Facility Information |
User Guide |
PAC |
Beam Time Operation |
RIBF User Group |
Collaboration |
Seminars |
Links |
Archives |
|
RIPS
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Beam intensity | Production Target | Wedge | Beam diagnos devices | RF-defrector | Experimental devices |
Technical Information - Beam Intensity
Typical primary beams and RI-beam production
Typical primary beams accelerated with K=540 RIKEN Ring Cyclotron (RRC) are listed in this page. The energies and intensities shown here are actually obtained ones in the RRC acceleration in combination with the injector indicated in the list. For each primary beam, the production yields of RI beams in the projectile-fragmentation reactions and their purity obtained with RIPS are estimated based on EPAX2, in which the following experimental situations are assumed.- target: Be, whose thickness is set to give a maximum yield for each RI beam
- angular acceptance: 60mrad x 60mrad
- momentum acceptance: 6 %
- wedge-shaped degrader: thickness are set to give d/R = 0.25 commonly (not always realistic)
- F2 slit: opening widths are set to be a FWHM of each RI-beam profile
These calculations give guidelines for the production of RI beams of interest. Although poor purity might be estimated, they can be drastically improved in some cases by carefully performing the isotope-separation procedure in actual experiments, since these calculations were carried out in a simplified way. The RF deflector equipped upstream of F2 can also purify RI beams additionally.
Primary beam | Energy | Intensity | Injector | Secondary beams Yield & Purity |
||
4He | 135 AMeV | 700 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
11B | 70 AMeV | 300 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
12C | 70 AMeV | 400 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
12C | 92 AMeV | 300 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
13C | 100 AMeV | 300 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
13C | 70 AMeV | 300 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
14N | 135 AMeV | 400 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
15N | 70 AMeV | 40 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
16O | 135 AMeV | 500 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
18O | 100 AMeV | 500 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
18O | 70 AMeV | 200 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
20Ne | 135 AMeV | 180 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
20Ne | 70 AMeV | 60 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
22Ne | 100 AMeV | 170 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
22Ne | 110 AMeV | 360 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
24Mg | 100 AMeV | 50 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
28Si | 100 AMeV | 25 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
28Si | 135 AMeV | 50 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
36Ar | 115 AMeV | 40 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
40Ar | 63 AMeV | 800 pnA | RILAC | Table(Y&P) | Fig(Y) | Fig(P) |
40Ar | 95 AMeV | 80 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
40Ca | 100 AMeV | 50 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
48Ca | 63 AMeV | 100 pnA | RILAC | Table(Y&P) | Fig(Y) | Fig(P) |
48Ca | 70 AMeV | 4.5 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
50Cr | 80 AMeV | 6 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
56Fe | 90 AMeV | 8 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
59Co | 80 AMeV | 17 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
58Ni | 95 AMeV | 6 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |
86Kr | 63 AMeV | 80 pnA | RILAC | Table(Y&P) | Fig(Y) | Fig(P) |
86Kr | 66 AMeV | 1 pnA | AVF | Table(Y&P) | Fig(Y) | Fig(P) |