ.</td>
</tr>
<tr>
<td>SAWADA Shinya</td>
<td>KEK</td>
</tr>
<tr>
<td>SCHAEFER Markus</td>
<td>Phys. Inst., Univ. Goettingen, Germany</td>
</tr>
<tr>
<td>SCHMIDT-OTT Wolf-Dieter</td>
<td>Phys. Inst., Univ. Goettingen, Germany</td>
</tr>
<tr>
<td>SEDERWALL Bo</td>
<td>Royal Inst. Technol., Sweden</td>
</tr>
<tr>
<td>SHIBATA Toshi-Aki</td>
<td>Tokyo Inst. Technol.</td>
</tr>
<tr>
<td>SHIMIZU Hajime</td>
<td>Fac. Ed., Yamagata Univ.</td>
</tr>
<tr>
<td>SHIMIZU Yoshifumi</td>
<td>Fac. Sci., Kyushu Univ.</td>
</tr>
<tr>
<td>SHIMODA Tadashi</td>
<td>Grad. Sch. Sci., Osaka Univ.</td>
</tr>
<tr>
<td>SHIMOURA Susumu</td>
<td>Coll. Sci., Rikkyo Univ.</td>
</tr>
<tr>
<td>SIGNORINI Cosimo I.</td>
<td>Phys. Dept., Univ. Padova, Italy</td>
</tr>
<tr>
<td>STROE Lucian</td>
<td>Phys. Dept., Univ. Padova, Italy</td>
</tr>
<tr>
<td>SUGAWARA Masahiko</td>
<td>Chiba Inst. Technol.</td>
</tr>
<tr>
<td>SUGIOKA Makoto</td>
<td>Chiba Inst. Technol.</td>
</tr>
<tr>
<td>SUN Zuxun</td>
<td>China Inst. Atorn. Energy, China</td>
</tr>
<tr>
<td>SUZUKI Yasuyuki</td>
<td>Fac. Sci., Niigata Univ.</td>
</tr>
<tr>
<td>SUZUKI Katsuhiko</td>
<td>RCNP, Osaka Univ.</td>
</tr>
<tr>
<td>SUZUKI Toshihiko</td>
<td>Fac. Eng., Fukui Univ.</td>
</tr>
<tr>
<td>TAJIMA Yasuhaba</td>
<td>Cycl. Radioisot. Cent., Tohoku Univ.</td>
</tr>
<tr>
<td>TAKAHASHI Tadayuki</td>
<td>Inst. Space Astro. Sci.</td>
</tr>
<tr>
<td>TAKAKU Seisaku</td>
<td>KEK, Tanashi</td>
</tr>
<tr>
<td>TAKIGAWA Noboru</td>
<td>Grad. Sch. Sci., Tohoku Univ.</td>
</tr>
<tr>
<td>TAKIZAWA Makoto</td>
<td>Showa Coll. Pharm. Sci.</td>
</tr>
<tr>
<td>TAMII Atsushi</td>
<td>Fac. Sci., Univ. Tokyo</td>
</tr>
<tr>
<td>TANAKA Masahiko</td>
<td>KEK, Tanashi</td>
</tr>
<tr>
<td>TENDOW Yoshihiko</td>
<td>Chiba Inst. Technol.</td>
</tr>
</tbody>
</table>
TERAKAWA Atsuki (Cycl. Radioisot. Cen., Tohoku Univ.)
TERANISHI Takashi (Cen. Nucl. Study, Univ. Tokyo)
TORI Hisayuki (Fac. Sci., Kyoto Univ.)
TOYAMA Takeshi (KEK)
TOYOKAWA Hidenori (Fac. Sci., Kyoto Univ.)
UEMATSU Tsuneo (Phys. Dept., BNL, USA)
XU Shuwei (Inst. Modern Phys., Chinese Acad. Sci., China)
YAMAMOTO Sukeyasu (Fac. Sci. Technol., Sophia Univ.)
YANAGISAWA Yoshiyuki (Fac. Sci., Kyushu Univ.)
YAZAKI Koichi (Tohoku Woman's Chr. Univ.)
YOKKAICHI Satoshi (Fac. Sci., Kyoto Univ.)

Trainees

BABA Hidetada (Coll. Sci., Rikkyo Univ.)
FUKUSHI Tomonori (Fac. Sci., Kyushu Univ.)
FUKUOKA Shouichi (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
GOMI Tomoko (Coll. Sci., Rikkyo Univ.)
HATANO Michio (Fac. Sci., Kyushu Univ.)
HIRAI Masanori (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
KASHIYAMA Osamu (Fac. Sci., Kyushu Univ.)
KATO Hiromitsu (Fac. Sci., Kyushu Univ.)
KUBOTANI Toshiyuki (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
KOBAYASHI Hiroshi (Coll. Sci., Rikkyo Univ.)
KUNIBU Makoto (Coll. Sci., Rikkyo Univ.)
MAEDA Yukie (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
MICHIMASA Shinichiro (Fac. Sci., Univ. Tokyo)
MINEMURA Toshiyuki (Fac. Sci., Rikkyo Univ.)
MIYAKAWA Takahiko (Fac. Sci., Rikkyo Univ.)
MOTOMURA Shuichi (Fac. Sci., Kyushu Univ.)
MUTO Ryotaro (Fac. Sci., Kyoto Univ.)
NAKAJIMA Noriaki (RCNP, Osaka Univ.)
NAKA Eiji (Fac. Sci., Tokyo Metrop. Univ.)
NAKAJO Jo (Cen. Nucl. Study, Univ. Tokyo)
OHKUMA Kazumasa (KEK)
SAHA Pranab (Fac. Sci., Kyoto Univ.)
SAITOU Akito (Fac. Sci., Rikkyo Univ.)
SAKODA Seitaro (Fac. Sci., Tokyo Metrop. Univ.)
SERATA Takeshi (Fac. Sci., Rikkyo Univ.)
SUDOH Kazutaka (Fac. Sci., Kyoto Univ.)
SUETSUGU Kentaro （Tokyo Inst. Technol.）
TANIGUCHI Etsuji （Tokyo Inst. Technol.）
TOJO Junji （Grad. Sch. Sci., Univ. Tokyo）
WATANABE Eitoku （Grad. Sch. Sci., Univ. Tokyo）
YAKO Kentaro （Grad. Sch. Sci., Univ. Tokyo）
YAMADA Kazunari （Coll. Sci., Rikkyo Univ.）
YONEDA Kenichiro （Grad. Sch. Sci., Univ. Tokyo）

RI Beam Science Laboratory
Head
TANIHATA Isao 谷畑勇夫

Members
KORSHENNIKOV Alexei A. KUMAGAI Hidekazu 熊谷秀和
MATSUO Yukari 松尾由智利 MORIMOTO Koji 森本幸司
OZAWA Akira 小沢昭 SUDA Toshihito 稲田正夫
SUMIYOSHI Kohsuke 住吉光介 TONUMA Tadao 戸沼正雄
YOSHIDA Koichi 吉田光一

Visiting Members and Postdoctoral Fellows
AOYAMA Shigeyoshi 青山政義 （Kitami Inst. Tech.）
ADACHI Shizuko 安達静子 （ICFD）
AHMady Mohammad （Western Ontario Univ., Canada）
ARATANI Michi 荒谷美智 （Inst. Environ. Sci.）
BOLBOT Michael （Notre Dame Univ., USA）
BORDEANU Cristina （Horia Hul. Natl. Inst., Romania）
BOYD Richard （Ohio Univ., USA）
BROCKMANN Ruff （Inst. Phys., Univ. Mainz, Germany）
CRUCERU Ilie （Horia Inst. Eng., Romania）
DATAR Vivek （Bhabha Atom. Res. Cent., India）
DAVID Dean J. （CALTEC, USA）
DEMYANOVA Alla S. （Kurchatov Inst. Atom. Energy, Russia）
ENYO Yoshihiko 延野佳子 （Cent. Nucl. Study, Univ. Tokyo）
FUJIWARA Manoru 藤原守 （RCNP, Osaka Univ.）
FULÖP Zsolt （ATOMKI, Hungary）
GACSZ Zoltán （ATOMKI, Hungary）
GEISSEL Hans （GSI, Germany）
GIURGIU Mircea （Horia Inst. Nucl. Eng., Romania）
GOLOVKOV Mkheil S. （Kurchatov Inst., Russia）
GONCHAROV Sergei A. （Kurchatov Inst., Russia）
GOSWAMI Ranjana （Variable Energy Cycl. Cent. Calcutta, India）
GUNJI Shuichi 郡司修一 （Fac. Sci., Yamagata Univ.）
HASEBE Nobuyuki 長部壽行 （Fac. Sci. Eng., Waseda Univ.）
HIRENZAKI Satoru 北村修也 （Fac. Sci., Nara Women's Univ.）
HORIUCHI Hisashi 堀内光 （Fac. Sci., Kyoto Univ.）
ISHIMOTO Shigeru 石本正雄 （KEK）
ITAGAKI Naoyuki 北見雅之
IWAMOTO Akira 岩本昭 （JAERI, Tokai Res. Estab.）
IZUYAMA Takeo 伊豆山泰夫 （Fac. Sci., Toho Univ.）
KANEKO Kazuya 金子和正 （Kyushu Sangyo Univ.）
KANUNGO Rituparna 甘勇 （Saha Inst. Nucl. Phys., Calcutta, India）
KATORI Kenji 鹿取謙二
WINKLER Martin (GEI, Germany)
YAGI Hirosuke 八木浩樹 (Fac. Sci., Univ. Tsukuba)
YAMADA Shoichi 山田章一 (Fac. Sci., Univ. Tokyo)
YAMAGUCHI Takayuki 山口貴之
YORANN Alhassid (Yale Univ., USA)
YUZUKI Akira 柚木彰 (Toshiba Corp.)
ZAHAR Mohamed (Dept. Phys., Notre Dam Univ., USA)
ZHENG Tao (Fac. Sci. Technol., Sci., Univ. Tokyo)

Trainees
AOKI Yuka 青木由香 (Fac. Sci., Tohoku Univ.)
FUZIMURA Takeshi 藤村岳 (Sci. Eng., Aoyama Gakuin Univ.)
HARA Kenichiro 原健一朗 (Fac. Sci. Eng., Waseda Univ.)
HIBINO Masaru 丹野俊 (Fac. Sci. Eng., Waseda Univ.)
IHARA Akifumi 井原彰記 (Fac. Sci. Eng., Waseda Univ.)
KATO Tomomi 加藤智美 (Fac. Sci., Niigata Univ.)
KATO Toshiyuki 加藤俊幸 (Fac. Sci. Eng., Waseda Univ.)
KAWA Tadahisa 河田宏 (Fac., Osaka Univ.)
KIHIRA Eiichi 吉平栄一 (Fac. Sci. Eng., Waseda Univ.)
KITANI Takao 木谷貴雄 (Fac. Sci. Eng., Waseda Univ.)
KIYAMU Atushi 喜谷武範 (Fac. Sci. Eng., Ibaraki Univ.)
KURIYAMA Koji 萩山幸治 (Sci. Eng., Aoyama Gakuin Univ.)
MASUMURA Takahiro 増村考洋 (Fac. Sci. Eng., Waseda Univ.)
MINAMISONO Kei 南園啓 (Fac. Sci., Osaka Univ.)
MUTO Nobuo 武藤信雄 (Fac. Eng., Aoyama Gakuin Univ.)
OHZEKI Kazuki 大根和貴 (Fac. Sci., Tohoku Univ.)
NISHIKIDO Humihiko 錦戸文彦 (Fac. Sci. Eng., Waseda Univ.)
OKUDA Takashi 奥田貴志 (Fac. Sci., Tohoku Univ.)
OKUDAIRA Osamu 大平茂 (Fac. Sci. Eng., Waseda Univ.)
OKAMOTO Kazuo 焦尾孝夫 (Fac. Sci. Eng., Waseda Univ.)
OHNO Hiroyuki 大野裕 (Fac. Sci. Eng., Waseda Univ.)
OE Takanori 奥原和 (Fac. Sci. Eng., Waseda Univ.)
SASAKI Makoto 佐々木誠 (Fac. Sci., Osaka Univ.)
SAKAGUCHI Kazuto 坂口和 (Fac. Sci. Eng., Waseda Univ.)
OHNO Hiroyuki 大野裕 (Fac. Sci. Eng., Waseda Univ.)
OKUDA Takashi 奥田貴志 (Fac. Sci., Tohoku Univ.)
OGAWA Masahiro 大川雅朗 (Fac. Sci., Tohoku Univ.)
SAKAGUCHI Kazuto 坂口和 (Fac. Sci. Eng., Waseda Univ.)
TAKEMURA Haruyuki 竹村春 (Fac. Sci. Eng., Waseda Univ.)
TAKENAKA Sunao 竹中幸 (Fac. Sci. Eng., Waseda Univ.)
TAKENOUCHI Masatoshi 竹之内正俊 (Fac. Sci. Eng., Waseda Univ.)
TAKEUCHI Satoshi 武内俊 (Fac. Sci., Rikkyo Univ.)
TANAKA Motoyuki 田中秀之 (Fac. Sci., Waseda Univ.)
TASAWA Shin'ya 田沢伸也 (Fac. Sci., Tohoku Univ.)
TAKAMURA Kazuhiro 田村和洋 (Fac. Sci. Eng., Waseda Univ.)
TERASAWA Mariko 寺澤真理子 (Fac. Sci., Univ. Tokyo)
TERUHI Shigeru 村野時 (Fac. Sci. Eng., Waseda Univ.)
UMEMURA Tomohiro 梅村朋弘 (Fac. Sci. Eng., Waseda Univ.)
UZIE Toru 氏家徹 (Fac. Sci., Tohoku Univ.)
WANG Haiming 王海明 (Fac. Sci., Univ. Tokyo)
YAMAGUCHI Yohei 山口由高 (Fac. Sci., Niigata Univ.)
YAMASHITA Naoyuki 山下直之 (Fac. Sci. Eng., Waseda Univ.)
YASHIRO Junichi 矢代淳一 (Fac. Sci. Eng., Waseda Univ.)
Applied Nuclear Physics Laboratory

Head
ASAHI Koichiro 旭 耕一郎

Members
KOBAYASHI Yoshio 小林 義 男

Visiting Members and Postdoctoral Fellows
EINAGA Yasuaki 森永 昌明 (Fac. Sci., Univ. Tokyo)
KUBO Kenya 久保 基哉 (Fac. Sci., Univ. Tokyo)
OGAWA Hiroshi 小川 博 (Fac. Sci., Tokyo Inst. Technol.)
SAKAI Kenji 酒井 健二 (Fac. Sci., Tokyo Inst. Technol.)
UENO Hideki 上野 秀樹 (Fac. Sci., Osaka Univ.)
YAMADA Yasuhiro 山田 康洋 (Fac. Sci., Sci. Univ. Tokyo)

Trainees
GOTO Atsushi 五鳥 敦 (Fac. Sci., Tokyo Inst. Technol.)
HONDA Toshiki 本多 倫樹 (Fac. Sci., Tokyo Inst. Technol.)
HORI Kentaro 堀 健太郎 (Fac. Sci., Sci. Univ. Tokyo)
KATSUMATA Keiichi 勝又 啓一 (Fac. Sci., Sci. Univ. Tokyo)
MIYAZAKI Junnn 宫崎 淳 (Fac. Sci., Sci. Univ. Tokyo)
MIYOSHI Hisanori 三好 永哲 (Fac. Sci., Tokyo Inst. Technol.)
NAGAKURA Masaki 長倉 正樹 (Fac. Sci., Tokyo Inst. Technol.)
OGAWA Shigeru 小川 茂 (Fac. Sci., Shizuoka Inst. Sci. Tech.)
ONO Yuuki 小野 裕樹 (Fac. Sci., Sci. Univ. Tokyo)
SHIMAZAKI Hideo 島崎 秀生 (Fac. Sci., Sci. Univ. Tokyo)
SHIMIZU Yasunori 清水 優司 (Fac. Sci., Shizuoka Inst. Sci. Tech.)
SUZUKI Takayuki 鈴木 敬幸 (Fac. Sci., Tokyo Inst. Technol.)
YOGO Katsunori 吉見 克紀 (Fac. Sci., Tokyo Inst. Technol.)
YOSHIMI Akihiro 吉見 昌洋 (Fac. Sci., Tokyo Inst. Technol.)

Atomic Physics Laboratory

Head
YAMAZAKI Yasunori 山崎 泰規

Members
KAMBARA Tadashi 神原 正 KANAI Yasuyuki 金井 保之
KOJIMA Takao M. 小島 隆夫 NAKAI Yoichi 中井 陽一
NISHIDA Masami 西田 雅美 OURA Masaki 大浦 正樹
OYAMA Hitoshi 大山 哲 SHIMAMURA Isao 島村 熊
WADA Michiharu 和田 通治

Visiting Members and Postdoctoral Fellows
ANDO Kozo 安藤 隆三
AZUMA Toshiyuki 杉谷 俊行 (Inst. Appl. Phys., Univ. Tsukuba)
BRAGE Tomas (Dept. Phys., Univ. Lund, Sweden)
CHIHI Yoshihiro 知見 康弘 (JAERI, Tokai Res. Estab.)
DATZ Sheldon (Oak Ridge Natl. Lab., USA)
DEPAOLA Brett (Dept. Phys. Kansas State Univ., USA)
EICHLER Jörg (Hahn-Meitner Inst. Berlin, Germany)
FAIFMAN Mark (Russian Res. Cent., Kurchatov Inst., Russia)
FUJIMA Kazumi 藤間 一 (Fac. Eng., Yamanashi Univ.)
HARA Shunsuke 原 俊介 (Dept. Gen. Ed., Tsukuba Coll. Technol.)
HATTORI Toshiyuki 服部俊幸 (Res. Lab. Nucl. React., Tokyo Inst. Technol.)
HINO Ken-ichi 日野 健一 (Inst. Appl. Phys., Univ. Tsukuba)
HITACHI Akira 月出 章 (Kochi Med. Sch.)
HULDT Sven (Lund Univ., Sweden)
HUTTON Roger
ICHIMURA Atsushi 岸村 潤 (Inst. Space Astr. Sci.)
ICHIOKA Toshiyasu 伊木 哲也 (Grad. Sch. Arts Sci., Univ. Tokyo)
ICHIMURA Atsushi 岸村 潤 (Fac. Engl., Kyushu Univ.)
ICHIOKA Toshiyasu 伊木 哲也 (Grad. Sch. Arts Sci., Univ. Tokyo)
ICHIMURA Atsushi 岸村 潤 (Fac. Sci., Kyushu Univ.)
IKEDA Hiroshi 池田 博 (Univ. Tsukuba)
ISHII Keishi 石井 謙志 (Fac. Sci. Eng., Ritsumeikan Univ.)
ISHIKAWA Norio 石川 宏 (JAERI, Tokai Res. Estab.)
ITOH Akio 伊藤 秀男 (Grad. Sch. Arts Sci., Sophia Univ.)
ITOH Yoh 伊藤 悠 (Grad. Sch. Arts Sci., Sophia Univ.)
IWAI Yoshio 岩井 良夫 (Grad. Sch. Arts Sci., Univ. Tokyo)
IWASE Akihiro 岩崎 明浩 (JAERI, Tokai Res. Estab.)
KAGEYAMA Kensuke 賀山 建 (Fac. Eng., Saitama Univ.)
KAWATSU Kiyoshi 川崎 義雄 (Fac. Sci. Eng., Ritsumeikan Univ.)
KINOSHITA Atsushi 木野 幸男 (Fac. Sci., Tokyo Inst. Technol.)
KINOSHITA Atsushi 木野 幸男 (Fac. Sci., Tokyo Inst. Technol.)
KITAJIMA Masashi 北島 昌史 (Fac. Sci. Technol., Sophia Univ.)
KOBAYASHI Nobuo 小林 信夫 (Dept. Phys., Tokyo Metrop. Univ.)
KOIKE Fumihiro 小池 文彦 (Sch. Med., Kitasato Univ.)
KOIZUMI Tetsuo 小泉 篤夫 (Dept. Phys., Rikkyo Univ.)
KOMAKI Ken-ichiro 酒沼 一輝 (Grad. Sch. Arts Sci., Sophia Univ.)
KOMAI Ken-ichi 小松 富一 (JAERI, Tokai Res. Estab.)
KUREDA Akio 原田 秀男 (Fac. Sci., Sophia Univ.)
KUSAKI Kenji 久崎 健二 (Fac. Sci., Sophia Univ.)
MANN Ady (Phys. Dept., Israel Inst. Technol., Israel)
MARTINSON Indrek (Dept. Phys., Univ. Tartu, Estonia)
MATSUO Takashi 松尾 昌 (Dept. Pathol., Tokyo Med. Dent. Univ.)
MITAMURA Tohru 今村 厚 (Fac. Sci., Sophia Univ.)
MITSUKE Koichiro 三枝一 (Inst. Mol. Sci.)
NAOKO Tatsuya 高倉 辰巳 (Nagaoka Coll. Technol.)
MOHRI Akihiro 毛利 明博 (Inst. Chem. Res., Kyoto Univ.)
NISHIDA Nobuhiko 西田 信彦 (Fac. Sci., Sophia Univ.)
NISHIYAMA Tamio 西山 孝明 (Fac. Sci., Sophia Univ.)
OHNO Toshihiko 小野 照彦 (Fac. Sci., Sophia Univ.)
OKADA Kunihiro 大田 壮宏 (Fac. Sci. Technol., Sophia Univ.)
OKAYASU Satoru 大地 学 (JAERI, Tokai Res. Estab.)
OKUNO Kazunori 大野 和男 (Grad. Sch. Arts Sci., Sophia Univ.)
ONO Fumihisa 小野 文久 (Fac. Sci., Sophia Univ.)
SATOH Hiroshi 佐藤 浩史 (Fac. Sci., Sophia Univ.)
SHIMAKAWA Tatsuo 弥松 昌夫 (Fac. Sci., Sophia Univ.)
SOEJIMA Kouichi 桑原 孝一 (Fac. Sci., Sophia Univ.)
TAKEDA Takeshi 田村 剛志 (Fac. Sci., Sophia Univ.)
TANAKA Hideaki 田中 斉 (Fac. Sci., Sophia Univ.)
TAKAMITSU Takeshi 高見谷 拓 (Dept. Phys., Sophia Univ.)
TAKEMOTO Kenji 木本 隆 (Fac. Sci., Sophia Univ.)
TANAKA Hideaki 田中 斉 (Fac. Sci., Sophia Univ.)
TANAKA Hideaki 田中 斉 (Fac. Sci., Sophia Univ.)
TAYAMA Michio 竹山 隆 (Fac. Sci., Sophia Univ.)
TERAMATSU Kenji 田村 健二 (Inst. Mol. Sci.)
TERASAWA Mititaka 伊藤 実孝 (Fac. Sci., Sophia Univ.)
TERASAWA Mititaka 伊藤 実孝 (Fac. Sci., Sophia Univ.)
TOKUNAGA Takeshi 仏沼 剛 (Fac. Sci., Sophia Univ.)
THURIEZ Sebastien
TOSHIMA Nobuyuki 戸崎信幸 (Inst. Appl. Phys., Univ. Tsukuba)
TRIKALINOS Christos (Univ. Athens, Greece)
TSUCHIDA Hidetsugu 土佐秀次 (Fac. Sci., Nara Women's Univ.)
UEDA Kiyoshi 上田清 (Res. Inst. Sci. Meas., Tohoku Univ.)
WAKIYA Kazuyoshi 窪谷一義 (Fac. Sci. Technol., Sophia Univ.)
YAGISHITA Akira 柳下 明 (KEK)
ZOU Yarning (Shanghai Jiao Tong Univ., China)

Trainers
BOYD Micah (Dept. Phys., Univ. Lund, Sweden)
ENDO Atsumi 遠藤厚身 (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
HOSHINO Masamitsu 星野正光 (Fac. Sci. Technol., Sophia Univ.)
IIDA Ryouichi 飯田竜一 (Univ. Electro-Commun.)
IT0 Akira 伊藤 智 (Dept. Phys., Rikkyo Univ.)
ITO Takumi 伊藤 高臣 (Grad. Sch. Arts Sci., Univ. Tokyo)
KAMEI Takehito 岡井武仁 (Fac. Sci. Technol., Sophia Univ.)
MAJIMA Takuya 今崎拓也 (Fac. Eng., Kyoto Univ.)
MATSUSHIMA Hiroshi 松島 広 (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
MORISHITA Yuichiro 森下晃一郎 (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
MURAKOSHI Dai 村 趟大 (Grad. Sch. Arts Sci., Univ. Tokyo)
NAKAMURA Takashi 中村 貴志 (Univ. Electro-Commun.)
OGURA Kunihiro 小倉 都宏 (Fac. Sci. Technol., Sophia Univ.)
OKABAYASHI Norio 岡林則夫 (Grad. Sch. Arts Sci., Univ. Tokyo)
OKADA Shinichi 岡田 隆一 (Fac. Sci. Technol., Sophia Univ.)
OONO Takayuki 村上昭彦 (Fac. Sci. Technol., Sophia Univ.)
TAKABAYASHI Yuichi 高田 隆之 (Fac. Sci. Technol., Sophia Univ.)
TAKAHASHI Takehisa 高橋武男 (Dept. Phys., Rikkyo Univ.)

Muon Science Laboratory

Head
NAGAMINE Kanetada 永嶋謙次

Members
ISHIDA Katsuhiko 石田勝彦
MATSUDA Yasuyuki 松田恭幸
NAKAMURA Satoshi N. 中村史緒
YAGI Eiichi 八木栄一
KOYAMA Akio 小山 昭雄
MATSUZAKI Teiichiro 松崎健三郎
WATANABE Isao 渡邊 功雄

Visiting Members and Postdoctoral Fellows
AKIMATSU Jun 秋元 純 (Coll. Sci. Eng., Aoyama Gakuin Univ.)
AKIMOTO Katsuhiko 秋本克洋 (Inst. Mater., Univ. Tsukuba)
ARAI Juichiro 新井茂一郎 (Sci. Univ. Tokyo)
ASAI Kichizo 浅井吉造 (Univ. Electro-Commun.)
BAKULE Pavel
DAS Prasad Tara (Dept. Phys., State Univ. New York, Albany, USA)
FUKAYA Atsuko 深谷敦子
HASHI Kenjiro 畱 健二郎
HASHIMOTO Masashi 橋本雅史 (JAERI, Tokai Res. Estab.)
HIGEMOTO Wataru 髙本 哲 (KEK)
HIYAMA Emiko 蒼山絵美子
ITO Atsuko 伊藤真子
IWAiAKI Masahiko 岩崎雅彦 (Dept. Phys., Tokyo Inst. Technol.)
KADONO Ryosuke 門野良典 (KEK)
KATO Mineo 加藤 明生 (JAERI, Tokai Res. Estab.)
KAWAMURA Naritoshi 河村成澤
KINO Yasushi 小野 康志 (Fac. Sci., Tohoku Univ.)
KOIKE Youji 小池 有二 (Fac. Eng., Tohoku Univ.)
KRNISHAMURTHY Venuru
KUROSAWA Kiyoyuki 黒沢 清行 (JAERI, Tokai Res. Estab.)
MACRAE Roderick M.
MARUYAMA Takahiro 丸山 隆浩 (Inst. Mater., Univ. Tsukuba)
MATSUSHITA Akira 松下 明
MEKATA Mamoru 目方 守 (Fac. Eng., Fukui Univ.)
MIYAKE Yasuhiro 三宅 康博 (KEK)
MIYAKO Yoshihiro 都 福仁 (Fac. Sci., Osaka Univ.)
MOCHIKU Takashi 落木夏士 (Natl. Res. Inst. Metals)
MORITA Reiko 森田玲子 (Josai Jr. Coll. Women)
NISHIDA Nobuhiko 西田 信彦 (Fac. Sci., Tokyo Inst. Technol.)
NISHIYAMA Kusuo 西山 稔雄 (KEK)
PRATT Francis L.
SAKAMOTO Shinichi 坂元 善一 (KEK)
SATO Kazuhiro 佐藤 一彦 (Fac. Sci., Saitama Univ.)
SCHUEERMANN Robert
SHIMOMURA Koichiro 下村浩一郎 (KEK)
STRASSER Patrick
SUGAI Hiroyuki 須貝 宏行 (JAERI, Tokai Res. Estab.)
TAKIGAWA Masashi 滝川 仁 (Inst. Solid State Phys.)
TORIKAI Eiko 鳥壁 美子 (Fac. Eng., Yamanashi Univ.)
UEDA Kazuo 上田 和夫 (Inst. Solid State Phys.)
WAYO Kazunori 和田 孝雄 (Fac. Sci., Hiroshima Univ.)
WATANABE Tsutomu 渡部 力 (Int. Chr. Univ.)

Trainees
OHIRA Seiko 大平 聖子 (Grad. Sch., Univ. Tokyo)
TANAKA Hiroyuki 田中 宏幸 (Grad. Sch., Nagoya Univ.)
TOYODA Akihisa 豊田 明久 (Grad. Sch., Univ. Tokyo)

Magnetic Materials Laboratory

Head
KATSUMATA Koichi 勝又 聡一

Members
HAGIWARA Masayuki 萩原 政幸
MATSUDA Masaaki 松田 雅昌
Beam Physics and Engineering Laboratory

Head
KATAYAMA Takeshi 片山武司

Members
AMEMIYA Hiroshi 雨宮 宏
NAKAMURA Masato 中村 仁
TAMBA Moritake 丹波 譲武

Visiting Members and Postdoctoral Fellows
CHOUFFANI Khalid
TAKEUCHI Takeshi 竹内 猛
YUN Chong-Cheoul 尹鍾哲

Cellular and Molecular Biology Laboratory

Head
SHIBATA Takehiko 柴田武彦

Members
LING Feng 凌 栩

Visiting Members and Postdoctoral Fellows
YOSHIMASU Masatoshi 吉益 雅俊

Cellular Physiology Laboratory

Head
HANAOKA Fumio 花岡文雄

Members
KITAYAMA Shigeru 北山 滋

Visiting Members and Postdoctoral Fellows
ANDO Koichi 安藤 充一 (Natl. Inst. Radiol. Sci.)
FURUSAWA Yoshiya 古澤 佳也 (Natl. Inst. Radiol. Sci.)
HAMA Yoshiyuki 浜 義雅 (Sci. Eng. Res. Lab., Waseda Univ.)
HASE Yoshihiro 長谷 昇宏 (JAERI, Takasaki Rad. Chem. Res. Estab.)
HOSHINO Kazuo 星野 一雄 (Natl. Inst. Radiol. Sci.)
ITO Hisao 伊東 久夫 (Sch. Med., Chiba Univ.)
ITSUKAI Chihiro 五日市 一 (Natl. Inst. Radiol. Sci.)
KANAI Tatsuo 井上 真夫 (Natl. Inst. Radiol. Sci.)
KASAI Kiyohe 笠井 清美 (Natl. Inst. Radiol. Sci.)
KAWACHI Kiyomitsu 河内 清光 (Natl. Inst. Radiol. Sci.)
KOBAYASHI Yasuhito 小林 泰彦 (JAERI, Takasaki Rad. Chem. Res. Estab.)
MATSUMUJI Naruhiko 松嶋 修弘 (Natl. Inst. Radiol. Sci.)
MINOHARA Shinichi 室原 伸一 (Natl. Inst. Radiol. Sci.)
MURAOKA Masahiro 村上 正弘 (Natl. Inst. Radiol. Sci.)
SAITO Mizuho 斎藤 瑞穂 (Natl. Inst. Radiol. Sci.)
SASAKI Hiroshi 佐々木 弘 (Fac. Med., Kyushu Univ.)
SHIKAZONO Naoya 鹿岡 雅哉 (JAERI, Takasaki Rad. Chem. Res. Estab.)
SOGA Fuminori 曽我 定男 (Inst. Nucl. Study, Univ. Tokyo)
WATANABE Masami 渡辺 正己 (Fac. Pharm., Nagasaki Univ.)
YAMASHITA Shoji 山下昭次 (Natl. Saitama Hospital)
Trainees

Plant Functions Laboratory
Head
YOSHIDA Shigeo 吉田茂男

Members
ABE Tomoko 阿部知子 MATSUYAMA Tomoki 松山知樹

Visiting Members and Postdoctoral Fellows
HARA Yasuhide 原 靖英 (Kanagawa Inst. Agric. Sci.)
HASHIMOTO Takashi 橋本 隆 (Dept. Biosci., NAIST)
KITAURA Takeo 北浦 健生 (Kanagawa Inst. Agric. Sci.)
KIUCHI Reiko 木内玲子
MIYAGAI Mashu 宮井麻周
MIYOSHI Kazumitsu 三吉一光 (Fac. Bioresource Sci., Akita Pref. Univ.)
SATO Fumihiro 佐藤文彦 (Dept. Agric. Chem., Kyoto Univ.)
SATO Shinobu 佐藤 卓 (Inst. Biol. Sci., Tsukuba Univ.)
SUZUKI Kenichi 鈴木賢一 (Suntory Ltd.)

Trainees
KOMOMI Yuki 赤目 美希 (Fac. Sci. Tech., Sci. Univ. Tokyo)
TAKAHASHI Hideki 高橋英樹 (Coll. Agric. Vet. Med., Nihon Univ.)

Microbial Toxicology Laboratory
Head
YAMAGUCHI Isamu 山口 勇

Members
ARIE Tsuchiya 有江 力

Visiting Members and Postdoctoral Fellows
NOSE Yasuhiro 能勢 泰寛
SOSHI Takayuki 曽理隆行

CYCLOTRON CENTER
Chief Scientist
YANO Yasushige 矢野 安重

RIBF Project Office
Head
YANO Yasushige 矢野 安重

Members
IKEGAMI Kumio 池上九三男 INABE Naohito 稲邉尚人
KAMIGAITO Osamu 上垣秀一 KUBO Toshiyuki 久保敏幸
OHNISHI Jun-ichi 大西 純一 OKUNO Hirotaka 奥野宏樹
OTAKE Masao 大竹誠雄 SAKAMOTO Naruhiko 坂本成彦
TANABE Toshiya 田辺敏也 WAKASUGI Masanori 若杉昌徳

Visiting Members and Postdoctoral Fellows
AKIYOSHI Hiromichi 秋吉啓充
SUZUKI Hiroyuki 鈴木弘行 (RI Res. Cen., Chiba Univ.)
SUZUKI Kazuo 鈴木和夫 (Fac. Pharm. Sci., Chiba Univ.)
SUZUKI Naoki 鈴木直毅
TAKAHASHI Masanori 高橋正昭 (Coll. Agric., Osaka Pref. Univ.)
TAKAHASHI Yoshio 高橋嘉夫 (Fac. Sci., Hiroshima Univ.)
TAKANAKA Masao 坂中政雄
TAKEDA Atsushi 武田厚 (Sch. Pharm. Sci., Shizuoka Univ.)
TAKEUCHI Suehiro 竹內寛広 (JAERI, Tokai Res. Estab.)
TANAKA Yasushi 田中保明 (Kyokuto Boeki Kaisha, Ltd.)
TOMIMASU Takio 富嶋多喜夫 (Free Electrons Laser Res. Inst.)
TOMINAKA Toshiharu 住友利治 (Hitachi, Ltd.)
TOMIZAWA Masahito 富沢正人 (KEK)
UESAKA Meiko 上坂明子
UESAKA Tomohiro 上坂友洋
WATANABE Ikuo 渡辺郁男 (Toshiba Corp.)
WU Dezhong (Scintia Sinica, China)
XIA Jia-Wen 夏 佳文 (Inst. Modern Phys., Academia Sinica, China)
YAMASAKI Mineo 山崎健夫 (Nara Med. Univ.)
YANAGA Makoto 矢永誠人 (Fac. Sci., Shizuoka Univ.)
YANG Youg Feng (Scintia Sinica, China)
UYAMOUCHI Shigeru 横内茂 (Osaka Vacuum, Ltd.)
YOKOYAMA Ichiro 横山一郎
YONEDA Akira 吉田晃
YOSHIDA Yutaka 吉田 勲 (Shizuoka Inst. Sci. Tech.)

Trainees
ARIGA Takehiro 有賀健郎 (Fac. Sci., Toho Univ.)
FUGONO Jun 藤野純 (Kyoto Pharm. Univ.)
IGARASHI Kaori 五十嵐香織 (Int. Life Sci. Inst., Showa Women’s Univ.)
IWABA Motonori 岩永基訓 (Fac. Sci., Shizuoka Univ.)
KOGURO Miwako 今村美和子 (Fac. Sci., Shizuoka Univ.)
URUGU Tetsuro 栗倉哲郎 (Inst. Phys., Univ. Tsukuba)
MAETSU Hitomi 塩見裕美 (Fac. Sci., Shizuoka Univ.)
OHNISHI Tetsuya 大西哲哉 (Fac. Sci., Univ. Tokyo)
OHYAMA Tatsuo 大友通也 (Fac. Sci., Shizuoka Univ.)
OZAWA Shuichi 小澤修一 (Coll. Sci., Rikkyo Univ.)
SEKIGUCHI Kimiko 関口仁子 (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
SHIOBARA Yamato 塩原大和 (Fac. Pharm. Sci., Chiba Univ.)
TAKINO Toshikazu 深野俊和 (Kyoto Pharm. Univ.)
UCHIYAMA Koji 内山浩志 (Inst. Phys., Univ. Tsukuba)
XIAO Meiqin 肖 美琴 (Cen. Nucl. Study, Grad. Sch. Sci., Univ. Tokyo)
YOSHIDA Shoko 吉田昭三 (Nara Med. Univ.)
YOSHIDA Tsutomu 吉田 勢 (Fac. Sci., Shizuoka Univ.)

Beam Technology Division

Head
YANO Yasushige 矢野 安重

Members
FUJIMAKI Masaki 藤巻正樹
FUJITA Jiro 藤田二郎
FUJITA Shin 藤田 新
GOTO Akira 後藤 彰
IKEZAWA Eiji 波沢英二
ITO Sachiko 伊藤 稔子
KAGEYAMA Masaki 影山正
KASE Masayuki 加瀬昌之
KIMURA Kazuie 木村一利
KOYAMA Shigeo 小原 重夫
<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAEDA Kuniko</td>
<td>Visiting Members and Postdoctoral Fellows</td>
</tr>
<tr>
<td>NAGASE Makoto</td>
<td></td>
</tr>
<tr>
<td>NAKAJIMA Shunji</td>
<td></td>
</tr>
<tr>
<td>USHIDA Kiminori</td>
<td></td>
</tr>
<tr>
<td>YAMAJI Shuhei</td>
<td></td>
</tr>
<tr>
<td>MORITA Kosuke</td>
<td></td>
</tr>
<tr>
<td>NAKAGAWA Takahide</td>
<td></td>
</tr>
<tr>
<td>OGIVARA Kiyoshi</td>
<td></td>
</tr>
<tr>
<td>WADA Takeshi</td>
<td></td>
</tr>
<tr>
<td>YOKOYAMA Ichiro</td>
<td></td>
</tr>
<tr>
<td>Visiting Members and Postdoctoral Fellows</td>
<td></td>
</tr>
<tr>
<td>ABE Yasuhsa</td>
<td>(Yukawa Inst. Theor. Phys., Kyoto Univ.)</td>
</tr>
<tr>
<td>ABURAYA Takashi</td>
<td>(NASDA)</td>
</tr>
<tr>
<td>ANZAWA Osamu</td>
<td>(NASDA)</td>
</tr>
<tr>
<td>AOKI Jiro</td>
<td>(NASDA)</td>
</tr>
<tr>
<td>ARIMA Akito</td>
<td>(Former President, RIKEN)</td>
</tr>
<tr>
<td>ARITOMO Yoshihiro</td>
<td>(J.I.N.R., Dubna, Russia)</td>
</tr>
<tr>
<td>BABE Shinji</td>
<td>(NASDA)</td>
</tr>
<tr>
<td>BAN Syuichi</td>
<td>(KEK)</td>
</tr>
<tr>
<td>BHATTACHARYA Sankar</td>
<td>(Variable Energy Cycl. Cen., India)</td>
</tr>
<tr>
<td>CHAKRABARTIT Alok</td>
<td>(Variable Energy Cycl. Cen., India)</td>
</tr>
<tr>
<td>DATE Schin</td>
<td>(NASDA)</td>
</tr>
<tr>
<td>DENISOV Vitali</td>
<td>(J.I.N.R., Dubna, Russia)</td>
</tr>
<tr>
<td>EJIRI Hiroyasu</td>
<td>(RCNP, Osaka Univ.)</td>
</tr>
<tr>
<td>FUJIOKA Manabu</td>
<td>(Cycl. Radioisot. Cen., Tohoku Univ.)</td>
</tr>
<tr>
<td>FUJITA Yoshitaka</td>
<td>(Fac. Sci., Osaka Univ.)</td>
</tr>
<tr>
<td>FUJIIWARA Ichiro</td>
<td>(Dept. Economy, Otemon Gakuin)</td>
</tr>
<tr>
<td>FUJIIWARA Mamoru</td>
<td>(RCNP, Osaka Univ.)</td>
</tr>
<tr>
<td>FURUNO Kohei</td>
<td>(Instit. Phys., Univ. Tsukuba)</td>
</tr>
<tr>
<td>FURUSE Kaoru</td>
<td>(NASDA)</td>
</tr>
<tr>
<td>FUTAMI Yasuyuki</td>
<td>(N.I.R.S.)</td>
</tr>
<tr>
<td>GOKA Tateo</td>
<td>(NASDA)</td>
</tr>
<tr>
<td>HAMA Hiroyuki</td>
<td>(I.M.S.)</td>
</tr>
<tr>
<td>HARADA Toru</td>
<td>(Fac. Social Inf., Sapporo Gakuin Univ.)</td>
</tr>
<tr>
<td>HASHIMOTO Osamu</td>
<td>(Fac. Sci., Tohoku Univ.)</td>
</tr>
<tr>
<td>HATANAKA Kichihi</td>
<td>(RCNP, Osaka Univ.)</td>
</tr>
<tr>
<td>HATTORI Toshiyuki</td>
<td>(Res. Lab. Nucl. React., T.I.T.)</td>
</tr>
<tr>
<td>HAYANO Ryugo S.</td>
<td>(Fac. Sci., Univ. Tokyo)</td>
</tr>
<tr>
<td>HIEDA Kohtarou</td>
<td>(Coll. Sci., Rikkyo Univ.)</td>
</tr>
<tr>
<td>HIGUCHI Tatsuro</td>
<td>(NASDA)</td>
</tr>
<tr>
<td>HIRAO Yasuo</td>
<td>(N.I.R.S.)</td>
</tr>
<tr>
<td>HIROSE Takayuki</td>
<td>(NASDA)</td>
</tr>
<tr>
<td>HONMA Michio</td>
<td>(Cen. Mathe. Sci., Univ. Aizu)</td>
</tr>
<tr>
<td>HORIBATA Takatoshi</td>
<td>(Fac.Eng., Aomori Univ.)</td>
</tr>
<tr>
<td>HORIGUCHI Takayoshi</td>
<td>(Dept. Clinical Rad., Hiroshima Int. Univ.)</td>
</tr>
<tr>
<td>HORIUCHI Hisashi</td>
<td>(Grad. Sch. Sci., Kyoto Univ.)</td>
</tr>
<tr>
<td>HOSONO Kazuhiko</td>
<td>(Dept. Eng. Sci., Himeji Inst. Tech.)</td>
</tr>
<tr>
<td>HYODO Toshio</td>
<td>(Grad. Sch. Arts Sci., Univ. Tokyo)</td>
</tr>
<tr>
<td>IDESAWA Masanori</td>
<td>(Univ. Electro-Commun.)</td>
</tr>
<tr>
<td>IGARASHI Toshio</td>
<td>(NASDA)</td>
</tr>
<tr>
<td>IKEDA Akitsu</td>
<td>(Shizuoka Inst. Sci. Tech.)</td>
</tr>
<tr>
<td>IKEDA Nobuo</td>
<td>(Fac. Sci., Kyushu Univ.)</td>
</tr>
<tr>
<td>IKEZOE Hiroshi</td>
<td>(JAERI, Tokai Res. Estab.)</td>
</tr>
<tr>
<td>IMAI Kenichi</td>
<td>(Fac. Sci., Kyoto Univ.)</td>
</tr>
<tr>
<td>IMAMURA Mineo</td>
<td>(National Museum of Japanese History)</td>
</tr>
<tr>
<td>INOUE Makoto</td>
<td>(Res. Reactor Inst., Kyoto Univ.)</td>
</tr>
<tr>
<td>ISHIZUKA Takeo</td>
<td>(Fac. Sci., Saitama Univ.)</td>
</tr>
<tr>
<td>ITO Yasuo</td>
<td>(Atomic Energy Res. Cen., Univ. Tokyo)</td>
</tr>
<tr>
<td>ITOH Kazuya</td>
<td>(Tandem Accel. Cen., Univ. Tsukuba)</td>
</tr>
</tbody>
</table>
ITOH Yutaka 伊藤覚 (KEK)
IVAN YUK Fedir (Inst. Nucl. Res., Ukraine)
IWAI Satoshi 岩井敏 (Nuclear Development Co., Ltd.)
IWAMOTO Akira 岩本 昭 (JAERI, Tokai Res. Estab.)
IWASHITA Yoshihisa 岩下芳久 (Inst. Chem. Res., Kyoto Univ.)
IWATA Ren 岩田 健 (Cycl. Radioisot. Cen., Tohoku Univ.)
IZUMOTO Toshiaki 岸本利章 (Coll. Tourism., Rikkyo Univ.)
JEONG S. C. 金 広 (KEK)
KAMIMURA Masayasu 上村正俊 (Fac. Sci., Kyushu Univ.)
KANAZAWA Mitsutaka 金澤 昌隆 (N.I.R.S.)
KANEKO Junichi 金子純一 (JAERI, Takasaki Rad. Chem. Res. Estab.)
KATO Kiyoshi 加藤慶 (Fac. Sci., Hokkaido Univ.)
KATSURAGAWA Hidetsugu 菊原 清一 (Fac. Sci., Toho Univ.)
KAWAZU Akira 川津 章 (Cycl. Radioisot. Cen., Tohoku Univ.)
KOBAYASHI-KOMIYAMA Misaki 志賀 美咲
KUBOYAMA Satoshi 久保山 聡 (NASDA)
KU KUKE Masahiko 工藤 克昭 (Fac. Sci., Niigata Univ.)
KUMADA Masayuki 熊田 隆 (N.I.R.S.)
KURIHARA Toshikazu 根原 和也 (KEK)
LEE San-Mu 李 柱茂 (Inst. Phys., Univ. Tsukuba)
LI Hongling (RCAST, Univ. Tokyo)
MAITSUDA Sumio 松田 純夫 (NASDA)
MATSUKI Seishi 松木正史 (Inst. Chem. Res., Kyoto Univ.)
MATSUMOTO Akihiro 松本明洋 (NASDA)
MATSUSE Takehiro 松瀬 隆浩 (Fac. Textile Sci. Tech., Shinshu Univ.)
MATSUYANagi Kenichi 松柳 研一 (Grad. Sch. Sci., Kyoto Univ.)
MATSUZAKI Kazuhiro 松崎 光 (NASDA)
MENG Jie (Peking Univ., China)
MINAMISONO Tadanori 南園 忠則 (Grad. Sch. Sci., Osaka Univ.)
MIYATAKE Hiroari 宮武 哲也 (KEK)
MIZUNO Yoshiyuki 水野義之 (RCNP, Osaka Univ.)
MIZUSAKI Takahiro 水崎 高浩 (Fac. Sci., Univ. Tokyo)
MORI Yoshiharu 森義治 (KEK)
MUKHOPADHYAY Tapas (Variable Energy Cycl. Cen., India)
MURAKAMI Hideoki 村上英彦 (Fac. Ed., Tokyo Gakugei Univ.)
MURAKAMI Tetsuya 村上 哲也 (Grad. Sch. Sci., Kyoto Univ.)
MUTA Atsushi 牟田 哲也 (Inst. Phys., Univ. Tsukuba)
MUTO Kazuo 武藤一雄 (Fac. Sci., T.I.T.)
MATSUZAKI Masayuki 松崎 昌之 (Fac. Ed., Fukuoka Univ.)
NAGAI Yasuki 永井泰樹 (RCNP, Osaka Univ.)
NAGAI Yuki 永井之紀 (NASDA)
NAGASHIMA Yasuyuki 長嶋 泰之 (Grad. Sch. Arts Sci., Univ. Tokyo)
NAGAWA Tadashi 田 良 (Fac. Sci., Chiba Univ.)
NAGASHIMA Hiroshi 中島 宏 (JAERI, Takasaki Rad. Chem. Res. Estab.)
NAKAMURA Hirokazu 中尾 和 (Kitakyushu Natl. Coll. Technol.)
NAKAMURA Ichiro 中村 哲郎 (Fac. Sci., Saitama Univ.)
NAKAMURA Takashi 中村 信 (Cycl. Radioisot. Cen., Tohoku Univ.)
NAKAO Noriaki 中尾 厚 (KEK)
NEMOTO Norio 根本耕生 (NASDA)
NODA Akira 野田 慎 (Inst. Chem. Res., Kyoto Univ.)
OMURA Toru 中村 剛 (KEK, Tanashi)
NOZAKI Tadashi 野崎 正 (Purex Co.)
OGAWA Kengo 小川 勇 (Fac. Sci., Chiba Univ.)
OHIRA Hideharu 大平 秀春 (NASDA)
OHTA Kiyoshi 大田 清 (Fac. Sci., Saitama Univ.)
OHTSUKI Tsutomu 大槻 勤 (Lab. Nucl. Sci., Tohoku Univ.)
OHYA Jiro 大矢次郎 (NASDA)
OI Makito 大井万紀人 (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
OKAMURA Hiroyuki 岡村 弘之 (Fac. Sci., Saitama Univ.)
ONISHI Naoki 大西 直哉 (Fac. Eng., Yamanashi Univ.)
OTTOMO Hiromitsu 大友 洋光 (NASDA)
OTSUBA Takaharu 大塚 孝治 (Fac. Sci., Univ. Tokyo)
SHIMIZU Akira 岡崎 克 (RCNP, Osaka Univ.)
SHIRAI Toshiyuki 五十川 徹也 (Inst. Chern. Res., Kyoto Univ.)
SHUGYOU Shinichi 菊谷 清一 (NASDA)
SUZUKI Toshio 鈴木 利夫 (N.I.R.S.)
SUGAWARA-TANABE Kazuko 末川理恵 (Otsuma Women's Coll.)
UEHARA Takashi (Nuclear Development Co., Ltd.)
URITANI Akira (Dept. Phys., Grad. Sch. Sci., Nagoya Univ.)
UTSUOMIYA Hiroaki (Fac. Sci., Konan Univ.)
WADA Ryoichi (Texas A & M Univ., USA)
WADA Takahiro (Fac. Sci., Konan Univ.)
WAKAI Masamiti (Grad. Sch. Sci., Osaka Univ.)
YABANA Kazuhiro (Fac. Sci., Niigata Univ.)
YOSHIOKA Yasuhiro (NASDA)
ZHAO Yuliang (Fac. Sci., Tokyo Metrop. Univ.)

Trainees

AKI Yuka (Fac. Sci., Tohoku Univ.)
ARIGA Takehiro (Fac. Sci., Toho Univ.)
FUJISAKI Takashi (Coll. Sci., Rikkyo Univ.)
FUJITA Tatsuru (Fac. Sci., Kyushu Univ.)
HIGURASHI Yoshihide (Coll. Sci., Rikkyo Univ.)
IWASE Hiroshi (Fac. Sci., Tohoku Univ.)
KIM Eun Joo (Fac. Sci., Tohoku Univ.)
KOBORI Tomohiro (Fac. Sci., Saitama Univ.)
KURITA Tetsuro (Inst. Phys., Univ. Tsukuba)
KUROSAWA Tadahiro (Grad. Sch. Sci., Tohoku Univ.)
NISHIKAWA Jun (Fac. Sci., Saitama Univ.)
OHNISHI Tetsuya (Fac. Sci., Tohoku Univ.)
OKAMOTO Tomoko (Fac. Sci. Tech., Sci. Univ. Tokyo)
OKUDA Hikaru (Fac. Sci., Kyushu Univ.)
OZAWA Shuichi (Fac. Sci., Rikkyo Univ.)
SASAKI Michiya (Grad. Sch. Sci., Tohoku Univ.)
SATO Hisaki (Fac. Eng., Tohoku Univ.)
SEKIGUCHI Kimiko (Dept. Phys., Grad. Sch. Sci., Univ. Tokyo)
SHIOMI Tomoyuki (Fac. Sci., Tohoku Univ.)
TANIGUCHI Shingo (Interdisciplinary Grad. Sch. Eng. Sci., Kyushu Univ.)
UCHIYAMA Koji (Inst. Phys., Univ. Tsukuba)
UTSUNO Yuutsu (Fac. Sci., Univ. Tokyo)
WAKUI Takashi (Fac. Sci., Tohoku Univ.)
XIAO Meiqin (Grad. Sch. Eng., Osaka Univ.)
TSURUTA Koa (Interdisciplinary Grad. Sch. Eng. Sci., Kyushu Univ.)

Radioisotope Technology Division

Head
YATAGAI Fumio (Grad. Sch. Sci., Tohoku Univ.)

318
Visiting Members and Postdoctoral Fellows

ENOMOTO Shuichi 江本 秀一
GORDON Alasdair
HIRUNUMA Rieko 沢沼 利江子
KAGAWA Yasuhiro 香川 康浩（Toray Res. Cen. Inc.）
KATO Takesi 加藤 武司
KAWAMURA Yoshihiro 川村 昌寛
MAEZAWA Hiroshi 前澤 博（Fac. Med. Technol., Tokushima Univ.）
MORIMOTO Shigeko 森本 茂子
OGURA Koichi 小倉 健一（Coll. Ind. Technol., Nihon Univ.）
OZAKI Takuo 尾崎 道郎
TAMANO Haruna 王野 春南
YANAGIYA Takahiro 柳谷 隆宏

Trainees

INOUE Kensuke 井上 喜宣（Fac. Sci. Eng., Waseda Univ.）
KITO Masatoshi 鬼頭 昌利（Fac. Sci. Eng., Waseda Univ.）
KUROBE Toshihiro 黒部 利博（Fac. Sci. Eng., Waseda Univ.）
OKA Toshitaka 岡 壽登（Fac. Sci. Eng., Waseda Univ.）

ADVANCED ENGINEERING CENTER

Research Instruments Development Division

Head
SENNO Katsumi 妹尾 开己

Members

IKEGAMI Yuji 池上 宏司
NOMIYA Yoshio 野宮 芳雄
SHIMODA Susumu 霧田 進
SUGAHARA Seigo 菅原 正吾
Takahashi Norikazu 高橋 純一
Watanabe Tokuji 渡辺 徳治
Yamada Yutaka 山田 豊

Contracting Members

KANEKO Naoe 金子 直恵
KUBO Ushizo 久保 盲蔵
MATSUMOTO Akira 松本 昭
NIOKA Yuzo 新岡 勇三
SASAMOTO Tetsuji 笠本 哲司
Takahashi Kiyoji 高橋 清二
Tokiwa Saburo 常盤 三郎
Yamamoto Sumio 山本澄雄

CHARACTERIZATION CENTER

Surface Characterization Division

Head
IWAKI Masaya 岩木 正哉

Members

NAKAO Aiko 中尾 愛子
YAGI Ei-ichi 八木 一

Watanabe Kowashi 渡辺 剛
Visiting Members and Postdoctoral Fellows
KOYAYASHI Tomohiro 小林知洋

ADVANCED COMPUTING CENTER

Computational Science Division
Head
EBISUZAKI Toshikazu 戦崎俊一

Members
IITAKA Toshiaki 飯高敏行
SUNOUCHI Kei 讃之内啓

Visiting Members and Postdoctoral Fellows
MAKINO Yuko 牧野祐子
MIURA Hitoshi 三浦均
SHIMIZU Tetsuya 清水鉄也

BIOGENIC RESOURCES CENTER

Experimental Animal Research Division
Head
KUSAKABE Moriaki 日下部守昭

Members
HIRAIWA Noriko 平岩典子
TSUKADA Teruyu 塚田晃代
IKE Fumio 池郁生
YOSHIKI Atsush 𠮷木淳

Visiting Members and Postdoctoral Fellows
KOGISO Aya 小木曾彩
KOJIMA Masayo 小島茉代
KUBOTA Yukihiko 沼田幸彦
NORO Chikako 野呂知加子
POIRIER Christophe
YAMAGUCHI Hirotake 山口弘毅
YAMANOUCHI Jyun 山之内淳
YODA Yoshika 依田賢香 (Japan Sci. Technol. Corp.)

Safety Center

Members
CHIBA Shigeo 千葉茂夫
HARASAWA Kaoru 原沢薰
MATSUZAWA Yasuhide 松澤安秀
SHINOHARA Shigemi 篠原茂己
YOSHIKI Hajime 吉崎肇
FUKAZAWA Kunio 深沢国雄
KAGAYA Satoru 加賀尾悟
MIYAGAWA Makoto 宮川真言
UWAMINO Yoshitomo 上宮義朋
<table>
<thead>
<tr>
<th>Author</th>
<th>Index</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABE Ryo</td>
<td>阿部 亮</td>
<td>4</td>
</tr>
<tr>
<td>ABE Tomoko</td>
<td>阿部知子</td>
<td>139, 140, 141</td>
</tr>
<tr>
<td>AIHARA Toshimitsu</td>
<td>萩原利光</td>
<td>6</td>
</tr>
<tr>
<td>AKAGI Hiroyasu</td>
<td>赤木宏安</td>
<td>4</td>
</tr>
<tr>
<td>AKIMOTO Keiji</td>
<td>秋本圭司</td>
<td>161</td>
</tr>
<tr>
<td>AKIYAMA Kazuhiko</td>
<td>秋山和彦</td>
<td>129</td>
</tr>
<tr>
<td>AKIYOSHI Hiromichi</td>
<td>秋吉啓充</td>
<td>60, 63, 65, 66, 67</td>
</tr>
<tr>
<td>AKOSHIMA Megumi</td>
<td>阿子島めぐみ</td>
<td>101</td>
</tr>
<tr>
<td>ALEKSEEV Igor</td>
<td>阿列克塞夫</td>
<td>41, 170</td>
</tr>
<tr>
<td>ALLGOWER Chris</td>
<td>阿爾高韋</td>
<td>43</td>
</tr>
<tr>
<td>AMANO Ryohei</td>
<td>天野良平</td>
<td>120, 128</td>
</tr>
<tr>
<td>AMBE Fumitoshi</td>
<td>安兵夫</td>
<td>93, 109, 129</td>
</tr>
<tr>
<td>AMBE Shizuko</td>
<td>安兵子</td>
<td>129</td>
</tr>
<tr>
<td>ANDO Kozo</td>
<td>安藤剛三</td>
<td>81, 82, 83</td>
</tr>
<tr>
<td>ANDO Yoshiaki</td>
<td>安藤好喜</td>
<td>60, 63, 65, 66</td>
</tr>
<tr>
<td>ANSARI Ahmad</td>
<td>安西良央</td>
<td>22, 27</td>
</tr>
<tr>
<td>AOI Nori</td>
<td>青木秀</td>
<td>63, 65, 66, 67, 68, 69, 70</td>
</tr>
<tr>
<td>AOKI Yuka</td>
<td>青木由香</td>
<td>57, 58</td>
</tr>
<tr>
<td>AOKYAI Shigenori</td>
<td>青柳政典</td>
<td>161</td>
</tr>
<tr>
<td>ARIE Tsutomu</td>
<td>有江力</td>
<td>138</td>
</tr>
<tr>
<td>ARIGA Takehiro</td>
<td>有賀健太</td>
<td>80</td>
</tr>
<tr>
<td>ARIMA Akiyoshi</td>
<td>有馬朗人</td>
<td>13, 18, 20, 22, 23, 24</td>
</tr>
<tr>
<td>AWAGA Kunio</td>
<td>阿波賀邦夫</td>
<td>104</td>
</tr>
<tr>
<td>AWES Terry</td>
<td>141, 168</td>
<td></td>
</tr>
<tr>
<td>AZUMA Toshiyuki</td>
<td>深澤俊行</td>
<td>78</td>
</tr>
<tr>
<td>BAI Mei</td>
<td>41, 43, 170</td>
<td></td>
</tr>
<tr>
<td>BAKULE Pavel</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>BASSALLECK Bernd</td>
<td>41, 170</td>
<td></td>
</tr>
<tr>
<td>BATHE Stefan</td>
<td>14, 168</td>
<td></td>
</tr>
<tr>
<td>BATURINE Vitaly</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>BAZILEVSKY Alexander</td>
<td>41, 44</td>
<td></td>
</tr>
<tr>
<td>BELIKOV Nikolai</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>BENTZ Wolfgang</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>BHATTACHARYEE Sudeep</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>BOCHKAREV Oleg</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>BORDEANU Cristina</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>BOYD Richard N.</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>BREHMER Sven</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>BROOKS Melynda L.</td>
<td>41, 165</td>
<td></td>
</tr>
<tr>
<td>BROWN B. Alex</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>BUCHER Damian</td>
<td>41, 168</td>
<td></td>
</tr>
<tr>
<td>BUESCHING Henner</td>
<td>41, 168</td>
<td></td>
</tr>
<tr>
<td>BUNCHE Ricky</td>
<td>41, 170</td>
<td></td>
</tr>
<tr>
<td>CHIBA Toshiya</td>
<td>千葉利哉</td>
<td>197, 206, 210, 212, 224</td>
</tr>
<tr>
<td>CHIBA Yoshiki</td>
<td>千葉好明</td>
<td>251</td>
</tr>
<tr>
<td>CHIMI Yasuhiro</td>
<td>知見康弘</td>
<td>87, 89</td>
</tr>
<tr>
<td>CHULKO Leonid</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>CIANCIOLI Vince</td>
<td>41, 166</td>
<td></td>
</tr>
<tr>
<td>CORTINA Dolores</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>DEREVYSHIKOV Anatoly</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>DESHPANDE Abhay</td>
<td>41, 170</td>
<td></td>
</tr>
<tr>
<td>DIAO Xungang</td>
<td>90, 93, 94</td>
<td></td>
</tr>
<tr>
<td>DIEHL Roland</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>DINH DANG Nguyen</td>
<td>廷煥</td>
<td>20, 21, 22, 23, 24</td>
</tr>
<tr>
<td>DO DANG Quan</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>DOSKOW Jack</td>
<td>41, 170</td>
<td></td>
</tr>
<tr>
<td>DUMITRIU Dana</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>EATON Gordon H.</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>ECCLESTON Roger S.</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>EGUCHI-KASAI Kiyomi</td>
<td>江口-笠井清美</td>
<td>145</td>
</tr>
<tr>
<td>EILERTS Scott</td>
<td>41, 170</td>
<td></td>
</tr>
<tr>
<td>EISENMANN Kaury</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>EN'YO Hideko</td>
<td>延與秀人</td>
<td>41, 43, 44, 166, 168, 172</td>
</tr>
<tr>
<td>ENDO Kazutoyo</td>
<td>速田和義</td>
<td>114, 116</td>
</tr>
<tr>
<td>ENOMOTO Shuichi</td>
<td>111, 112, 113, 114, 116, 117, 118, 119, 120, 121, 122, 123, 125, 127, 128, 129, 130, 193</td>
<td></td>
</tr>
<tr>
<td>FIELDS Douglas E.</td>
<td>41, 170</td>
<td></td>
</tr>
<tr>
<td>FUGONO Jun</td>
<td>藤野純</td>
<td>113</td>
</tr>
<tr>
<td>FUJIMAKI Masaki</td>
<td>藤巻正樹</td>
<td>6, 193</td>
</tr>
<tr>
<td>FUJISHIMA Shiro</td>
<td>藤島史郎</td>
<td>212, 218, 220, 230</td>
</tr>
<tr>
<td>FUJITA Jiro</td>
<td>藤田二郎</td>
<td>4</td>
</tr>
<tr>
<td>FUJITA Shin</td>
<td>藤田信</td>
<td>265, 266</td>
</tr>
<tr>
<td>FUJIWARA Atsushi</td>
<td>藤原丈史</td>
<td>265, 266</td>
</tr>
<tr>
<td>FUJIWARA Hideki</td>
<td>藤原英樹</td>
<td>60</td>
</tr>
<tr>
<td>FUKAYA Atsuko</td>
<td>深谷敦子</td>
<td>105</td>
</tr>
<tr>
<td>FUKUDA Naoki</td>
<td>福田直樹</td>
<td>60, 68, 69, 70, 163</td>
</tr>
<tr>
<td>FUKUNISHI Nobuhiro</td>
<td>福西晃彦</td>
<td>131, 142, 148, 230, 243</td>
</tr>
<tr>
<td>FUKUSAKA Shoichi</td>
<td>福坂慎一</td>
<td>53, 54, 56</td>
</tr>
<tr>
<td>FÜLÖP Zsolt</td>
<td>60, 63, 65, 66, 67, 68, 72</td>
<td></td>
</tr>
<tr>
<td>FURUNO Kohei</td>
<td>古野寛平</td>
<td>73</td>
</tr>
<tr>
<td>FURUSAWA Yoshiya</td>
<td>古澤佳也</td>
<td>144</td>
</tr>
<tr>
<td>FUTAKAMI Uda</td>
<td>二上由內</td>
<td>68, 69, 70</td>
</tr>
<tr>
<td>GACSZI Zoltan</td>
<td>68, 69, 70</td>
<td></td>
</tr>
<tr>
<td>GEISSEL Haus</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>GHAZIKHANIAN Vahe</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>GOKA Tateo</td>
<td>五家慎夫</td>
<td>177, 178</td>
</tr>
<tr>
<td>GOLOVKOV Mikhail</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>GOMI Tomoko</td>
<td>五味朋子</td>
<td>60, 63, 65, 66, 67, 68, 69, 70</td>
</tr>
<tr>
<td>GONO Yasuyuki</td>
<td>郵稲晴之</td>
<td>130</td>
</tr>
<tr>
<td>GORDON Alasdair</td>
<td>131, 142</td>
<td></td>
</tr>
<tr>
<td>GOWSAM Wamsana</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>GOTO Akira</td>
<td>後藤 彰</td>
<td>4, 151, 152, 193, 197, 200, 206, 220, 221, 222, 223, 224</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>GOTO Yuji</td>
<td>33, 41, 43, 44, 168, 170, 172</td>
<td></td>
</tr>
<tr>
<td>GROSSE PERDEKAMP Matthias</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>HANAMI秀樹</td>
<td>41, 142, 146</td>
<td></td>
</tr>
<tr>
<td>HARA Yasuhide</td>
<td>原 昌英 141</td>
<td></td>
</tr>
<tr>
<td>HATTORI Toshiyuki</td>
<td>服部俊幸 202</td>
<td></td>
</tr>
<tr>
<td>HAYASHI Naoki</td>
<td>林 直樹 33, 41, 43, 44, 46, 166, 172</td>
<td></td>
</tr>
<tr>
<td>HEELEBRANDT Wolfgang</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>HEMMI Masataka</td>
<td>逸見政武 197, 206</td>
<td></td>
</tr>
<tr>
<td>HIASA Toshikazu</td>
<td>目白俊一 208</td>
<td></td>
</tr>
<tr>
<td>HIGUCHI Hiroyoshi</td>
<td>桃口芳夫 185</td>
<td></td>
</tr>
<tr>
<td>HIGURASHI Yoshihide</td>
<td>日暮祥英 60, 63, 65, 66, 67, 68, 69, 70, 197</td>
<td></td>
</tr>
<tr>
<td>HILLENBRANDT Wolfgang</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>HIRAI Masaaki</td>
<td>平井正明 60, 63, 65, 66</td>
<td></td>
</tr>
<tr>
<td>HIRAI Masanori</td>
<td>平井正章 33</td>
<td></td>
</tr>
<tr>
<td>HIRATA Kazuto</td>
<td>平田和人 102</td>
<td></td>
</tr>
<tr>
<td>HIROSE Takayuki</td>
<td>広瀬孝行 91</td>
<td></td>
</tr>
<tr>
<td>HIROSE Toshirou</td>
<td>広瀬敏朗 161</td>
<td></td>
</tr>
<tr>
<td>HIRUMACHI Tamiko</td>
<td>桧町多夫子 238</td>
<td></td>
</tr>
<tr>
<td>HIRUNUMA Rieko</td>
<td>蛭沼利江子 111, 113, 114, 116, 117, 118, 121</td>
<td></td>
</tr>
<tr>
<td>HISANAGA Isanu</td>
<td>久永 勇 60</td>
<td></td>
</tr>
<tr>
<td>HOMMA Takayuki</td>
<td>本間隆之 4</td>
<td></td>
</tr>
<tr>
<td>HONMA Michio</td>
<td>本間道雄 15, 16, 17, 174</td>
<td></td>
</tr>
<tr>
<td>HORIBATA Takatoshi</td>
<td>堀田孝俊 27</td>
<td></td>
</tr>
<tr>
<td>HORIKAWA Hirotsugu</td>
<td>堀川博嗣 33</td>
<td></td>
</tr>
<tr>
<td>HOSHIRO Masamitsu</td>
<td>星野正光 85</td>
<td></td>
</tr>
<tr>
<td>HOTTA Tomohiro</td>
<td>堀田智洋 192</td>
<td></td>
</tr>
<tr>
<td>HUANG Haixin</td>
<td>41, 43, 170</td>
<td></td>
</tr>
<tr>
<td>HUGHES Vernon</td>
<td>41, 170</td>
<td></td>
</tr>
<tr>
<td>HUI Qin</td>
<td>恵 奏 99</td>
<td></td>
</tr>
<tr>
<td>HULDT Sven</td>
<td>81, 82, 83</td>
<td></td>
</tr>
<tr>
<td>HUTTON Roger</td>
<td>81, 82, 83, 84</td>
<td></td>
</tr>
<tr>
<td>HYODO Toshiro</td>
<td>兵部俊夫 95, 151, 152, 188</td>
<td></td>
</tr>
<tr>
<td>ICHIHARA Takashi</td>
<td>市原 部 41, 43, 56, 166, 172</td>
<td></td>
</tr>
<tr>
<td>IKE Kazuo</td>
<td>家城和夫 65</td>
<td></td>
</tr>
<tr>
<td>IGARASHI Kaori</td>
<td>五十嵐香織 121</td>
<td></td>
</tr>
<tr>
<td>IGO George</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>IHARA Noriko</td>
<td>岩井寛子 144</td>
<td></td>
</tr>
<tr>
<td>IKE Fumio</td>
<td>池 郁夫 148</td>
<td></td>
</tr>
<tr>
<td>IKEDA Hiroshi</td>
<td>池田 博 88, 187</td>
<td></td>
</tr>
<tr>
<td>IKEDA Kiyomi</td>
<td>池田清美 11</td>
<td></td>
</tr>
<tr>
<td>IKEGAMI Kumi</td>
<td>池上九三男 4, 208, 212, 222, 226, 228</td>
<td></td>
</tr>
<tr>
<td>IVEZAWA Eiji</td>
<td>池沢英二 6, 193, 206</td>
<td></td>
</tr>
<tr>
<td>IMAI Ken'ichi</td>
<td>今井誠一 41, 44, 166, 168, 170</td>
<td></td>
</tr>
<tr>
<td>IMAI Nobuaki</td>
<td>今井伸明 63, 65, 67, 68, 69, 70</td>
<td></td>
</tr>
<tr>
<td>INURA Nobumasa</td>
<td>井村伸正 119</td>
<td></td>
</tr>
<tr>
<td>INABE Naohito</td>
<td>村田尚人 4, 80, 249</td>
<td></td>
</tr>
<tr>
<td>IPPOLITOV Mikhail</td>
<td>41, 168</td>
<td></td>
</tr>
<tr>
<td>ISERI Yasunori</td>
<td>萩原克也 9</td>
<td></td>
</tr>
<tr>
<td>ISHIDA Katsuhiko</td>
<td>石田耕彥 48, 49, 51, 107, 263</td>
<td></td>
</tr>
<tr>
<td>ISHIDA Satoru</td>
<td>石田 哲 56</td>
<td></td>
</tr>
<tr>
<td>ISHIDA Takayuki</td>
<td>石田尚行 106</td>
<td></td>
</tr>
<tr>
<td>ISHIHARA Masayasu</td>
<td>石原正夫 41, 60, 63, 65, 66, 67, 68, 69, 70, 166, 170</td>
<td></td>
</tr>
<tr>
<td>ITO Hisao</td>
<td>伊東久夫 144</td>
<td></td>
</tr>
<tr>
<td>ITO Sachiko</td>
<td>伊藤栄子 243, 265, 266</td>
<td></td>
</tr>
<tr>
<td>ITO Takaomi</td>
<td>伊藤貴臣 78</td>
<td></td>
</tr>
<tr>
<td>ITOH Akio</td>
<td>伊藤秋男 79</td>
<td></td>
</tr>
<tr>
<td>ITOH Kazuya S.</td>
<td>伊藤香代 9, 53, 54, 55, 56, 153</td>
<td></td>
</tr>
<tr>
<td>ITOH Yoshiko</td>
<td>伊東芳子 95, 151, 152</td>
<td></td>
</tr>
<tr>
<td>ITSU-KAICHI Hiromi</td>
<td>五日市ひろみ 145</td>
<td></td>
</tr>
<tr>
<td>IVANOV Marian</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>IWA Yoshio</td>
<td>岩井良夫 84</td>
<td></td>
</tr>
<tr>
<td>IWAKI Masaya</td>
<td>岩木正哉 186</td>
<td></td>
</tr>
<tr>
<td>IWAMA Motonori</td>
<td>岩間俊訓 118</td>
<td></td>
</tr>
<tr>
<td>IWASA Naohito</td>
<td>岩佐道仁 59, 60, 63, 65, 66, 67, 68, 69, 70</td>
<td></td>
</tr>
<tr>
<td>IWASI Kimonori</td>
<td>岩崎弘典 60, 63, 65, 66, 67, 68, 69, 70</td>
<td></td>
</tr>
<tr>
<td>IWASAKI Masahiko</td>
<td>岩崎雅彦 48</td>
<td></td>
</tr>
<tr>
<td>IWASE Akihito</td>
<td>岩瀬敬宏 87, 88, 89, 90, 187</td>
<td></td>
</tr>
<tr>
<td>IWATA Yoshiyuki</td>
<td>岩田佳之 60, 63, 65, 66, 67</td>
<td></td>
</tr>
<tr>
<td>JANIK Rudo</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>JANKA Hans-Thomas</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>
LEE David M. 41, 165
LEE Sang Moo 李相茂 149
LEE Shyh-Yuan 43
LEWIS Benji 41, 170
LI Zihong 41, 166
LING Feng 凌 枫 139
LIU Zhong 刘 忠 63, 65, 66, 67, 68, 69, 70
LOZOWSKI Bill 41, 170
MADOKORO Hideki 門所秀樹 26
MAEDA Kuniko 前田純子 183, 185
MAEDA Yukie 前田幸枝 53, 54
MAIE Takeshi 真家武士 4
MAKDISI Yousef 41, 43, 170
MAO Yajun 毛亚俊 41, 44, 166
MARTINSON Indrek 81, 82, 83
MARUYAMA Ko-ichi 村上浩一 52
MARUYAMA Tomoyuki 村上博幸 241
MASON Gren 48
MASUDA Hideki 松田浩之 84
MAEDA Yukie 前田幸枝 53, 54
MATSUDA Masaaki 松田雅昌 100
MATSUDA Sumio 松田純夫 91
MATSUZAKI Masayuki 松沢雅之 26
MATSUZAKI Teiichiro 松沢一平 48, 49, 51, 107, 263
MATSUMOTO Haruhisa 松本晴 177, 178
MATSUMOTO Ken-ichiro 松本健一郎 116
MATSUO Yukari 松尾由利 99
MATSUZAKI Masayuki 松崎昌之 26
MATSUMOTO Toshikatsu 松本武彦 230, 234, 238
MATSUZAKI Teiichiro 松崎一平 48, 49, 51, 107, 263
MATSUZAKI Masayuki 松本裕之 26
MATSUZUKI Yuko 松塚優子 32, 72
MATSAKO Toshikatsu 松多正幸 208, 212, 214, 224
MATTENKO Yuri 43
MEXNER Vanessa 41, 168
MEYER Haus-Otto 41, 170
MICHIKAMI Osamu 益川 修 87
MIKESKA Hans-Jürgen 100
MINAI Yoshitaka 森本加孝 127
MINAMI Takeshi 三宅正志 193
MINEMURA Toshiyuki 宍村 博 60, 63, 65, 66, 67, 68, 69, 70
MINEO Hirofumi 岩尾浩文 39
MITSUMOTO Toshinori 本村俊雄 208, 212, 214, 224, 230
MIYAGAI Masahiro 三宅茂男 140
MIYAKE Yasuhiro 三宅茂男 263
MIYAMASAMORI 深山正纪 33, 38
MIYASAKA HIromasa 宮坂浩正 177, 178
MIYAZAWA Yoshitoshi 宫沢正 197, 206, 208, 210, 212, 224
MIYOSHI Kazumitsu 三吉一光 141
MIZUNO Takeshi 水野 武 131
MIZUSAKI Takehiro 水崎浩浩 10, 14, 15, 16, 17, 174
MOCHIKU Takaaki 萬枝浩之 102
MOCHIZUKI Yuko 望月優子 32, 72
MOHRI Akihiro 毛利明博 255
MORII Toshiyuki 森井修 33, 34, 35, 36, 37
MORIKAWA Tetsuya 森川俊也 212
MORIMOTO Kouji 森本幸司 59, 158, 159
MORIMOTO Shigeo 森本義男 131, 142
MORITA Kosuke 森田浩介 59, 161
MOTOBAYASHI Tohru 本星 透 60, 63, 65, 66, 67, 68, 69, 70
MOTOMURA Shinji 本村信治 130
MUHOPADHYAY Tapas 241
MÜNZENBERG Gottfried 74
MURAKAMI Hiroyuki 村上浩之 63, 65
MURAKAMI Masahiro 村上正弘 145
MURAKI Yasushi 村上光 178
MURATA Jiro 村田次郎 41, 46, 165
NAGAFUCHI Teruyasu 永安照康 230, 234, 238
NAGAI Yasuyoshi 永井康介 95, 188
NAGAI Yuki 永井由紀 91
NAGAMINE Kanetada 永井健 48, 49, 51, 101, 102, 103, 104, 105, 106, 107, 189, 263
NAGASE Makoto 長瀬誠 4, 204
NAGASHIMA Yasuyuki 長島泰之 95, 151, 152
NAITO Kenichi 内藤謙一 40
NAKADA Yoko 中田陽子 43
NAKAGAWA Keiko 中川恵子 57, 58
NAKAGAWA Sachiko 中川幸子 97
NAKAGAWA Takahide 中川孝志 4, 57, 58, 149, 193, 197, 200, 202
NAKAIHARA Hiromichi 中原弘通 129
NAKAI Yoichi 中海陽 78, 79, 85, 86, 199, 255
NAKAKIMA Shunji 中島和之 265, 266
NAKAMURAMasaobu 中村正雄 41, 43, 170
NAKAMURA Satoshi N. 中村 正 48, 49, 51, 107, 263
NAKAMURA Takashi 中村隆司 60
NAKANISHI Yukiko 中西由季子 121
NAKAO Aiko 中尾愛子 186
NAKATSUKASAKA Takashi 中川孝季 25
NEMOTO Yukio 根本幸男 40
NICKEL Frank 74
NIJIZKI Takashi 新倉 隆 54, 56
NISHIDA Nobuhiko 西田信彦 102
NISHIKAWA Jun 西川 純 154
NISHIMURA Jun 西村 淳 192
NISHISUMI Tamio 西村光男 75
<table>
<thead>
<tr>
<th>姓名</th>
<th>仮名</th>
<th>大学名</th>
</tr>
</thead>
<tbody>
<tr>
<td>NODA Koji</td>
<td>野田耕司</td>
<td>180</td>
</tr>
<tr>
<td>NOGACH Larisa</td>
<td>野上 隆</td>
<td>106</td>
</tr>
<tr>
<td>NOGAMI Takashi</td>
<td>野上 隆</td>
<td>118</td>
</tr>
<tr>
<td>NONAKA Takamasa</td>
<td>野中親正</td>
<td>56</td>
</tr>
<tr>
<td>NOSE Yasuhiro</td>
<td>能勢泰寛</td>
<td>137, 138</td>
</tr>
<tr>
<td>NOTANI Masahiro</td>
<td>野村善広</td>
<td>60</td>
</tr>
<tr>
<td>OGIWARA Kiyoshi</td>
<td>井原光</td>
<td>151, 152</td>
</tr>
<tr>
<td>OGIWARA Kohji</td>
<td>井原耕</td>
<td>125</td>
</tr>
<tr>
<td>OGLOBLIN Alexei</td>
<td>河路林昇</td>
<td>265, 266</td>
</tr>
<tr>
<td>OHIRI Hideharu</td>
<td>大入秀孝</td>
<td>91</td>
</tr>
<tr>
<td>OHIRI Seiko</td>
<td>大入聖子</td>
<td>104, 105, 106, 107</td>
</tr>
<tr>
<td>OHKAWA Tomohiro</td>
<td>大川哲</td>
<td>143</td>
</tr>
<tr>
<td>OHKI Tomonori</td>
<td>大木道</td>
<td>7.3</td>
</tr>
<tr>
<td>OHKUMA Kazumasa</td>
<td>大川康正</td>
<td>34</td>
</tr>
<tr>
<td>OHNISHI Jun-ichi</td>
<td>大西純一</td>
<td>208, 212, 214, 220</td>
</tr>
<tr>
<td>OHNISHI Tetsuya</td>
<td>大西哲也</td>
<td>9, 53, 54, 55, 56, 153, 154</td>
</tr>
<tr>
<td>OHSAKI Osamu</td>
<td>大橋光</td>
<td>238</td>
</tr>
<tr>
<td>Ohta Kiyoshi</td>
<td>大田 慶</td>
<td>7.161</td>
</tr>
<tr>
<td>OHTA Ryuichi</td>
<td>大塚隆一</td>
<td>4</td>
</tr>
<tr>
<td>OHTA Shigemi</td>
<td>大塚健史</td>
<td>191</td>
</tr>
<tr>
<td>OHTAKE Masao</td>
<td>大竹政雄</td>
<td>222</td>
</tr>
<tr>
<td>OHTANE Shunsuke</td>
<td>大谷信雄</td>
<td>180</td>
</tr>
<tr>
<td>OHTOMO Kiyotaka</td>
<td>大友淸隆</td>
<td>245, 247, 251</td>
</tr>
<tr>
<td>OHTSUBO Takashi</td>
<td>大塚隆</td>
<td>176</td>
</tr>
<tr>
<td>OHYAMA Hitoshi</td>
<td>大山 喜志</td>
<td>199</td>
</tr>
<tr>
<td>OHYAMA Takuya</td>
<td>大山拓也</td>
<td>118</td>
</tr>
<tr>
<td>OL Makito</td>
<td>大月聖</td>
<td>27</td>
</tr>
<tr>
<td>OKA Makoto</td>
<td>大門雅</td>
<td>40</td>
</tr>
<tr>
<td>OKA Toshitaka</td>
<td>大河貴</td>
<td>147</td>
</tr>
<tr>
<td>OKABE Shigeto</td>
<td>大迫克</td>
<td>11</td>
</tr>
<tr>
<td>OKADA Kunihiro</td>
<td>大田邦弘</td>
<td>180</td>
</tr>
<tr>
<td>OKADA Shin'ichi</td>
<td>大田慎一</td>
<td>180</td>
</tr>
<tr>
<td>OKAMURA Hiroyuki</td>
<td>大村秀</td>
<td>9, 53, 54, 55, 56, 153, 154</td>
</tr>
<tr>
<td>OKAMURA Masahiro</td>
<td>大村昌弘</td>
<td>43, 202, 202, 234, 238, 261</td>
</tr>
<tr>
<td>OKAYASU Satoru</td>
<td>大谷悟</td>
<td>88</td>
</tr>
<tr>
<td>OKUNO Hiroki</td>
<td>奥野弘樹</td>
<td>208, 212, 214, 218, 220, 222, 224, 230</td>
</tr>
<tr>
<td>OMORI Takehi</td>
<td>大森泰</td>
<td>118</td>
</tr>
<tr>
<td>ONISHI Naoki</td>
<td>大西直毅</td>
<td>27</td>
</tr>
<tr>
<td>ONISHI Takashi</td>
<td>大西 栄</td>
<td>61</td>
</tr>
<tr>
<td>ONOGI Toshiyuki</td>
<td>小野本敏之</td>
<td>102</td>
</tr>
<tr>
<td>OOHASHI Kunio</td>
<td>大橋明雄</td>
<td>122</td>
</tr>
<tr>
<td>OSHIMA Nagayasu</td>
<td>大島義樹</td>
<td>255</td>
</tr>
<tr>
<td>OTAKE Masao</td>
<td>大竹政雄</td>
<td>228</td>
</tr>
<tr>
<td>OTSU Hideaki</td>
<td>大津秀晃</td>
<td>56, 72</td>
</tr>
<tr>
<td>OTSUKA Takaharu</td>
<td>大塚健次郎</td>
<td>10, 15, 16, 17, 174</td>
</tr>
<tr>
<td>OYAMA Hitoshi</td>
<td>大森 喜</td>
<td>81, 82, 83, 84, 255</td>
</tr>
<tr>
<td>OYAMA Satoshi</td>
<td>大森 昭雅</td>
<td>35</td>
</tr>
<tr>
<td>OYAMATSU Kazuhiko</td>
<td>大村和仁</td>
<td>31</td>
</tr>
<tr>
<td>OZAKI Takuo</td>
<td>尾崎卓郎</td>
<td>123</td>
</tr>
<tr>
<td>OZAWA Akira</td>
<td>小沢 間</td>
<td>72, 74, 163, 176</td>
</tr>
<tr>
<td>OZAWA Shuichi</td>
<td>小澤修一</td>
<td>60, 63, 65, 66, 67, 80</td>
</tr>
<tr>
<td>PATE Stephen</td>
<td>派奇</td>
<td>41, 165</td>
</tr>
<tr>
<td>PAVLINOV Alexei</td>
<td>パヴィリノフ アレクセイ</td>
<td>43</td>
</tr>
<tr>
<td>PEITZMANN Thomas</td>
<td>ペッツマン ザイムス</td>
<td>41, 168</td>
</tr>
<tr>
<td>PETRASCU Horia</td>
<td>ペトラスク ホーリア</td>
<td>72</td>
</tr>
<tr>
<td>PFÜTZNER Marek</td>
<td>フュッツナー マレク</td>
<td>74</td>
</tr>
<tr>
<td>POPE Kyle</td>
<td>ポープ キール</td>
<td>41, 46</td>
</tr>
<tr>
<td>PRATT Francis</td>
<td>クラット フランシス</td>
<td>107</td>
</tr>
<tr>
<td>PRIBORA Vacular</td>
<td>プリボラ・プラークカラ</td>
<td>74</td>
</tr>
<tr>
<td>PRZEWOSKI Barbara</td>
<td>プツヴォスキ バーバラ</td>
<td>41, 170</td>
</tr>
<tr>
<td>READ Ken</td>
<td>リード ケン</td>
<td>41, 46, 166</td>
</tr>
<tr>
<td>RINCKEL Tom</td>
<td>リンケル タム</td>
<td>41, 170</td>
</tr>
<tr>
<td>RIZAWA Takahito</td>
<td>理沢隆人</td>
<td>247, 251</td>
</tr>
<tr>
<td>ROSER Thomas</td>
<td>ローサー サウスス</td>
<td>41, 43, 170</td>
</tr>
<tr>
<td>RUSEK Adam</td>
<td>ルーサー アダム</td>
<td>41, 170</td>
</tr>
<tr>
<td>SAITO Akito</td>
<td>佐藤登</td>
<td>68, 69, 70</td>
</tr>
<tr>
<td>SAITO Fuminori</td>
<td>佐藤文雄</td>
<td>151, 152</td>
</tr>
<tr>
<td>SAITO Naohito</td>
<td>佐藤直人</td>
<td>33, 41, 43, 44, 46, 165, 166, 168, 170</td>
</tr>
<tr>
<td>SAKAI Hideyuki</td>
<td>坂井秀</td>
<td>9, 43, 53, 54, 55, 56, 153, 154, 156, 182</td>
</tr>
<tr>
<td>SAKAMOTO Hideo</td>
<td>坂本秀</td>
<td>73</td>
</tr>
<tr>
<td>SAKAMOTO Hisao</td>
<td>坂本孝男</td>
<td>265, 266</td>
</tr>
<tr>
<td>SAKAMOTO Koh</td>
<td>坂本 浩</td>
<td>120</td>
</tr>
<tr>
<td>SAKAMOTO Naruhiko</td>
<td>坂本 彦</td>
<td>9, 53, 54, 55, 56, 153, 154, 206, 208, 210, 212, 224</td>
</tr>
<tr>
<td>SAKURAI Hiroshi</td>
<td>佐倉弘治</td>
<td>63, 65, 66, 67, 68, 69, 70, 72, 230, 236, 238</td>
</tr>
<tr>
<td>SAKURAI Hiromu</td>
<td>佐倉弘</td>
<td>113</td>
</tr>
<tr>
<td>SAKURAI Hiroshi</td>
<td>佐倉浩</td>
<td>5</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>SAWADA Shin'ya</td>
<td>41, 172</td>
<td></td>
</tr>
<tr>
<td>SCHEUERMANN Robert</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>SEITZ Jeremy</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>SEKI Ryoichi</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>SEKIGUCHI Kimiko</td>
<td>9, 53, 54, 55, 56, 153, 154</td>
<td></td>
</tr>
<tr>
<td>SENBA Tomoaki</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>SERATA Masaki</td>
<td>63, 65, 66, 67, 68, 69, 70</td>
<td></td>
</tr>
<tr>
<td>SHARKOV Boris</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>SHARMA Sumit</td>
<td>133, 134, 135</td>
<td></td>
</tr>
<tr>
<td>SHEN Hong</td>
<td>甲 31</td>
<td></td>
</tr>
<tr>
<td>SHEN Wen Qing</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>SHIBATA Takehiko</td>
<td>柴田武彦 139</td>
<td></td>
</tr>
<tr>
<td>SHIBATA Toshi-Aki</td>
<td>柴田利明 33, 41, 44, 165, 166</td>
<td></td>
</tr>
<tr>
<td>SHIGEMATSU Naoyuki</td>
<td>茂松直之 144</td>
<td></td>
</tr>
<tr>
<td>SHIMAMURA Isao</td>
<td>島村 直 75, 76</td>
<td></td>
</tr>
<tr>
<td>SHIMIZU Noritaka</td>
<td>清水則正 17, 174</td>
<td></td>
</tr>
<tr>
<td>SHIMOMURA Koichiro</td>
<td>下村浩一郎 49, 263</td>
<td></td>
</tr>
<tr>
<td>SHIMOURA Susumu</td>
<td>下倉 60, 63, 65, 66, 67, 68, 69, 70</td>
<td></td>
</tr>
<tr>
<td>SHIMURA Fumio</td>
<td>志村史夫 90, 93, 94, 109</td>
<td></td>
</tr>
<tr>
<td>SHIOBARA Yamato</td>
<td>塩原和大 117</td>
<td></td>
</tr>
<tr>
<td>SIMON Haik</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>SITAR Brano</td>
<td>41, 170</td>
<td></td>
</tr>
<tr>
<td>SMITH Brauner</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>SOMORJAI Endre</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>SONDHEIM Walter</td>
<td>41, 165</td>
<td></td>
</tr>
<tr>
<td>SORENSON Soren</td>
<td>41, 46</td>
<td></td>
</tr>
<tr>
<td>SOSHIO Takeyuki</td>
<td>曾 Watching 138</td>
<td></td>
</tr>
<tr>
<td>SPINKA Harold</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>STRASSER Patrick</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>STRMEN Peter</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>SUDA Kenji</td>
<td>須田賢二 9, 53, 54, 55, 153, 154</td>
<td></td>
</tr>
<tr>
<td>SUDA Toshiro</td>
<td>須田利美 52, 59</td>
<td></td>
</tr>
<tr>
<td>SUDOH Kazutaka</td>
<td>须藤和和 34, 37</td>
<td></td>
</tr>
<tr>
<td>SUEKI Keisuke</td>
<td>末木啓介 129</td>
<td></td>
</tr>
<tr>
<td>SUEOKA Osamu</td>
<td>未間 修 76</td>
<td></td>
</tr>
<tr>
<td>SUGAI Hiroyuki</td>
<td>須賀宏行 51</td>
<td></td>
</tr>
<tr>
<td>SUGANO Ryoko</td>
<td>菅野浩 102</td>
<td></td>
</tr>
<tr>
<td>SUGII Kazuo</td>
<td>杉井一生 208, 212, 226, 228</td>
<td></td>
</tr>
<tr>
<td>SUGIMOTO Makoto</td>
<td>杉本 誠 204</td>
<td></td>
</tr>
<tr>
<td>SUGIMOTO Naohiro</td>
<td>杉本尚宏 161</td>
<td></td>
</tr>
<tr>
<td>SUGIMOTO Satoru</td>
<td>杉本 聡 28</td>
<td></td>
</tr>
<tr>
<td>SUGIOKA Makoto</td>
<td>杉岡 誠 41, 165</td>
<td></td>
</tr>
<tr>
<td>SUMIYOSHI Kohsuke</td>
<td>住吉光介 28, 29, 31</td>
<td></td>
</tr>
<tr>
<td>SUMMERER Klaus</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>SUZUKI Hideyuki</td>
<td>鈴木英之 31</td>
<td></td>
</tr>
<tr>
<td>SUZUKI Hiroyuki</td>
<td>鈴木弘行 122</td>
<td></td>
</tr>
<tr>
<td>SUZUKI Kazuo T.</td>
<td>鈴木和夫 117</td>
<td></td>
</tr>
<tr>
<td>SUZUKI Naoki</td>
<td>鈴木昌和 151, 152, 188</td>
<td></td>
</tr>
<tr>
<td>SUZUKI Shohei</td>
<td>鈴木昌平 238</td>
<td></td>
</tr>
<tr>
<td>SUZUKI Takahiro</td>
<td>鈴木隆博 91</td>
<td></td>
</tr>
<tr>
<td>SUZUKI Takehi</td>
<td>鈴木 健 72, 74, 176</td>
<td></td>
</tr>
<tr>
<td>SUZUKI Toshio</td>
<td>鈴木俊夫 24</td>
<td></td>
</tr>
<tr>
<td>SUZUKI Toshio</td>
<td>鈴木敏夫 19</td>
<td></td>
</tr>
<tr>
<td>SVIRIDA Dmitry</td>
<td>41, 170</td>
<td></td>
</tr>
<tr>
<td>SYPHERS Michael</td>
<td>41, 43, 170</td>
<td></td>
</tr>
<tr>
<td>TAJIMA Norio</td>
<td>田島典 97</td>
<td></td>
</tr>
<tr>
<td>TAKABAYASHI Yuichi</td>
<td>高林雄一 78</td>
<td></td>
</tr>
<tr>
<td>TAKAHASHI Katsuhiko</td>
<td>高橋克彦 4</td>
<td></td>
</tr>
<tr>
<td>TAKAHASHI Kazuya</td>
<td>高橋和也 193</td>
<td></td>
</tr>
<tr>
<td>TAKAHASHI Kohji</td>
<td>高柳 正昭 125</td>
<td></td>
</tr>
<tr>
<td>TAKAHASHI Masaaki</td>
<td>高橋正雄 91</td>
<td></td>
</tr>
<tr>
<td>TAKEDA Atsushi</td>
<td>武田厚司 112</td>
<td></td>
</tr>
<tr>
<td>TAKEDA Naoto</td>
<td>武田直人 51</td>
<td></td>
</tr>
<tr>
<td>TAKETANI Atsushi</td>
<td>竹谷 駿 41, 43, 44, 46, 166, 170, 172, 174</td>
<td></td>
</tr>
<tr>
<td>TAKEUCHI Satoshi</td>
<td>武内 聡 59, 60, 63, 65, 66, 67, 68, 69, 70</td>
<td></td>
</tr>
<tr>
<td>TAKENUBU Takeshi</td>
<td>竹内猛 202, 261</td>
<td></td>
</tr>
<tr>
<td>TAKINO Toshikazu</td>
<td>深野俊和 113</td>
<td></td>
</tr>
<tr>
<td>TAKITA Koki</td>
<td>浅田宏樹 103</td>
<td></td>
</tr>
<tr>
<td>TAKIZAWA Makoto</td>
<td>深沢誠 40</td>
<td></td>
</tr>
<tr>
<td>TAMANO Haruna</td>
<td>玉野泰南 111, 112</td>
<td></td>
</tr>
<tr>
<td>TAMI Atsushi</td>
<td>民井淳 9, 53, 54, 55, 153, 154, 182</td>
<td></td>
</tr>
<tr>
<td>TANABE Kosai</td>
<td>田辺孝哉 20, 23</td>
<td></td>
</tr>
<tr>
<td>TANABE Toshiya</td>
<td>田辺敏也 204, 247, 257</td>
<td></td>
</tr>
<tr>
<td>TANASE Mikazaki</td>
<td>樹原正和 51</td>
<td></td>
</tr>
<tr>
<td>TANIFUJI Makoto</td>
<td>谷藤 倖 9</td>
<td></td>
</tr>
<tr>
<td>TANIGUCHI Etsuji</td>
<td>谷口信史 33, 41, 166</td>
<td></td>
</tr>
<tr>
<td>TANIHATA Isao</td>
<td>谷崎勇夫 29, 52, 57, 59, 61, 72, 74, 80, 158, 159, 163, 176, 236</td>
<td></td>
</tr>
<tr>
<td>TAROHDA Tohru</td>
<td>太郎田 勝 120</td>
<td></td>
</tr>
<tr>
<td>TENDOW Yoshihiko</td>
<td>天道芳彦 105</td>
<td></td>
</tr>
<tr>
<td>TERANISHI Takashi</td>
<td>寺西高 60, 63, 65, 66, 67</td>
<td></td>
</tr>
<tr>
<td>TERASAWA Mariko</td>
<td>寺澤真理子 29, 31</td>
<td></td>
</tr>
<tr>
<td>THOENNESSEN Michael</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>THOMAS Timothy L.</td>
<td>41, 170</td>
<td></td>
</tr>
<tr>
<td>THURIEZ Sebastien</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>TIAN Wei</td>
<td>41, 166</td>
<td></td>
</tr>
<tr>
<td>TOJO Junji</td>
<td>東照順治 41, 170</td>
<td></td>
</tr>
<tr>
<td>TOKANAI Fuyuki</td>
<td>門野冬樹 59, 158, 159</td>
<td></td>
</tr>
<tr>
<td>TOKI Hiroshi</td>
<td>土岐博 28, 31</td>
<td></td>
</tr>
<tr>
<td>TOMINO Dai</td>
<td>友野 大 48</td>
<td></td>
</tr>
<tr>
<td>TONOMURA Atsuro</td>
<td>慶村淳 185</td>
<td></td>
</tr>
</tbody>
</table>
RIKEN Accelerator Progress Report Vol. 33

理化学研究所加速器年次報告 第33巻 (2000)

発行日 平成12年 (2000) 3月 31日

発行者 理 化 学 研 究 所
代表者 小 林 俊 一
〒351-0198 磐田市長沼町2番1号
電話 (048) 462-1111

編集者 理化学研究所加速器研究施設
運営委員会

印刷所 株式会社ユニバーサル・アカデミー・プレス
〒113-0033 東京都文京区本郷6丁目16番2号 BR本郷ビル

定価5,000円
(消費税別)