Formalism of CRDW

February 15, 2018

Munetake Ichimura

RIKEN Nishina Center
e-mail: ichimura@riken.jp



Contents
1 Preface

2 Kinematics
2.1 Notations . . . . . . . . . . e
2.2 Formulas for the kinematical variables . . . . . . . .. .. ... ... ...
2.3 Coordinate systems for the nucleon-nucleus system . . . ... .. ... ..

3 General formulas for the observables
3.1 T-matrix . . . . . . . e e e e
3.2 Unpolarized double differential cross section . . . . . . . .. ... .. ...
3.3 Spinobservables. . . . . .. ..
3.3.1 Polarization, analyzing power and polarization transfer coefficients .
3.3.2 Polarized cross sections . . . . . ... ...

4 DWIA
4.1 T-matrix in DWIA . . . . . . .
4.2 NN t-matrix in the NN c.m. frame . . . . . . . . . . . ... ... ...

5 Local potential approximation

5.1 Representative momentum approximation . . . . .. .. .. ... ... ..
5.2 Asymptotic momentum approximation . . . . . .. ... ... ...
5.3 Approximations for the NN t-matrix in the NN c.m. frame . . . . . .. ..
5.4 Optimal factorization prescription . . . . . . . . . .. ...
5.5 Love-Franey prescription . . . . . . . . . .. ... L

5.5.1 Free NN t-matrix . . . . .. .. ... oo

5.5.2 NN t-matrix in the NA frame . . . . . . ... ... ... .. ....
5.6 Driving Force — Energy dependent local potential . . . . . .. . .. .. ..

6 Angular momentum representation
6.1 NA T-matrix . . . . . . . . . . e
6.2 Driving force potential . . . . . . ... L oL
6.3 Distorted Waves . . . . . . . ..
6.3.1 Partial wave expansion of the distorted waves . . . . . ... .. ..
6.3.2 Non-relativistic optical model . . . . . . . . ... .. ...
6.3.3 Dirac phenomenology . . . . . . . .. ...
6.4 Outer impulse functions . . . . . . . . . . ... ...

7 Cross sections expressed by response functions
7.1 Response functions for the spin-isospin density operators . . . . . . . . ..
7.2 Response functions for the outer impulse functions. . . . . . . . .. .. ..
7.3 Observables in terms of the response functions . . . . . .. .. ... .. ..
7.3.1 Crosssections . . . . . . . . . . ..
7.3.2 Spinobservables . . . ... ... L

8 Generalization to include A isobar
8.1 Spin and isospin operators . . . . . . . . . ... ...
8.2 Density operators and response functions . . . . ... ...
83 NN t-matrix . . . . . . . . . e

10
10
10
11
12
13
13
14
16

16
16
17
20
20
20
21
21

22
22
23
23
23
23



9 Polarization propagators

9.1 Polarization propagators . . . . . . . . . ...
9.2 Mean field approximation . . . . . . .. .. ..
9.2.1 Hamiltonian . . . . . . . . .. ..
9.2.2 Free polarization propagator . . . . . .. ... ...
9.3 Polarization propagator with nuclear correlations . . . . . ... ... ...
9.3.1 RPA and TDA equations . . . . . . . . . ... .. .. ... .....
9.3.2 Simplification of the RPA and TDA equations . . . . . . ... ...
9.3.3 Response functions . . . . . .. ... L L

10 Calculation of the free polarization propagator

10.1 Single particle states . . . . . . . ... Lo
10.1.1 Nucleon single particle states . . . . . . .. .. ... ... .....
10.1.2 A single particle states . . . . . . . ...
10.1.3 Single particle Green’s functions . . . . . . . .. ... ... L.

10.2 Particle Green’s function . . . . . . . ... oo
10.2.1 Nucleon particle Green’s function . . . . . .. .. ... . ... ...
10.2.2 Particle Green’s function of A . . . . . . ...

10.3 Matrix elements of the free ph Green’s functions . . . . . . . . . . . .. ..

10.4 Matrix elements of the transition density operators . . . . . .. ... ...

10.5 Matrix elements of the free polarization propagators . . . . . . . . . . . ..

11 Effective ph Interactions

11.1 Spin-scalar part . . . . . . . . ..
11.2 Spin-vector part . . . . . . . ...

12 Specific response functions

12.1 Momentum representation . . . . . . . . .. ... Lo
12.1.1 Spin-isospin density operators . . . . . . . .. .. ...
12.1.2 Response functions . . . . . . . . . ... ...

12.2 Specific isovector response functions . . . . . .. ... ..o
12.2.1 Isovector spin-scalar mode . . . . . . . . . ... ... ... .....
12.2.2 Isovector spin-vector modes . . . . . . . . .. .. ... ... ..
12.2.3 Isovector spin-longitudinal mode . . . . . . . . . .. ... ... ...
12.2.4 TIsovector spin-transverse modes . . . . . . . . . . .. ... ... ..
12.2.5 Full response functions in N+A space . . . . . . . . ... ... ...

25
25
26
26
26
27
28
28
28

29
29
29
31
31
32
32
32
32
33
34

35
35
35



1 Preface

This manuscript presents the formalism used in the program CRDW, which calculates
the nucleon induced inelastic and charge exchange reactions by means of a distorted
wave impulse approximation (DWIA) and a continuum RPA (CRPA). CRDW means
Continuum RPA + DWIA.

We consider the nucleon-nucleus (NA) reaction

A(N,N)X, (1.1)

where N and N’ represent the neutron (n) or the proton (p), and A does the target nucleus.
X denotes the residual nuclear system, which can be continuum states and can include
the A isobar. The suffix n denotes the n-th excited state of the system X. We restrict the
target A to a doubly closed shell, thus its total spin Jy = 0.

The present formalism is based on refs.[1]-[5] with some changes of notations.

2 Kinematics

2.1 Notations

We use the following notations for the kinematical variables of the NA reactions,

(1) Masses and Charges

(invariant) masses charges

Incident nucleon N my ZN
Outgoing nucleon N’ my AN
Target A ma Za
Residual nuclear system X, my Zx

(2) Momenta and energies in the laboratory (lab.) and the center of mass (c.m.) systems

lab. c.m.

Incident nucleon kinetic energy K —
Scattering angle Orab Ocm
Momenta

Incident nucleon N ki ab k;

Outgoing nucleon N’ kf1an ky

Target A kA jab ka

Residual nuclear system X, ;L(,lab %
Energies

Incident nucleon N EX 1ab Ex

Outgoing nucleon N’ EN ab Ex

Target A EA jab Ex

Residual nuclear system X, EX 1 B
Momentum transfer from N to N’ Qiab qen
Energy transfer from N to N’ — Wiab — Wem

(3) Invariants

Mandelstam variable s sya
Mandelstam variable ¢  txa




(4) Relative motion
We treat the relative motion between N and A (N’ and X) in a non-relativistic way
with the reduced energy prescription.

initial final

Reduced energy Lbi [f
Kinetic energy K; Ky
Sommerfeld parameter i Ny
(5) Excitation energy with respect to the target ground state Wy, = My —ma

2.2 Formulas for the kinematical variables

Input kinematical variables are
MmN, MmN, MA, 4N, Zx, Zas Kb, Glab, Wiab,
from which we calculate other kinematic variables by the following relations.

(1) Incident channel

EXjab = mn + Kap, kijab = \/ EX ap — M5 (2:2)

EAjab = ma kajan =0 (2.3)

snA = (Exiab + Eaan)? — k?,lab = (ma +mx)? + 2ma K (2.4)
swn + my — md Vo

En = k; =/ E%2 — m? 2.5

N 2\/% ) N — My ( )

EA = \/SNA — EN, kA = —ki (26)

(2) Exit channel

_ _ 2 2
Exrab = ENjlab — Wiabs  Kf1ab = \/ Expyjap, — M (2.7)

Qb = Efan — Kijab, Qlab = \/ K 1ap T K7 10 — 2Ki1abk g 1ab €OS Ora, (2.8)

n n n 2
EX,lab = MA + Wiab, kX,lab = TqQ1ap; myx = \/(Eg,lab) - q123b (2.9)

sna +miy, — (m’)g)2

En = k= +/E% —m2, 2.10
N 2m ! N N ( )
Wem = EN — EN/, E;é = EA + Wem,s k:X = —kf (211)
INA = w12ab - q12ab’ 9dem = kf —k;, Gem = wgm —tna (212)
Klab.f .
A ( b, gin elab) (2.13)
ky
(3) Relative motion

ExE k2 i
i = N A, Kz = s n;, = ZNZA(IH— (214)

SNA 2 ki

En (E + Wem k‘Z
= N ( A )7 Kf — 2_f7 ny = ZN’ZXOZ% (215)
SNA Ky !

with the fine-structure constant o.



2.3 Coordinate systems for the nucleon-nucleus system
The following coordinate systems are used for the NA system.

(1) The [z,y, 2] system

This is defined as
kian ki . ki X kg ki X Ky
Kigan] K|’ Y |Eijab X Kpian| ki X k|’

zZ =

E=gxz, (216)

Their directions are denoted by (z,y, z). This is used in the calculation.

(2) The [S,N, L], and [S’, N, L'] systems
They are defined as

A ~

S=& N=9g, L=32 (2.17)
and L
N =N, L'=_I §_N«xL. (2.18)
Kb

Their directions are denoted by S, N, L and S’, N, L', respectively. The measured quan-
tities in the lab. system are usually presented in these coordinate systems.

(3) The [q,n,p] system

This is defined as q

| Gem |
Their directions are denoted by (g,n,p), respectively. We note that the suffix ’em’ is
omitted for q following the usual convention, but must be distinguished from q defined
eq. (5.1). This system is often used to specify the c.m. quantities.

q= n=y, p=gxn, (2.19)

3 General formulas for the observables

3.1 T-matrix
The T-matrix elements for the reaction (1.1) in the NA c.m. system is specified as
(kymg N, WY |T|kymg N, UY) (3.20)

where m,, and m, denote the spin projections of N and N, and UQ and UL are the wave
function of the ground state of A and that of the n-th state of X, respectively. They
are the eigenstates of the intrinsic Hamiltonian H4 of the A(X) system with the intrinsic
energy £3 and EL, respectively,

H U8 = EQ08, HAU% = EQUL (3.21)

We take the approximation
EY=mn,  Ex=mk (3.22)



3.2 Unpolarized double differential cross section

(1) The center of mass system

The unpolarized double differential cross section in the c.m. system is expressed as

d*c
[cm(ecmawcm) = W
pifty kgl ;o 0012 )
- T Z Z kamst ’ qu|T|klmSzN7 QA)‘ o (wcrn - (EX - EA)) (323)

(2m)2 k; 2

Ms;Msp N

To use a response function method, we introduce the cross section per unit excitation
energy as

Ao _ puty byl kem. N U T|k:m. N. 00| 5 4
dgcmdw B (27()2]{_15 Z Z|< fmsf ! X| | Mg 1N, A>| (w_wn) (32 )

Ms;Ms, N

with
Wy = EX — EX =mk —ma (3.25)

Then, the unpolarized double differential cross section in the c.m. system is given as
K n 2
Lo (Bem Wem) = = >N [k pmg N WE T ki N, W) |76 (w — wy)) (3.26)
Ms g Ms; N
with the kinematical factor

(27)2 k; dwew (27)% Ky MY '

where we used eq.(2.10) to get

dwn . dEN/ -1 . SNA
dwem dm¥ o omg

(3.28)

(2) The laboratory system
The unpolarized double differential cross section in the lab. frame is obtained as

8(gzcm ) wcm)

 Klab,y 7
0 (Qlaby wlab)

L:m(ecma wcm) - kf CHI(GCHU Wcm) <329)

Ilab(elaba wlab) =

The Jacobian is given in eq.(5-22) of ref. [6].

3.3 Spin observables

We introduce the notations, Tr, for the trace over the nucleon spin projections, e.g.

Te[AB] = Y (m| Alm.)(m|Blm.) (3.30)

and Tr for the sum over the final nuclear states ¥% with the energy restriction

Tr [TT7] =) (UR|T|T0) (WY |TTU%)6 (w — w,) (3.31)

n



3.3.1 Polarization, analyzing power and polarization transfer coefficients

The polarization P,, the analyzing power A, and the polarization transfer coefficients D;;
are given by

_ TTe[TT'oy) _ TrTr[To, o T"] _ TrTY[To;0T 0, )]
Yo T[T Y TTTT T Y T[T

(3.32)

where 0, ¢ is the Pauli spin matrix in the direction of i of the particle 0 (= the incident
(exit) nucleon) .

The program CRDW first calculates D;; (i,j = x,y,2), and transforms them to
D;; (i,5 = q,n,p) by the relations

Doy = Dy, (3.33)

Dy, Dy, _ cost, sind, D,. D, cost, —sind, (3.34)
D,, D,, —sind, cosd, D.. D,, sin 0, cos 0, '
where 0, is the angle between p and z directions.
Experimental data of D;; are usually presented in the lab. system with respect to

the [S, N, L] frame in the initial channel and the [S’, N', L'] frame in the final channel.
namely, Dy, Dgs, Dsrr, Dps, Drr,. They are calculated by the relations

Dy = Dy, (3.35)
DSS/ DSL/ _ Dxx sz COS(elab —+ Q) Sin(elab =+ Q) (3 36)
D;s Dy D.. D, —sin(Bap + Q) cos(Brap + Q) '

where (2 is the relativistic spin rotation angle. The present version of CRDW sets 2 = 0.
(Validity of this approximation is discussed in ref.[4].)

3.3.2 Polarized cross sections
For physical discussions, we decompose the NA T-matrix into

T = T() + Tnan,O + qu'q,() + Tpap,O 5 (337)

and introduce the polarized cross sections I ., D;, which exclusively extract T; as

[Cm
%%=4HH%+%+%k%Wmm,
‘[CHl
%m:4uﬂMa%—%kwwmm,
/ (3.38)
%m:?ﬂ4%+%—%kmwmm,
‘[CHl
%%z4ﬂ%%=%+%kﬁwmm,
Note the relation
Dy+D,+D,+D,=1 (3.39)



4 DWIA

4.1 T-matrix in DWIA
In DWIA the T-matrix of eq.(3.20) is given by

Tl = (kpmg, N, Uy | TPV lym, N, TR = (y ;T |Ztk W% vi) (4.1)

where y; and x; are the distorted waves in the incident and the exit nucleons, respec-

tively. The subscript 7 and f represent the sets of the variables (k;m,,N) and (kym, N'),

respectively. t,(CO) is the free nucleon-nucleon (NN) t-matrix for the scattering of the inci-

dent nucleon with the k-th nucleon in the nucleus. It will be generalized to allow the A
excitation or deexcitation.

In the momentum representation, it is written as
; dk” dk:3 dp dp3 dp?
T = Ej ETT L (2m)*S (K k—
n0 / ) (271’)3 77k 15 \3 (2 ) ( 7'(') ( +pk pk)

X xf(k’)‘lfy(pl,-~- ,pk,'--><k:',p;|t§f)|k,pk>NA\i5;<p1,-~ Do) Rak) (4.2)

where (k’,pﬁg]t,(fo)]k:,pk)NA is the NN t-matrix in the NA c.m. frame.

The NN t-matrix (K, p’|tl(€0) |k, p)na is given by the NN t-matrix in the NN c.m. frame,
(K, —K' ]t,go)\&, —K)NN, through the frame transformation as shown in ref. [4]

(K, P10 |k, D)na = J(K',p' K, p) R (K, p') (K, K[t |k, —k)xn R, (kD) (4.3)

where k (k') is the momentum of the incident (exit) nucleon in the NN c.m. frame, and

o [Ba(m) B () B () B ()
(K. k. p) = \/ En(k) Ex, (p) Ex (V) Ex, (7) (44)

is the Moller factor, and RL (K',p’) and Rf (k, p) are the relativistic spin rotation matrices
in the incident and exit channels, respectively, and

Eo(k) = /m2 + &2 (4.5)

The momenta k and K’ are calculated from k and p (k' and p’) by the Lorentz transfor-
mation. The magnitudes x and ' are given by

4SNN (k7 p)
o (ssn (K, p') — m¥, — mf\%)2 - 4m12\1,m12\1;g (47
4snn (K, p') ‘
with
snn(p1, p2) = (BEx, (p1) + Ex, (p2))2 —(p1 + P2)2 (4.8)
The present version of CRDW neglects the relativistic spin rotation effects, thus sets
1 r
R, (K, p') =1, R, (k,p) =1 (4.9)

This is supported by numerical estimations at the incident energy below 500MeV (see
ref.[4]).



4.2 NN t-matrix in the NN c.m. frame

There are various expressions for the free NN t-matrix in the NN c.m. frame. In CRDW
we adopt the expression similar to KMT! [9] as

EAn (K k) = (K, K[k, —K)nx
= {Ao+ Ai(mo- )} Loy
+ {Bo+ Bi(7o - )} (o0 - ne) (o) - i)
+ {Co + Cl(’TO . ’Tk)} ((0’0 . ’flc)lk —+ 10<Uk . ’fLC))
+ {Do+ Di(10 - 7)} (qc - Qc){(00- @) (0% - Q.) + (00 Q.)(Tk - G.) }
+ {Eo+ Ei(1o-7)} (00 4.) (0% - q.)
+ {F0+F1<TO'Tk)}<0'O'QC)<Uk'QC) (410)
with .
) KX K
qc:n/_’{, Qc:ﬁ",‘i_ﬁ"a nc:m (4'11>
The amplitudes A;, B;, C;, D;, E;, F; are the scalar functions of ¢, Q?, and q. - Q..
Noting the relations (4.8) and
¢+ Q=257 +r"), @ Qc=r"—F (4.12)

and defining the incident kinetic energy in the NN lab. frame, K122, by the relation

SNN(k,p) = (mN -+ me)Z -+ QmeKll\?lk\; (413)
we may express the amplitudes by the different set of arguments, (q., Q., K12%)

Ai = Ai(qcv Qca Kll\?ll\)I)? Bz = Bi(Qca Qm Kll\?ll\al)a etc. (414)

On-energy shell From the NN scattering experiments, we can only get the NN t-matrix
in the NN c.m. frame on the energy shell, where

k=K, q.- Q.= 0, Q@+ Q7 = 4K? (4.15)
Therefore, the on-energy-shell amplitudes can be expressed only by q. and K22 as
Ai = Ai(QCa K}\?}\)}% Bz = Bi(QCa Kll\?ll\)]), etc. (416)

and the D;-terms vanish.
In the free NN scattering measurements, these amplitudes are usually presented as
the functions of the scattering angle in the NN c.m. frame, fyx, and K25 as

A; = Ai(Onn; K25), By = Bi(Oxn; K3, ete. (4.17)

The expressions (4.16) and (4.17) are related by the equation

0
¢ = —2ksin (%) (4.18)

'KMT used A, B,C,--- for the amplitudes of the scattering matrix M, but here we use 4, B,C,---
for the amplitudes of the t-matrix.

10



5 Local potential approximation

In eq.(4.2), it is very cumbersome to carry out the integration over k', k and py,, on which
the NN t-matrix depends. People often approximate the NN t-matrix as an energy depen-
dent local potential, Vi(rg — 7y; Ki28). It means that (k/,p;\t,(go)|k,pk>NA is approximated
as the functions only of the momentum transfer

q=k —k=p.—p, (5.1)
and a fixed incident kinetic energy of the NN system, K12t namely
(K D[ [k, Pr)na — tilxa (s KER) — Vilro — 7 KGR) (5.2)

For this purpose we introduce following approximations.

5.1 Representative momentum approximation

In the integrations of eq. (4.2), we replace py, in <k’,p§f\t,(€0)|k,pk>NA by a suitably chosen
representative momentum p, which is assumed to be determined by k and k’

pr — p=p(k, k) (5.3)
thus
p.=pPr—q— P =p—q=p(kK) (5.4)
Then the NN t-matrix is approximated by the function only of k and k' as
(K, Pt ke pibna ~ (K01 e, B
= J(K. P k) tiAn (R, &) =t a (K, k) (5.5)

where £ and K’ are determined by k and k'
We call this approximation representative momentum approximation.

5.2 Asymptotic momentum approximation

The momenta k and k' distribute around the asymptotic momenta, k; and k;, respec-
tively, due to distortion, but their distribution should be narrow for high energy small an-
gle scatterings. Therefore, we may use the asymptotic momentum approximation (AMA)

kxk;, Kk ~k; (5.6)

for quantities whose dependence on k and k’ is weak. This is equivalent to use the values,
which appears in a plane wave impulse approximation(PWIA).

(1) Incident kinetic energy of the NN system

Assuming that the energy dependence of the NN t-matrix is weak, we replace the
incident energy K25 by a representative energy K2 obtained by AMA

a 2

Rk — K - 67

with
snn = san (ki D), p = p(ki, ky) (5.8)

11



Note that the quantities with the bar are not operators but the c-numbers.

(2) Reaction plane

The reaction plane of the NN scattering fluctuates as k and k' do, but its normal 7,
should be n in average. Therefore we take the replacement

_ kxkK  kxFK
|k x kK| |k x K|

ki X kf

N, — N, =n= (5.9)

This is nothing but AMA. Again note that n is not an operator but the constant vector.

(3) Mboller factor
We also apply AMA to the Moller factor of eq. (4.4) as

J(K,p k,p) — J=J(k; D kiD) (5.10)

Further using on-energy shell approzimation (k' = k), we get

V E(ki) Ex, () Ex (ks) Ex, ()
with
- \/ (s — % — R, )2 — 4R, 65.12)
45nN

5.3 Approximations for the NN t-matrix in the NN c.m. frame
Next we cosider how to localize the NN t-matrix in the NN c.m. system t,(fl)\IN(f%’ ,R) in
eq. (5.5). For this purpose we utilize the following approximations

(1) We discard the D-terms. They are pure off-shell quantities and expected to be small.

(2) For the momentum transfer, we adopt the non-relativistic approximation?
g =k —k~q=k -k (5.13)

From these approximations as well as those in sect. 5.1 and 5.2, the NN t-matrix (5.5)
is simplified as

tg?l)\IN/A(k/? k) J{Ao + Ai(1o - 75)} Lol
{(Bo = Fo) + (Br — F1)(10 - 7))} (00 - 1) (0k - )

+
+ {Co+ Ci(mo- )} ((00 - 1) 1) + Loy - 1))
+
+

Q

{Eo+ Ev(10-T)} (00 - @) (0% - Q)
{Fo+ Fi(1o-7)} (00 X q) - (0% X q)] (5.14)

with
Ai = Az(q; Qca K}\?}\?)? Bz = Bz(q; Qca K}\?}\?)? etc. (515>

2 As to the direction, this seems to hold very well. Numerical test shows q.-g > 0.996 for 6., < 30deg
and Kpp < 500 MeV) with w < 100MeV. As to the magnitudes, the validity depends on the energy
transfer, since txy = (Exv (k') — Ex(k))? — ¢% = (Ex/ (k') — Ex(k))? — ¢2.

12



where we used the relation and the approximation
(0’0 ' Qc)(ak ’ Qc) = (00 X qc) ’ (a-k X qc) - (00 ’ ’fI’C)<0-k ’ ,ﬁ’C)
~ (og%xq) (o xq)—(o0-n)(ok 1) (5.16)
We emphasize that the spin parts only depend on g and the fixed direction 7 in eq. (5.14)

Remaining tasks are to determine the representative momentum p(k, k') and to remove
the Q).~-dependence of the amplitudes, A;, B;, etc. CRDW provides the two prescriptions:

(1) Optimal factorization prescription [4]

(2) Love-Franey prescription [7]

5.4 Optimal factorization prescription

The one is the optimal factorization prescription, in which the representative momentum
p is taken to be

. 1 k+K
=p(k, k)= (5~ - 1
p=pk k) (2 n) Y (5.17)
The parameter 7 is determined by the on-energy-shell condition
Eny (k) + Ex,(p) = Exi (K') + Ex (7) (5.18)

We further apply ANA on 7 to make it a fixed c-number

Eia' 777/2/_777/2
77 ~ 77,:—( qcm+ N_ N)

Aqgm 2tNN
Wem | 1 1 mQN;C + m12\1k N k2 k., q.. 2 1 [(m¥ —m} 2 (5.19)
Gem 4 LTNN 2 A2 ACICm {NN 2 '
with kot k
’%a == 9 f, ENN = wfm — qu = tNA (520)

Using 77, we calculate p and p/, and then K125 and J = J,, by (5.7) and (5.11). Due to
the on-energy shell condition and the approximation (5.13), we get the amplitudes A;, B;,
etc. as

A = Ailg; Kﬁll\)l) ~ Ai(qe; f(ll\?lE)T) — Ai(Onn; f(;?f%), etc. (5.21)
Finally we get
oo (KR = 02 (@5 KRR

Jopt [{Ao(q; K¥R) + Ai(g; K@) (o - 7 )} 101,
+ {(Bolg; KY) — Folg; KxR)) + (Bi(g; Kin) — Filg; KiR)) (10 - 1) } (00 - 1) (o) - 1)
+ {Colg; K{R) + Cilg; Kﬁﬁ (10 Tk) } (00 - 1) 1x + 1o(0 - 1))
+ {Eo (¢; K¥R) + Ei(q; K kz)} (00-q)(ok-q)
+ {Fg (q¢; KE25) + Fi(q; KII\?N ) (70 - Tk)} (0 X q) - (o) X q)} (5.22)

which only depends on g and K2b.
We must note that the on-energy shell condition requires fyn < 7, thus

q < 2K = y/2mn K35 (5.23)

due to eq.(4.18). This could be violated at large angle scatterings.

13



5.5 Love-Franey prescription

The other is the Love-Franey’s prescription [7], [8].

5.5.1 Free NN t-matrix

They proposed a phenomenological free NN t-matrix, which works for the off-energy shell,
and is made to reproduce the on-energy shell data. It has the form of

AN (R R) ~ (K
= |V (0e) = V&o(Qo)| PocoPro + |V (ae) + V(@) Ps—oProy
+ [‘N/TCO(QC> - VTCO<QC)] Ps—1Pr—1 + [VTCE(%) + VTCE(QC)] Ps—1 Pr—o
7 QVE) + a.VE0(Q0)] (0 + o) - ) Proy

+ i [QCVLSE<QC) - QCVLSE(QC)} ((0'0 + Uk:) . ’fI,C) Pr_g

)

= [V (q0) Sou(@) + V™ (Qe) Son(Q) | Pro (5:24)
ith
W . N¢ VS%TH RC)
Vsrn(A) = 4r T+ RO (5.25)
~ Nrs VLS H)\ RLS) _ Nrn VTN H)\2<RTN)
PIST()) = 87 Z o VTINI()\) = 327 Z SYoRIEE (5.26)

where II = O(DD) or E(VEN), A = ¢. or @, and R (o = C,LS, TN) are the range
parameters, and N (o = C,LS, TN) are the number of terms with different ranges, and
the projection operators are defined as

Py =220 Tk (5.27)

and similarly for Pr—y and Pr—;. The tensor operator is defined as

Sok(q) =3(o0-q) (oK q) — (00 - OF) (5.28)

Rewriting eq. (5.24) into the form of eq. (4.10), we get the amplitudes [5] as

)

A = o [T - 75@0) +3 (1) + T5(@

c)
+ 9 (VTCO((]c) - VTCO(QC)> + <VTE(qc + Vin(Q )

3 ] (5.29)
A= o - () - 75@0) + (V) + TE(@0)
+ 3 (Vo la) = Vi%(Q)) - 3 (Vi(a) + V(@) (5.30)
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By = 3o [~ (W) - 75(Q0) - 3 (V6w + V5Q0)

+ 3 (olae) - ViH(Q0) + (Vihlae) + V(Q0)

+ 4 (3VNOq) + VN (q.) - 3VNO(Q) + VINE(Q.)) | (5.31)
B = o [0 - T%@0)] - [V + TS5 k]

o [Tolae) = TH6(@0)] = [Vlae) + V(Q0)|

+ 4 (V™) = VI (q) — VINO(Q) — VTNEQ)) | (5:82)
Co = 12 [3(Q7) +a 7@ + (V¥ () - a7"(@Q0)] (6:3)
= 3 [(07 ) + a7 0(@0) - (@0 — . VH(Q))| (5:30)
Bo = By [0 + 7™%(q,) (5.35)
Bo= By- [T - V) (5.30)
Fy = By+ % :3X7TNO(QC) - VTNE(QC)} (5.37)
o= Bt S [77Q0 + TTQ)] (5.33)

5.5.2 NN t-matrix in the NA frame

This method takes the representative momentum as

L ki
P=P=-7 (5.39)

which means neglect of the Fermi motion. Neglecting the nucleon mass difference, we get
Kb by eq. (5.7) with
sxn = (Ex(ki) + Ex(ki/A))? = (ki — ki JA)? (5.40)

The Moller factor is fixed to the value for the elastic forward scattering (@ = 0, wem =

0, p=p')) as’ B2
S =i = EN(k,;)%N(k:i/A)

(5.41)

by use of egs. (5.11) and (5.12)

To remove (). dependence from the amplitudes, this method uses the pseudo-potential
approximation for the exchange terms, in which they are represented by the d-type po-
tentials in the coordinate space. This means that (). is replaced by a certain constant,
which is chosen to be the value of the elastic forward scattering (¢ = 0,w. = 0) in AMA

Q.= |k+ K| — Q.= 2k (5.42)

Further they take the infinite target mass limit (m4 — oo) and the non-relativistic ap-
proximations, then get

Qc — Qc = ki (543)
3In refs. [7] and [5], the notations €., = Ex(&), & = Ex(ki), ¢, = Ex(k;/A) are used.
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From these approximations, the amplitudes A;, - - -

Ai = Ailge, Qo KXR) = Ailq, ki K§R) = Ai(q; K¥R),  ete.

At the end, the NN t matrix in the NA c.m. system (5.14) is given in the form of

4(0)

k,NN/A

(K, k) ~

Rt (@ KNN) = Jurti, (4 KNN)

= Jur [{Ao(g; KXR) + A1(q; K)o - 7} Loy
Fo(g; KN)) + (Bi(g; Kx) — Fi(g; K)o - 7.} (070 - ) (0, - 1)

+ {(Bo(q; KRN) —
+ {Colg; (¢; K¥R) + Ci(q; K¥%)mo - i} ( n)
+ {EO (¢ K¥N) + Er(q; K§R) 7o - Tk} (o0-q)(o% - q)
+ {Folg; KNR) + Fig; K§R)7o - 7} ( q)-

with

Ao(q;f_{ﬁ]\?)

Ai(g; KE%)

Bo(q; Kll\?ll\al)

Bl(q;f(ll\?ll\jl)

Colg; KRR
Ci(g; RII\%E)I)
Eo(q;[_(ll%]\al)
Ei(g; KII\?IPI)
Fo(q;[_(llfﬁ}\al)

Fl(q; KII%I\DI)

(00-1)1; + 1o(o) - 1))

X

o (o4 x q)]

o

|(Vio(a) = V5 (k) ) + 3 (Va(a) + Vi (ko) )

o(a) = Vo(k)) +3 (Vi) + V(R
|- (V65(0) — Vi (k) + (Vebl@) + Ve (k)

(V@) = Vo) — 3 (Vi) + Vi(h) )|

= [ (7@ - 7)) - 3 (Vi) + TS )

3
(Vo) = Vio(k) ) + (Visla) + Vi (k)
(

VEo

3‘7TNO(q) FUTNE(g) - 3VTNo(k,) VTNE(k,l)>]
= ([0 — 7] - [T @) + VS k)]
Viola) = Vi (k)| — | Viala) + V()|

A <‘~/—TNO(q) _ VTNE( ) — VTNO(k) VTNEUCI))}

are given by the functions only of ¢ as

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

3 (kiVLSO(quVLSO(/ﬁ)) + (kiVLSE( ) — vLSE(k)ﬂ (5.50)

(5.52)
(5.53)
(5.54)

(5.55)

[

16

%6 (17150 g) + g0 (k) ) = (K V™ (q) — V5 (1)) | (5.51)
Bo(q; K&R) — 2 [3I~/TNO( )+ VINE( )}

Bu(g: Kw) — > [770(a) — 77%(q)]

Bo(q; Kuan) + 2 [3VTNO(I<;) VTNE(;CI)}

Bi(q; KxY) +Z [VTNO(k;i) + VTNE(ki)]

The program uses the parameters given in [8]. It has an option that treats K125 as an
input parameter free from the calculated one.
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5.6 Driving Force — Energy dependent local potential

As was given in eq. (5.22) or (5.45), we now obtained the NN t-matrix in the NA system,
which depends only on the momentum transfer q for the given energy K25 as

kNN/A(k/ k)~ tl(gol)\IN/A(q; KRR
= J[{Ao(g; K¥R) + Ar(g; K§R) (70 - 7)) } Lol
+ {(Bolg: KNw) — Folgs Kiy)) + (Bl(q;fq?s) Fi(q; K&R)) (0 - )} (00 - ) (0 - 1)
+ {Colg; K{R) + Cilg; KR) (10 - 1) } (00 - )1 + 1o(o7), - 7))
+ {Eo(q; K¥x) + Ei(g; Rﬁ”ﬁ)(fe i)} (o0 Q)(Gk-Q)
+ {Fo(q; K¥R) + Fi(g; KiR) (10 - 7)) } (00 X @) - (07 % )] (5.56)

Moving to the coordinate space, we finally obtain the energy dependent local potential

7% dq3 ig-(ro—r o la
Vi(ro — 7x; Kia) = /Weq( ’ k)t;(fl)\IN/A((I; R3R) (5.57)

which we call a driving force potential because it initiates the reaction.

6 Angular momentum representation

In the practical calculation, we use the [x,y, z] coordinate system and the angular mo-
mentum representation, for which we introduce the spherical tensor representation of the
nucleon spin and isospin operators as

o, tio
0(()0) =1, 0(()1) =0, Uill) = $—\/§ g (6.1)

w1
Téo) =1, Tél) = Tz Till) - :FT \/§Uy (6.2)
and that of the reaction plane normal as
Ng £in i
fig="m, =0, fg=F—-t=——o (6.3)

VRN

6.1 NA T-matrix
The driving force potential (5.57) can generally be expanded by the spherical tensors as

Vi(ro — 11) Z Z ZV (ro,rie; U's’" I M'; 1sJ M)

tv U's'J' M'lsJM
@ [ " ® [ BIEAY
x ( = [l Yo (o) % o } ) (Tyk [in(m) x o } ) (6.5)
M’ ’ M

Here and later we suppress the argument K12 for simplicity.

4The tensor product is defined as

J
(A7 x B2 = " (M1 Jo M| JM) AR Byz (6.4)
M1M2
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Using eq. (6.5), we can write the DWIA T-matrix (4.1) as

Tl = (%] ZVk 7o — 1) | PR X0

- ZZ/ ridr SlJ;ZJMtu )(q]?dplsJMty( )|\IIO> (6.6)

tv IsJM
where
Sl]jez;]M,ty(r)
NEA
= Y (@) VO(ro,ri s’ T M 1T M) ( oY) [1 Yi(#o) X o >]M/) Ixi(70)) (6.7)
l/S/J/MI

is the outer impulse function in the angular momentum representation, and

Prsaman (1) = Z ( IE; [1 Yi(7) x UIES)}L) M (6.8)

A Ty
is the radial part of the spin-isospin density operator. We note the relation

ol (r ana (r—re)=>_ Y (ImsplJM) ('Y (P)" prosaran(r)  (6.9)

JM Im

6.2 Driving force potential

According to eq. (5.56), we decompose the driving force (5.57) into the terms comming
from the A, By, Fy, (B — F;) and C; amplitudes, respectively, as

Vi(ro —75) Z /0 ( (t)) [Vl(ctm(”“o — ) + V(g — ri) + VI (g — 1)

+ Vk P (g — 1)) + V,it)’m(ro — 7))+ Vlgt)’m(ro — rk)] (6.10)
each term of which can commonly be expanded as

VOX (g — 1) = Z ZV)((t)(ro,rk;l’s'J’M’;lsJM)
Vs g M LsJ M

X ([il'Y/(ﬁo) X ag”];) <[ilY}('f'k) x a;:)]M)T (6.11)

where X denotes A, E, F, B — F,C1 or C2.
Finally the full radial part V® (rq, ry; I's’J'M’;1sJM) of eq. (6.5) is given by

VO (rg,rp s’ T M'; 1sJM) = Z V)((t) (ro, ri; I's"J'M'; 1sJ M) (6.12)
X

Each strength V)({t) (ro,ri;U's’"J'M';1sJM) is given by the following formula.

(1) A-term  The potential coming from the A; amplitude is written as

_ d3 .
Vlgt),A(TO _rk) = J/( z At( )101kelq.(r0_rk)

= j/ (5333 Ai(q) (aé?geiq'”)) (oé?geiq""’“)T
T
= ; Vjt)(ro, s J) ; <[1 Yi(7) X O'((]Og}M) ([1 Yi(7) X aéo,z} M) (6.13)

18




where 5 oo
Vi (ro, i J) = j;/ Ai(9)js(qro)js(ari)a’dy.
0

Here we used the formula
—4%21]1 qr) ZYlm Yim(7)

Thus we get

VO (o, 13 Vs T M5 1sTM) = 61101050 30200500.50 VA (1o, 7263 J)

(2) E-term  The potential coming from the F; amplitude is written as

T d3 A A\ Aig-(ro—7
VO =) = T [ G B d)(on- et

g
where

=2 [% : .
Vi (ro,ris 110) = aan 72 [ Badietaro)ian)
0

with
agj; — (JOlO”O)

Here we used the formula

(o lqr—_47TZaJl]l qr ZYJM )Xa(l)}M

Thus we get
V]_,(j (’f’o, l/S/J/M/ lSJM) = (SJ/J§8 séM/Mésl V (TQ,T’k;l,lJ)
withl=J+1,I'=J+1.

(3) F-term  The potential coming from the F; amplitude is written as

— d3q A~ TO—T
V,it))’F(TO . Tk:) _ J/ (27T>3F(q)(a'0 X q) (O'k X Q) q-(ro—rg)

T d3q S S ig-(ro—rg
:J/Wﬂqwmk—<ao-q><ak-q>>e (ro=ri)

NN 1 v g
= Z V}t)(ro,rk;l'lj) Z ([11 Y (7) X 0'((] )}M) ([ﬂY}(rk) X oy,
ULy M
where 5 foo
Vi (ro, s '0T) = (1 — agvan) J - / Fi(a)iv(aro)ii(ari)adg
0
Thus we get

Vi (ro, U8 T M 15T M) = 856550001051 Vi (ro, iy 11T)
with (—1)! = (=1)".
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’ N J . N
= Z Vg)(ro, ri; U'LT) Z <[il Yir(7g) X Uél)]M) ([ﬂYl(rk) X O',(gl)
M

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

] M) T (6.22)

(6.23)

(6.24)



(4) (B — F)-term  The potential coming from the B, — F; amplitude is written as

VOB (g — ) = T / (;qu)g (Bi(q) — Fi(q)) (a0 - ) (0, - 1)l (To=)

, T
= Z Z ZVE(QF(TO,T;C; LJ'M'JM) <[ilYl(7§0) X U(()l)] L,) ([llyl(ﬁk) X Ul(cl)] Z/[>
JM J'M’ 1

(6.25)

where

ngF(ro,rk;l(]’M/JM) = <Z(lm 1| M) (Im 1,u|JM)ﬁL,fz“>

mu’p
2 [ . .
< 2 [T (B0 - B)iaritededs (620)
0
Thus we get
VD (ro, i U T M5 1sT M) = 611655651 VD o(ro, iy 1T M' T M) (6.27)

with J, J' =1+ 1,1.

(4) Cl-term  The first potential coming from the C; amplitude is written as

(#),C1 =J d’q A ig-(ro—mx)
V. (ro—mry) =J Ci(q)(o0 - n)1ie

(2m)?
(*) I AP m]” v s CIEAY
= SN VO (o, s M IM) ([l Y (#0) % o } ) ([l Yy () % o } ) (6.28)
Im J' M’ M M
where
72 [ . .
Ve (ro, i JMUIM) =y J(IM 1l 'M)i], T~ / Cola)is(aro)is(are)d®dg  (6.29)
0
o
Thus we get
VD (ro, 7 '8 T M 1T M) = 6 11611051050 V) (ro, r4; J' M T M) (6.30)

with J' = J+1,J

(5) C2-term  The second potential coming from the C; amplitude is written as

T d3 ~\ Lig-(ro—T
VO =) = T [ (o ey

U Jl / ~ J T
= Z ZVC(«I;)(To,T’k; J/M/JM) <|:1J YJ/(’f‘o) X O'(()O)] > <|:1J YJ/<Tk) X 0'](:)] ) (631)

M’ M
J'M" JM

where

R .
Vé?(?"oﬂ”ksJ'M'JM>=Z(J'M'1u|JM>nuJ;/ Ci(@)jr(gro)ir(gre)a’dq  (6.32)
0
m

Thus we get
V. (rg, ry I's' T M 1T M) = 8301180651 Ve (ro, s J' M T M) (6.33)
with J = J/ £ 1,.J".
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6.3 Distorted Waves

6.3.1 Partial wave expansion of the distorted waves

(1) Outgoing wave

The distorted waves with the outgoing boundary condition Xg;g(r) is expanded as [11]

kas ZX k: r me

4
= Z T Z Z Imsmg|jm;) lm( Y(Im'sml|jm;)Yim (f)le‘”lul+)(k X5,

lmm Jm;

= ZZ Imsmy|jm;) Yy, (k)e 1‘”ul (k r) [I'Yi(P) x X} (6.34)

Ilm  jm;

= %) is the nucleon spin state vector with the z-projection mg, and o; is the

Coulomb phase shift. The radial part u (k; r) has the asymptotic behavior

where x5, (s

, l
ul(;r)(k, r) ~ e sin(kr — ne In(2kr) — g + 01+ 1), (6.35)

where 7¢ is the Sommerfeld parameter and d;; is the nuclear phase shift.

(2) Incoming wave
(=)

ke, () is written as

The distorted waves with the incoming boundary condition x

kas me s (B )Xo, (6.36)

The time reversal invariance leads to the relation

X () = (=) ey (ke ) (—1)° (6.37)

—Mg,—Ms

which gives the formula

_ 47r - . T i .
Yo, (7 =D > (msma|jmy)Ye, (k) [i(Yi(7) < X7, e (ko) (6.38)

Im jmg;

6.3.2 Non-relativistic optical model

In the non-relativistic optical model, the radial part “z (k r) = ul(j) (p) is calculated by

the Schodinger equation

dzqg_/;(p)Jr{(l_Ulgr)) _l(l;l)}ulj(p)o p=kr (6.39)

with the optical potential

Uyi(r) = Ue(r) + Uis(r) (GG +1) = (1 +1) = s(s + 1)) (6.40)
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6.3.3 Dirac phenomenology

In this model, we start with the Dirac equation to describe NA elastic scatterings

[—ia -V + B (mx + Us(r)) + Up(r)] ¥(r) = Ep¥(r) (6.41)

Ek; = \/ m12\1 + ]{52 (642)

where Uj is the scalar potential and Uj is the vector potential which includes the Coulomb
potential. They are phenomenologically determined to reproduce the NA elastic scatter-
ing. Writing the Dirac spinor as

with

W(r) = < z(g;}) ) (6.43)
we identify the distorted wave (6.34) to the upper component, namely,
X, (1) = 0(r) (6.44)
Defining .
o(r) = = (T)w) (6.45)
with
B(r) =22 mN;ng — %) (6.46)
we can derive the Schrédinger equivalent equation for ¢(r)
[V? 4+ k% = 2E (Ueen(r) + Uso(r)o - 1)] ¢(r) =0 (6.47)
where
Uanlr) = 55 (2BUSr) + 2mU(r) = U3(r) + U2() 4 Up(r))  (6.48)
B 1 d [ ,dB(r) 3 [dB(r)\?
Unlr) = C2r2B(r) dr (T dr ) i 4B%(r) ( dr ) (6.49)
B 1 1 dB(r)
Usolr) = " 2ErB(r) dr (6.50)

Thus we obtain

Xjo (1) = V/B(r)o(r) (6.51)

6.4 QOwuter impulse functions

Explicitly writing the notations i and f as i = (k;m,N), f = (kym,,N') and factoring
out the isospin part, we write the outer impulse function (6.7) as

St (r) = (N|TO NN (g, eis i 1sTM) (6.52)
N'N M MM,

= (N'|7|N) Z/ odroV D (ro,ri ' T M 18T M) frrgy s

ll /JIM/

(kg ki) (6.53)
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with

N’'N,ms ,,ms,;
) Folresg .
Vs J' M’ (kfa ki; o)

r_ T T o J’!
_ / A (X! (1)) [IYe(00,00) x o8| 2G5 (ro) (654)

Inserting eqs.(6.34) and (6.38), we obtain

Foahrass (ki K o) 655
vam . P
- kikﬂ"g \/<2J/ + 1)<2l/ + 1)<Sf‘|0( )H3i> Z ZZZZH e (01, +01,)

liji lgjy

xuy oD (g, ro)ups D (i, 10) (2L + 1)1/ (24 + 1)(2L5 + 1)(L0L0]10)

ly sp Jy
xq liosi Jiop (L0simg,|jims,)(Lpmgsyms | ms, + M)
Ur s J
i M g, + M=) 23[R il s (6.56)
(Ly + [my|)!
where s; = s; = % and
1 \/— 1 \/—
<§H0 5 >—2 <§H0 5 >= (6.57)
Noting the relations
O, =0, Ok, = O, Pr, =0 (6.58)

in the [z, y, 2| coordinate system, we used the formulas

20, +1

Vi, (ki) = Orm,
1mz<) 577%0 47T

(6.59)

and

; mpstmgl (20 41 (1 — [m) )2 m
Yifmf(kf> = Yifmf(‘gcmao) = <_1) 2 { J;l’n' (lj: T |m;|)| Plff(COS 9cm> (660)

7 Cross sections expressed by response functions

7.1 Response functions for the spin-isospin density operators

We introduce the response functions for the spin-isospin density operators (6.8) as

Rl’ Is Jl/(r rw) = Z(‘I’g|Pl’s’JM,t’u(7’/)“I’§l<><‘I’§|P1TSJM¢V(T)“I’?&>5(W — wy) (7.1)
n#0

They are diagonal with respect to J and M because we assume that the spin of ¥4 is 0.
They are also diagonal with respect to v because of the charge conservation.
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7.2 Response functions for the outer impulse functions

From egs. (6.6) and (6.52), the NA T-matrix is written as

10 (ky k)|

M Ms;

—Z N[Ny / rdrSONN (kg ki i 1sTM) (@l pl,aga, (1) @) (72)

lsJM

Then we introduce the response functions for the outer impulse functions as

=20 [T ke )
Ms M, 5 yml m

= (NN IN|RN) ZZZ/ / rdr’

tt! JM s’

[RE’N] [T,%’N(k B k:,-)]T 5(w — W)

mm

M M, St

x (SN (kg ki z’s’JM)) Ry 075 0) SN (b ks dsIM) - (7.3)

where v is fixed by the reaction type (N, N).
The present version of CRDW can treat only the cases of t =t = 1, thus

e~ IWEONIESY [ [

6fméz JM Vs

&

Mg Mg 1M

X (Sﬁg;ﬁg (kg ki l’s'JM)) Rl, s, (' rw) ng}ljnlj(kf,ki;r;lsJM) (7.4)

7.3 Observables in terms of the response functions

Now we can express the cross sections and the spin observables in terms of the response
functions for the outer impulse functions.

7.3.1 Cross sections

The unpolarized cross sections are expressed from eq. (3.26) as

IN’N(ecm,ow):E > [Rg’N} (7.5)

2 Mg Mg ;Mg M.
M M, fo fe

7.3.2 Spin observables

The polarization P, (xIN'N) and the analyzing power A,(xIN'N) are expressed from eq.
(3.32) as

NYp, = KIm <[R§’N] Lt [RE/N} n __) , (7.6)

NNa, = K1m<[R§’N]
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The polarization transfer coefficients Dy;(x IN'N) are expressed from eq. (3.38) as

NND,, = KRe< RYN + |RYN ) (7.8)
- dtt+i—= - 4t+—=—+

INND,., = KRe|( |RYY] — [RYY]

[ HN/N] [ HN/N]
Rg — |Rg
L J 44—+ L e e

NYp,, = KRe<_R§/N- RN > (7.10)

INND.. = KRe

K

]NINDzz = _([RE,N - Rg/N

2 }++;++ [

where the suffices + denote 2m,.

8 Generalization to include A isobar

We make the following generalization to include the A isobar degrees of freedom.

8.1 Spin and isospin operators

The spin operators o(*) are generalized as

(0) ab _ § wl
oo
O-I(f) — O'/(f)’ab = (1) SM (81)
Opu
oA = (—1r(S )t

where a,b = N or A, and §,, is the spin transition operators from N to A defined as

1 3
(malSylmx) = (smxlpl5ma) (8.2)

Similarly the isospin operators 7(*) are generalized as
,ab
Tl(f) — Tl(f) (8.3)

by replacing o, and S, by 7, and T,,, the isospin transition operators from N to A.

8.2 Density operators and response functions

The spin-isospin density operators (6.8) are generalized as

o(r —ry)

TR

a t),ab s),ab
plsbJMtz/ ZTu(k [lY Ok, Pr) < Ul(c 8 }M
and their response functions (7.1) as

aoc / al n T
Rl’b’;istJZ(T rw) = Z(‘I’%PZ'Z/JM,t' (r") [ W) (x| (plsJMtu( )) (W)W —wn)  (85)

n
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8.3 NN t-matrix

We generalize the NN t-matrix to include NA transitions. Since information is very
limited, we take a simple generalization of the isovector and spin-vector parts of the free
NN t-matrix (4.10)

(0 71) | Bi(oo - e) (0 - e) + Er(00 - @) (0k - @) + Fi(oo - Q.) (o - Qc)] (8.6)

into the form of

1),NN 1),NN,y [
() | B

)
( )
£ @A [Ble ™ ) (@ A
+E| (o™ - g (e q) + Fl(of - Qe Q)]
(U BN A (0N )
+E (o™ - g (e - 40 + Fl(of ™ - Qe Qo)
(8.7)
Considering the one-pion and one-rho meson exchange processes, we assume
E = waAEh B = fPNABh Fl = prAFl (8.8)
Jann JoNN JoNN

where frnn and frna are 7NN and 7NA coupling constants, and f,ny and f,na are pNN
and pNA coupling constants, respectively.

9 Polarization propagators

To calculate the response functions, we introduce the polarization propagators, for which
RPA or TDA equations are developed.

9.1 Polarization propagators

The polarization propagators are defined by the sum of the forward and backward polar-
ization propagators as

’ / /
Mgty (s w) = Ty (' r w) + TG (s ) (9-1)
with
1
FW,abed,t't N — /0 | Aab d 1,0
Hl’s’lscf]zf (T’I,T,W) - <\I]A|p?’s’JM,t’u(T,)w . (HA . gg) + 177 (p?sJM,ty(r)) |\I’A> (92)
1

BK,abcd,t’ . _ T
Hl’s’li]i tt(r/’ rw) = (‘I’% (plcsdJM,tu(r))

ab ! 0

1ol ! W 9.3
_w_(HA_(€2>+inpl5JM7tV(r)‘ A>( )
The response functions (8.5) are given by

1
Ry (' riw) = =TI (s w) (9.4)
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9.2 Mean field approximation

We start with the mean field approximation.

9.2.1 Hamiltonian

In this approximation the intrinsic Hamiltonian Hy of eq. (3.21) is replaced by the mean
field Hamiltonian H

A
Hy— Hy=)_ <}3;§ SR ®hy eh ®hd @ iz,?”) — T, (9.5)
k

where h® is the single particle Hamiltonian of the particle a(=n,p, A7, AV AT AT,
We define the single particle states and their energies by

h*|he) = €5 |ha), (for occupied states, o = n,p) (9.6)
h*|pa) = €a|pa),  (for unoccupied states, o = n,p, A, A%, AT A*Y) (9.7)

We write the ground state of the target A its energy of Hy by ®4 and 82(0), thus
Hy®) = Y09 (9.8)
We assumed that the ground state does not include A and its spin Jy = 0.

9.2.2 Free polarization propagator

(1) Definitions
We call the polarization propagator in this approximation is the free (unperturbed)
polarization propagator. It is written as

0),abcd,t't . __ +7FW,(0),abcd,t't abed,t't .
Hl(’s)’lstx (r',rw) = Hl’s’ls(Jl)/ (', w) + Hl’ 'ziJ)u (', w) (9.9)

with

) 1

FW,(0),abed,t't _ c f
I o e 0 s ) = (B s (1) T (P (1) 12)  (9.10)
w—(Ho— &) +1in
1

BK,(0),abed,t't T
Hl’s’léJ)ya ° (r',r; ) = (@ ‘ (plsJM 0w (7 ))

ab ! 0
Pr st o \T d 9.11
Ty ) @11
Since p®|®Y) and (pab)T |®% ) are the sum of 1-N(A)-particle-1-hole states, and the prop-

agators (+w — (Hy — 52’(0) ) +1in)~! are diagonal with respect to these states, we can
write

(0),abed t't ; 1 . . (0),abt’t, s .

Hl’s’lsJV (7“ 7 CU) - 5(105de1/5/ sJv (7’ ) 7 U)) (912)

(0),FW,abed,t't ; 1 . . (0),FWab,t't ; 1 .
Hl’ "sJv (T‘ 75 w) - 5acébdl—ll/ sy (’I“ , T3 w) (913)

(0),BK,abed,t't ;1 . . ),BK,ab,t't ;
Hl’s’lle/ (7” 75 W) - 5ac5del/ sy (7" s Ty w) (914)

thus
(0),abt’'t, 1 . FW,(0),abt't , s . BK,(0),abt’t ; 1 .

Hl’s’lstx (T ,’I“,CU) Hl’ 'IsJv ( 77“,&)) +Hl’s’lsJy (T‘ 7T7w) (915)

27



with
G 0 i) = (@Rt an (1) G5 (@) (Piar (1) 195) (9.16)
g™ (0 riw) = (@1 (iar (1) Gl (@) P jag () 193) (0.17)
where GI(,%) (w) is the free ph Green’s function defined as

1
9w ho e : ho e 9.18
ph ZZZ|QP _Eg_eg)+1n<ap| ( )

ad’ hyr pa

(2) Free ph Green’s function
Noting that h, runs over finite number of discrete occupied states, but p, runs over
infinite continuum states, we rewrite it as
Z GO (9.19)

GO w) =D g (w + e ) (it (9.20)

where {
ol — « « ~ |Pa o 21
Z\p 60‘+177p| pZIP pol —gargy Pl el (921)

We call g;(e) the partzcle Green’s function.

(3) Grouping
Since ®Q does not contain A, we get the relations
[IO-AA8 _ TIFW-(0.AN2E _ [IBKO.NALE (9.22)

For later use, we introduce the grouped quantities

H(O):[N]:t/t = H(O)vNNvtlt (923)
H(0)7[A]7t/t — H(O),NA,t't + H(O),AN,t/t — HFW,(O),NA,t/t + HBK,(O),AN,t't (924)

In egs. (9.22) - (9.24), the suffices (I's'lsJv) and the arguments (r’, 7;w) are suppressed.

9.3 Polarization propagator with nuclear correlations

We consider nuclear correlations only for the isovector ( = t = 1) and spin diagonal
(s’ = s) polarization propagators. So we simplify the notations as

abed abed,t'=t=1 (0),ab (0),ab,t'=t=1 (0),[a] _ 7(0),[a],t’=t=1
Hl’lsJV Hl’s’—slsJV ’ Hl’lsJu = Hl’ '=slsJv I—[l’lle/ - Hl’s’:sls.]u (925)

where the arguments (r’, r;w) are suppressed.
We take into account the nuclear correlations through RPA or TDA with the effective
N(A) particle-hole interaction in the isovector channels.

h
ph — Z szjk(’l“k/ — Tk, w) (926)
k' <k
which is expressed in the angular momentum representation as

T
VI (P — T w) = ZZ Z (T k,ab [1”Yz(6’k/ Gpr) X J;)’ab}M)

abed U'ls JMv

X

J
Wttt o) (727 [0, 00 <o) ) 020
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9.3.1 RPA and TDA equations

In RPA with the ring approximation, the polarization propagators are given by the solu-
tion of the RPA equations

RPAabed/ s ... N\ _ (0),aby 1 .
Wpe (1, r5w) = bacOballyysy, (r',riw)

oo o
§ : § : 2 2 (0),ab (1 . . aba’b’ . RPA,a'b cd )
+ / Tldﬁ / TszQHl’llsJuOn 7rlvw)mllQSJ(rlﬂrQﬂw>nglsJu (7“2,7’,0.))
a'b iy Y0 0

(9.28)

In TDA only the forward propagations are taken in to account, thus the TDA polarization
propagators are given by the solution of the TDA equations

TDA,abed /1 .. _ FW,(0),ab, s .
Wy (1 w) = 0acOpallyyg gy, (1 i w)

+ZZ/ r%drl/ rgdrgﬂgm@ﬂb(r',m;w)m/l‘fll’s;l}l(m,rg;w)HZ]IDS[};a/b/Cd(rg,r;w)
a'b lqlo 0 0

(9.29)
9.3.2 Simplification of the RPA and TDA equations

Noting the symmetries of W with respect to a, b, ¢, d, we introduce the notations

PV INN] = NNNN (9.30)
W[NA] = WNNNA — WNNAN _ WANNN _ WNANN (931)
TWIAAl — /NANA _ 1/NAAN _ jjANAN _ 177ANNA (9.32)

and the grouped polarization propagators as

TIINNT = TNNNN (9.33)
H[NA] = HNNNA + HNNAN (934)
H[AN] = HANNN + HNANN (935)
H[AA] = HNANA + HNAAN + HANAN + HANNA (936)
where we suppressed the suffices and the arguments.
Then the RPA and TDA equations are reduced to simpler forms
Mgy (7', mi ) = Bapl1i5 (1,75 w)
—l—Z Z/r%r%drldrg Hgg)lg]Jy(r',rl;w)VVl[lalZ]SJ(rl,rg;w)l_[gil?}cf} (ro,mw)  (9.37)

c s

H?,gﬁab} (r',rw) = 5@115??}? la] (', r;w)

FW(0)[a ac TDA[cb
+Z Z/T%@drld@ Hl’hs(JZ[ }(TI7Tl;(‘U)VI/IEIQ}SJ(Td’TZ;w)HZQZSJl[/ ](7"277'%0) (9.38)

c Iy

9.3.3 Response functions

Correspondingly, we use the simplified notations for the response functions

Rabcd _ Rade,t/=t=1 _ 1 Im Habcd

UisJv — U's'=slsJv _% l’lsJy(T/’ r; w) (939>
1
0),[N] _ 0),NN 0),[N
Rily = Ryl = —_ImIGple’ rw) (9.40)
1
0),[a]  _ 0),NA 0),AN 0),[A )
Rl(’l)&[]zz] = Rl(’l)sJu + Rl(’llsz = —%Im Hl(’ll([]u]<rl7 W) (9.41)
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10 Calculation of the free polarization propagator

The key ingredients to calculate the polarization propagators are the free polarization
propagators and the effective ph interactions. In this section, we explain details about
calculation of the free polarization propagators presented in egs. (9.9) - (9.11).

10.1 Single particle states
10.1.1 Nucleon single particle states

The nucleon single particle states obey the Schrodinger equation
1
he¢*(r;e) = [——2 V2 + /dr’Ua(r,r’)] o*(r';e) = ep®(r;e), (a=mn,p) (10.1)
UN

with the reduced mass

A-1
where we use the average nucleon mass
—— w (10.3)

and shift the origin of the energy by my.
Dealing with the non-locality by the effective mass approximation[11], we get the
Schrodinger equation with the local potential

1
—— V21U, (r)| oWy €) = ep™ (1 ¢) (10.4)
2[LN

for the modified wave function ¢ (r), which is defined by

() = VB eDar),  Pa(r) = Hal) (10.5)

HUN

where P,(r) is the Perey factor and u(r) is the radial dependent effective mass of the
nucleon a(= n,p).

Since we do not have information about the non-local potential U, (7, r’), we treat the
local potential U, (r) and the Perey factor P,(r) phenomenologically in the form of

1 Ve dfgs ()

Ua('l“) = —(Vba—i‘iw(;l) &}%(T) + mZ Tl '0"|‘V€(7“) (106)
Po(r) = 1=baflis(r) (10.7)
where |
\:)t\}g = T, A1/ Y (x = C) ls) /J/) (108)
1+ exp (%—f“)

and V& (r) is the Coulomb potential. It is assumed to have the form

ZoZoe? 2 _ agl/3
Valr) =9 20, (3 Rg) ’ (r < Re =rede™) (10.9)
Zafet (r = R.)

r Y
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where 7, is the charge of the nucleon a and Z, is the charge of the core depending on «.
In the angular momentum representation, the wave functions are written as

uf(r; €)
o (rye) =~ Y (0, 0) (10.10)
for the unbound states and
sy (1)
¢ (i) = 2L Vim0, 0) (10.11)
for the bound states where
Visim (0,6) = > (Imysm|jm) i, (6, ¢) X, (10.12)
mp,ms

with s = %
The radial wave functions obey the equation
1 d? L I(l+1)
2un dr?  2ux  r?
1 Vedfser
L= s fws (r)

2
m2 r dr

— (V5" +1Wg) fws(r)
GG+ =1 +1) =s(s+ 1))+ VE(r) | ug(r) = eugi(r) (10.13)

where u(r) = uf;(r;€) for the unbound states, and uf;(r) = uj,;(r) and € = €;; for the

bound states. The normalization of the bound state wave functions is given by
/ ug; (r) 2 Pa(r)dr = 1 (10.14)
0

In CRDW,

(1) The parameters V|2, by, ", a™®, (x = ¢,ls, ) are input data.

(2) The real potential depth V" is determined to reproduce the binding energy of the
highest occupied level of the nucleon a. Calculation is carried out with Wg* = 0.

(3) The imaginary potential depth W' for the unoccupied states is given as an input
value, or determined from the spreading width for the given energy e by the phenomeno-
logical formula.

o L) o [l EVi
Wi =50 = [ ) 000

where ey is the Fermi energy,

1
€y 5 (" of the highest occupied level + €* of the lowest unoccupied level) (10.16)

«

m; of the occupied states are calculated with

(4) The wave functions and energies €
Wst = 0.
(5) The energies ep;; of the occupied states is artificially modified to the complex energy
€ntj AS
a ~ «a 1 o
€nlj — €nlj = €nij — 157 (Enlj> (1017>
where the spreading width is given by input data or by the formula (10.15).
We note that this treatment of the imaginary potentials and the spreading widths

violates the orthogonality between the occupied and the unoccupied single particle states.
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10.1.2 A single particle states

For the mean field of A, we do not consider the non-locality, thus the Schodinger equation

for the A single particle state is given by
1
h%¢*(r;€) = —ﬂv2 + Un(7r) + Am| ¢%(1;€) = €¢®(7;€),
A

where o = A7, A% A+t AtH,

(A —1)mnma
(A—1)mx +ma

N
and
Am = ma — mn
The potential U,(r) is assumed to have the form

1 V2 dfys (r)

2
m2 r dr

Us(1) = — (Vi + W) fis(r) + [-oWAs 4 VE(r)

In CRDW,
Vg, W, VS, g, a™e, (x=cls, a=A",A°, AT AT

are the input data.
In the angular momentum representation we write the wave functions as

upy (15 €)

(ba(’r; 6) = ylsjm(‘gu (b)

where s = % and
€ =e—Am

The radial wave function uf;(r; €) satisfies the same equation of (10.13).

10.1.3 Single particle Green’s functions

For later use we introduce the single particle Green’s functions
1
9°(€) =

e—h*+1in
Its coordinate representation it can be written as

G re) = (] Zylsm @) 500 (3 6,0))

e—ha r'r

where s = 1 for a =n,p, and s = 3 for a = A, A°, AT ATH

The radial part gj(r',7;€) is given by

fara Oh(rsse),  (a=n,p)

W ()bl (e )
PR i), (o= As)

ot . _
glj<r ) 7 E) - PION
W (S5 (e h T (r3e)

(10.18)

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

(10.25)

(10.26)

where (- denotes smaller (larger) one of 7 and 7. The radial wave functions fjj(r; €) and

hg;r) “(r; €) are the regular and the outgoing singular solutions of eq. (10.13), respectively,

and W(f, h) is the Wronskian of the functions f and h,
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10.2 Particle Green’s function
10.2.1 Nucleon particle Green’s function

We must note that the particle Green’s functions (9.21) of the nucleon (o = n,p) are
different from the single nucleon Green’s function (10.24) because the summation over p,,
is limmited over the unoccupied states.

Furthermore we may choose different potentials for the occupied and the unoccupied
states, thus the orthogonality between the occupied and the unoccupied states.

To cope with these problems, Izumoto and Mori[10] derived the formula which calcu-
lates the particle Green’s function g from the single particle Green’s function g*

gp(€) = g*(€) — g™ ()™ (T*g*()T*) ' g () (10.27)

with the projection operator onto the occupied states

= |ha)(hal (10.28)

We call this method a orthogonality condition model.
In the angular momentum representation, we can write

Gpu; (175 €)

< s j 'm ’gp( )|7’l$jm> = 5l’l68’85j’j5m’m v (1029)
Iy(r',r
< /S/j/m ’F|7’l$jm> = 5l’l53 553 ](Sm m% (1030)

P ) =) ul (s (r) (10.31)

neocc

From eq.(10.27), we get
9p1;(€) = gii(€) — g (OTF (Tfg5 (1)

10.2.2 Particle Green’s function of A

-1 o
yai(e),  (a=mn,p) (10.32)

There are no occupied states of A, we can identify the particle Green’s functions of A
with the single A Green’s functions, e. g.

(&) =g(e),  (a=A",A% AT, AYY) (10.33)

10.3 Matrix elements of the free ph Green’s functions

The matrix elements of the (¢, a) component of the free ph Green’s functions (9.20) is
given by

<(nhlhjhmha,)_1 (r/lpjpmpa) | Gg;;a (w)] (nhlhjhmha/)_l (rlpgpmpc))

1
= <r/lpjpmp0" o o —|rlyjpmpar)
w = (h - €nhlhjh) + 177
1 gzlpj (T rw+ Enhlhjh) (O./ = n’p)

- (10.34)

rr’ 9, (r T W+ € —Am) (a=A", A% AT ATT)

nhlhjh

where o/ = n,p, and enhl ;, 1s given by eq. (10.17). The non-diagonal elements with
respect to ((nh, Uh, gy mpa )™ 1, g, mpar) all vanish.
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10.4 Matrix elements of the transition density operators

Using the formulas (eq. (3B-25) of ref. [13])

(G o) TIIOW[0) = (1) +9 =7 (G, [0 1) (10.35)
OO, o)) = = (nllO]1j) (10.36)

we obtain the matrix elements of the transition density operators

((nlngne’) ™ (rlpgpe); TMpiyag ()| PR

S uo‘/ (r
= 5bN<CY|T,St)’aN]a/>(—1)]p+jh_JBﬁSIz](p, h)%’l(), (10'37)
(O pierare () (nilngne) " (rlpjpe); J — M)
= ) (< 1) MBS (h, ) a7 (10.38)
T

where o/ = n,p, a =n,p, A7, A", AT A+t and

B (e y) =\ @+ D@y + D3 by sy gy ¢ (el L) s:ll0®ls,)  (10.39)
I s J

Here we used the formulas

Bl s a1 (D) .
<ZISI]CEH [ll}ﬁ(r) X U( )7 b:| Wysyjy>
ly Sz Ju

= eI+ D@+ 0@+ DS G s, by ¢ YL (5] s, (10.40)
[ s J

The double bar matrix elements of the spin operators are given by
1 1
<§||U(O)’|NNH§> = V72, < |0t NN|| > V6, (10.41)
3 1
Glle 215 =2, < (LR D=-2 (10.42)

and that of the orbital part is given by

Q20+ 1)(20, + 1)

(LY ()L, = ily—’w”\/ (1,010,0). (10.43)

which is real because [, — [, + [ =even.
The matrix elements of the isospin operators are given by

(™ N n) =1, (I ) = 1, (10.44)
" Nny =1, (pln” NN| )= —1 (10.45)
(e p) = —v2, (e ) = V2 (10.46)
,AN ]- 7AN 2 ,AN
(AN ) =y fo, At p) =[50 @ =1 (1047)
> 1
(A|r¢ (1), AN| ) =1, <Ao|Tél),AN|n> =\/5 <A+|7_£11)7AN|n> —\/5 (10.48)

34



10.5 Matrix elements of the free polarization propagators

From egs. (9.16), (9.17), (9.23) and (9.24), the forward and backward free polarization
propagators are written as

FW,(0),[N],t'¢ 0 T
o DR 0 ) = (@Y s (1) G (@) (PNar () 19) (10.49)

BK,(0),[N],t/ t 0
s QNG ) = (] (04 (1) GO (—w) oD ar, ()] BS) (10.50)

FW,(0),[A],t/ 0 }

Loy A 0wy = (@S 00000 (PG (W) (0850100 (1) 192) (10.51)
BK,(0),[A],t't t 0

T B ) = (0] (08010 (1) T G (=) 92 a1 (1) D) (10.52)

By use of egs. (9.19), (10.34), (10.37) and (10.38), the free forward polarization prop-
agator (10.49) is given by

FW,(0),[N}t't, s ..
Wy gisrn (r',rw)

Z Z Z Z (@A lpps ' TM iy (") (nplngn) " (rplpgp); J — M)

o=n,p &'=n,p nplpjn lpjp
X ((nndngn) ™ (s T = MIGL™ (@)l (madygn) ™ (rylysn): T — M)
N . T
<(nhlh]h) 1<7"plp]p)' J— M| (p%\sH}IMtzx( )) |(I)O>

=3 3 N S BN o) al (TONN Y BYY, (b, ) BRY (h, p)

a=n,p a’=n,p nplpjn lpjp

! !
uzhlhjh (T’) gg,lpj (T Tiw 6nhlhjh) ughlhjh(r)

r! rir T

(10.53)

Similarly we get

FW,(0),[ALt't, 1 .
Wy s (', w)

= 011041051051 Z Z Z Z| ('[N ) Byt (h, p)BY5 (b, p)
o'=n,p a=A’'s nplpjn lpjp
% ug;lhjh( ) glp] (T WAt Enhthh B Am) u%;lhjh (T)

r! rir r

BK,(0),[N),t't, / .
Wy i (', w)

=3 3 3T S @ ayal O o) BYY (p, BB, (. h)

a=n,p a’=n,p nplpjn lpjp

(10.54)

X ug;lhjh (T) galpjp (7’, "W Enhlhjh) ug;lhjh (T/>
r rr’ !

BK,(0),[Alt't, s
Wygisr (', w)

= 011041051051 Z Z Z Z| a|T AN|04 B35 (p. 1) By (p, h)
a'=n,pa=A's nplpjn lpip

x ug;lhjh (T> glC:)jp (T’ 7“ —w+ Enhlhjh o Am) ug;lhjh (T’)

T r'r r!

(10.55)

(10.56)
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11  Effective ph Interactions

The other key ingredient to calculate the polarization propagators is the effective ph
interactions. In this section, we present their explicit expressions.

In CRDW, we only consider nuclear correlations for the isovector spin-scalar and
isovector spin-vector modes. So we decompose the effective ph interaction into the spin-
scalar and spin-vector parts as

VIR — i) = Vii(rw — i) + Vil(rw — 7y w) (L1)

11.1 Spin-scalar part

Referring to the general form (9.27), s =0, ' =1 = J and a = b = ¢ = d =N for the
spin-scalar part because the A does not involved. Noting the abbreviated notation (9.30),
this part is expressed as

Vi = miw) = 303 (V)

In CRDW, we take the contact form

T
Wi (a5 w) (73 1Yin(2)) - (11.2)

‘/1825(7"1 — 7’2;(.{}) = (Tl . T2)V;—5(T'1 — 7’2) (113)
thus
S(ry —
W/l[zlglN](ﬁﬂ”%w) = Vr—(rl r2) (11.4)
T2
The strength V; is the input parameter.
11.2 Spin-vector part
Referring to eq. (9.27), the spin-vector part is expressed as
T
J
Vistr ) = S (e [ <o)
abed v Ul JM M
J
X Wikt (ry,row) (Tﬁgm [1Yi(72) x o] M) (11.5)
with (—1)! = (=1)".
In CRDW, this part is presented in the form of
d
Vig(r1 —ryw) = / E q) Vi (q,w)eldm—r2) (11.6)
and its momentum representation V}%'(q,w) is given by the input data.
It is decomposed into the spin-longitudinal and spin-transverse parts as
5(q,w) = Vis(q,w) + Viz(q,w) (11.7)
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which have the forms

Vilaw) = W nlon o )
b W) (i T(or 52+ (1 & D} +hel
+ Wﬁq,m[ (T, T)(S: - 4)(S>+ @) + (T1 - TY)(S1 - 4)(S}- @)} + e
Vi@w) = WiNg.w) (r-m)(orx @)oz x @
bR [{(n Ty < @S x @)+ (1 0 2) +he
+ WRAa.w) [{(T- TS x (82 x @) + (T T(S: x )(S) x §)}
+ h.cl (11.8)
Defining
Wi i) = 2 [ @daielar)Wet s o)itar) (11.9)
Wi rw) = 2 [ Pdaivla Wikawiden (11.10)

and noting the abbreviated form (9.30)-(9.32), we obtain

Wil (v w) = b Wiy (', 75 0) + agva (Wm (r',rw) — Wzﬁ?(ﬂﬂ@)
(11.11)
where we used the generalized form of the formula (6.20).
In CRDW the 7 + p + ¢’ + b’ model is used for the isovector spin-vector ph interac-
tion. It consists of the one-pion exchange term, the one-rho-meson exchange term, the
contact spin-spin term (g’ term), and the contact tensor term (A’ term). The expression

of Wt(q,w) and W (q,w) is given in CRDW Manual sect. 5.4.3.

12 Specific response functions

CRDW optionally presents the isovector spin-scalar response function Rg(q,w), the isovec-
tor spin-vector one Ry(q,w), the isovector spin-longitudinal one Ry (gq,w), and the isovec-
tor spin-transverse one Rr(q,w).

12.1 Momentum representation

First we prepare the momentum representation of the general isovector spin-diagonal
response functions.

12.1.1 Spin-isospin density operators

Generalizing eq.(6.9), we introduce the spin-isospin density operators in the N+A space
S,a ab (s 7a x4
At () =3 m o i e — i) = 30D (tmsplIM) (i) piaa(r) (12.1)
k IM Im
where a,b = N or A and pf?;,,,,(r) is defined in (8.4). Their momentum representation

is given by

plrab(g) = / dr s ()e 9T = 3OS (sl IM)(— 1)V (@0 (@) (12.2)

JM Im
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with
@) = / P2drptts g o (r)iar) (12.3)

12.1.2 Response functions
We define the isovector spin-diagonal response functions in the coordinate space as

Ratet (7' mw) = 3 (WA 10k o (7)) W) (W] (0 i, (1) 0000w = wa)  (12.4)

By use of R% (r',r;w) of eq. (8.5), it is expanded as

R;‘Zcﬁ L rw)

SO S Wl |IM) sl T M) (Vi (7)) B33, (1, 750) (Yim(7)) - (12.5)

JM U'm/ Im

and their momentum representations are given by

R (q g / ar® [ arte T R (0 i)
= Z \Ij su’ 11/ “Iln><\IIX| (ps,u,lu(q)) ‘\IIOA>5<W - wn) (126>
= Z SO (U syl | TM)(Imspl IM)Y;, (@) RinS, (¢ g;w)Yim(§) - (12.7)

JM U'm’ Im

with
R%ﬁu(q Gw) = Z(lp%|pl’sJM (¢ /)“I’Q/JMM\I’;UM’ (plcgJM,lu(q))T (W30 (w — wn)
= (477)2/7‘/2617"/TQdel/(q’r’)Rﬁ?ggy(r r;w) g (qr) (12.8)
where (—1)"*+ =1 is used,

12.2 Specific isovector response functions

We consider the following specific isovector response functions.

12.2.1 Isovector spin-scalar mode

We consider the isovector spin-scalar transition operators

Z P 71q = % Z( ) Y* (d)plOlm 11/(Q) (129)

Ilm

and define its response functions as

Rys(q,w ZI W] (Ous(@)'[R)1%6(w — wn) (12.10)
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Their angular momentaum representation is given by
nim 1‘
Rys(qw) = 5 Z Z @YX | (Pioim,1(0)))" PR P0(w — wn)
- —Z (20 + )Ry (g, ¢ w) (12.11)

where we introduced the notations for RNN! corresponding to egs. (9.33) for IIINN and

used the relation ol +1
> Vi @Yim(@) = = (12.12)

12.2.2 TIsovector spin-vector modes

We introduce the isovector spin—vector operators

N . )NN (1NN __igr, L NN

Ol/,,u<q) = \/_ Z Vk /Lk‘ e Irs = Epzlxlu (q) (1213>
A — (1),AN _(1),AN (1),NA _(1),NA | _—iq-T

O,w(q) = 7 Z {ka ok T Ouk } e 1Tk

11 AN +p11jlﬂNA(q)} (1214)

and define the isovector spin-vector response function as

n n T
R\ (g, w ZZ VA105 (@) VR) (] [0, ()] [WR)6(w — wy) (12.15)
where a,b = N or A. They can be rewritten as

RN (qw) = —ZZZZ D' Y37 (@) (U'm! | T M) i () (m1 | T M)

JM o Um! Im
n n T
XZ \Ijg|pl’1JM1V (@) [ W5 7MWy M| [quMh/( )} (W30 (w — wn)

2J+1 ' /
— §ZZZZ¢2P 2l+1)(J—M1u]l—m)(J—Mlu]l—m)

JM p U'm! Im

* ~ / 1
XY (@Y QRN (@ 0:w) = g D (27 + DRy, (0.0:w) (12.16)
Jl

where we used eq. (12.12).
In the same way, we can get

R (gw) = 3 Z 222 > (Y (@ Um L] TM)Yiy (@) (Imd | TM)

JM p Um/ Im n
x (W A‘pl’lJM,1u<Q)_'_pl’lJM,lu( )P JM>
n’ T
X (UM oy (@] 19R)0(w — wn)
1 ANNN, 11 NANN,11
= gZ@J‘*’l){Rmuu (¢, ¢;w) + Ryp gy (q,q;w)}
1

1 AN
= % (2J+1)Rz{zul(q,q, w) (12.17)
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and similarly

Ro3(g,w) = 8; > (27 + 1) Ring (g qw) (12.18)
Tl
We can also derive
RAA(’ W)
S S S S Y @) U M Vi @) | TS e — )
JM p Um! Ilm !

n’ n’ T

X <\I/9&|pl/1JM,1u(Q) + P%AJM O ZSEIN 2 S [Pﬁ?M,M(C]) + pﬁ?Mly(q)] w9 )

1
= 3 ZW +1) {Rﬁﬁ?f g, qgw) + By (4 g w)

1

ANNA, NANA, A

+ Ryng, 11(‘]761; w) + Ryng, 11(qu§W)} = 8_7TZ<2J+ )Rl[lljy(%qsw) (12.19)
Jl

In the above we introduced the notations for RAN RINAl and RIA4] corresponding to
TTIAN] TTIINAL and TIIA4] of eqs. (9.34), (9.35) and (9.36).
In summary we can write

1 a
Ry (q,w) = 3 —> 2]+ DR (g, 4;0), (a,b =N or A) (12.20)
Jl

12.2.3 Isovector spin-longitudinal mode

We consider the isovector spin-longitudinal operators

1 o
Oyu(q) = EZTV(}/Q)’NN(UJ(:)’NN'Q)G i (12.21)
K
-1 A A N NA NA . _ia.
O,(q) = EZ{T&) N(O'l(:) N-q)+T£71k)N (a,(cl)N -q)}e are (12.22)
k

which can be written in the angular momentum representation as

J
Olla) = 5> ent=1"Viul@) Sy idare) [itr o]
lJM
G Z an(=1)"Y (@) (12.23)
1M
and similarly
=7 Z an(=1)"Y(@) (P25a00 (@) + Piv7ar1n (@) (12.24)
LM
where egs.(6.19) and (6.20) are used.
We then define the isovector spin-longitudinal response function as
a n n T
RVL(q’ w) = Z<\P%|OV,L((1>|\I{X><\I/X| [Og,L(Q)] |\I/%>5(w — Wy) (12.25)

n
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They can be written as

RI/L(q? ) = —ZZZGJZ’GJZYJM )Y (q)

7
n T
X (W10 an 1 (D) (K| [onars (@] [PR)6(w — wn)
- _ZZ (27 + DagranRimng, (g, ¢;w)

Il

= gZZ(QJJF DagwanRpyy, (¢, ) (12.26)

'l

and similarly

Ryp(qw) = —ZZZCLJV@JZYJM )Y (@)d(w — wn)

n JM U
n n T
X <‘Ij9x|Plé11\ij,1u(Q) +p%\’11AJM,1V(Q)’\I’X><\IJX‘ [P%\JTM,M(Q)} TR
1
= % > > @+ DagwanRiyy, (a0, ¢w) (12.27)
T
RﬁA( w)
- 9 Z Z Z agranY (@)Y (@) (w — wy)
n JM Ul
n n T
< (R 1p0ar (0) + P irar (@) (V%] [P0 (0) + PiTann ()] [WR)
= _ZZ (27 + VaganRi, (4, 4;w) (12.28)

Il

In summary we can write

R (q,w) =< ZZ (2J + DapanR, (¢.¢;w)  (a,b=Nor A) (12.29)
14

12.2.4 TIsovector spin-transverse modes

Introducing the isovector spin-transverse operators

1 .
ON _ (1).N [ (DN } —ig-T 12.30
V,H,T(q) 2 zk: Tu,k oy q L € ( )
1 .
Oprl@)=—5 {T”(lk? o xca] # N (ol ] } a2y
2 n n

we define the isovector spin-transverse response functions as
Ry'r(q,w ZZ U308, (@) W)W [05,2()] 1020w — w,) (12.32)
Noting the relation [A x g] - [B x q]=(A-B)—(A-q)(B-q), we get
Ry'r(q,w) =5 {R,,v ¢,w) — Rij(g,w).} (12.33)
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12.2.5 Full response functions in N+A space

To show the combined responses from N and A, we conventionally define the full isovector
spin operators

ro 4 Ima {TS + (TS)*}

f7rNN

7NN (D.NN ?NA {T(l),ANo.(l),AN + T(l)vNAa(l)vNA} (12.34)
7NN

and present the full isovector spin response functions defined as

RV,X(Q? w)

fr fena)”
=R5{>N<<q,w)+f—§§(R§,§<q,w>+R§,§<q,w>>+ f§§ R (q,w) (12.35)

where X =V, Lor T.
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