Overview of the RIBF accelerators

The 3rd PAC meeting for Nuclear Physics Experiments at RIBF

February 18, 2008

A. Goto Group Director Accelerator Development Group RIKEN Nishina Center

Expected intensities of 345 MeV/nucleon beams at RIBF

 ^{48}Ca 238**T** J Kr Xe April~November 30~50 30~50 5~10 0.3~0.5 2008 200 100 20 5 April 2009

pnA

RIKEN RI Beam Factory

U and Kr acceleration schemes

RIBF machine studies performed since September 2007

- U acceleration (RILAC+RRC): Sept. 22 ~ Oct. 4, 2007
 - Calibrated the voltages of No. 5 and 6 of RILAC
 - Calibrated the voltage of the beam rebuncher
 - Measured the stability of RILAC & RRC
 - Tested charge strippers
 - Tested new Faraday cups
- Kr acceleration (RILAC+RRC+IRC+SRC): Nov. 3 ~ 10, 2007
 - Used the four RF resonators of SRC
- Used the flattop resonators of both IRC and SRC
- Improved the beam transmission through IRC by use of the flattop resonator up to 82 % (c.f. 45 % for SRC due to lack of tuning time)
- Achieved 30 pnA at the exit of SRC (though we limited the time to as short as 1 min.)

Transmission through RILAC

Time structure of the uranium beam after stripping (measured at downstream of RRC)

Main developments performed since September 2007

- Introduced new Faraday cups that allowed us to measure beam intensities accurately
- Built a system monitoring the stabilities of beam phases, RF voltages and RF phases by use of lock-in amplifiers
- Doubled the intensity of U ions from the existing 18 GHz ECR ion source by improving the sputtering method

Machine studies scheduled for April to November 2008

- Beginning of April: Renovation of the low-energy beam transport line of ECR ion source
- April 20 30 : U acceleration (for ZDS commissioning)
- May 29 June 4 : U acceleration (for new isotopes search)
- June 25 30 : ⁴⁸Ca and/or ⁸⁶Kr acceleration
- October (one week) : ⁴⁸Ca, ⁸⁶Kr or ¹³⁶Xe acceleration
- November (one week) : ⁴⁸Ca, ⁸⁶Kr or ¹³⁶Xe acceleration

Key issues to be improved for higher intensities

- To increase beam intensities from ECR ion source
 - The intensity of U³⁵⁺ ions from the existing 18 GHz ECR ion source has already increased by 2 times.
 - The beam intensities is expected to increase owing to the renovation of the low-energy beam transport line.
 - A 28 GHz superconducting ECR ion source is being constructed for completion by the end of 2008; the performance for U³⁵⁺ ions will be improved by two orders.
- To improve the beam transmission through the accelerators
 - The transmission of U ions through IRC and SRC is expected to increase by 2.5 to 3 times by use of their flattop resonators.
 - The transmission up to IRC is expected to increase by 2 times by careful tuning.

The beam intensity of 345 MeV/u U ions is expected to increase this April by more than 10 times.

Construction schedule of 28 GHz SC-ECR

Key issues to be improved for higher intensities (cont'd)

- To improve the beam transmission through the accelerators (cont'd)
- Transmission especially through the SRC should be improved for highintensity beams; it should be more than 80 % for 100 pnA 345 MeV/u Kr beam, for example, while it was 45 % in the acceleration test.
- To make charge strippers with long lifetimes
 - A rotating carbon foil is expected to have remarkably longer lifetimes for a U beam than fixed foils ever used; a slowly moving foil is also expected to have long lifetimes for a Kr beam.

Lifetimes of fixed foils ever used

300 μ g/cm² foil after RRC : 6 ~ 12 hours @ 0.02 pnA (SRC) U 20 μ g/cm² foil after RILAC : 2 days @ 3 pnA (SRC) Kr

- Gas stripper is planned to be tested in the near future.
- Liquid stripper

Rotating carbon foil

This rotating carbon foil for a U beam will be tested this April.

Expected intensities of 345 MeV/nucleon beams at RIBF

 ^{48}Ca 238**T** J Kr Xe April~November 30~50 30~50 5~10 0.3~0.5 2008 200 100 20 5 April 2009

pnA

Acceleration of deuteron, ¹⁴N, ¹⁶O ions, etc. using AVF-RRC-SRC mode

The bypass beam line from RRC to SRC is scheduled to be complete for the SHARAQ commissioning in March 2009.

